

AN INCREMENTAL ENHANCEMENT OF AGENT-BASED

GRAPH DATABASE SYSTEM

SHENYAN CAO

A whitepaper

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science and Software Engineering

University of Washington

June 3rd, 2024

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Clark Olson, Committee Member

Professor Wooyoung Kim, Committee Member

 1

Abstract

In the domain of big data analytics, a graph database (DB) system is vital for managing complex

data structure. This project delves into the enhancement of an existing agent-based graph DB

system leveraging the Multi-Agent Spatial Simulation (MASS) Java library. Motivated by the

limitations of the existing agent-based graph DB system, this project aims to re-engineer the

structure of the existing system to make it capable to handle complex dataset, aligning with the

property graph model. Furthermore, it endeavors to integrate with Cypher, a graph query

language, to enhance the querying capabilities of the agent-based graph DB system.

Building upon the previous work within the MASS framework, which incorporates a distributed

graph data structure, this project seeks to enhance functionality and efficiency in managing large

and complex graph datasets. Through a comparative analysis of popular industrial graph DB

systems such as Neo4j, RedisGraph, JanusGraph, and ArangoDB, this project establishes design

principles focusing on the adoption of the property graph model, Cypher query language, in-

memory distributed graph structures, and agent utilization.

Detailed insights into the design and implementation processes are provided, which includes

parsing Cypher queries into Abstract Syntax Trees (AST), planning execution strategies, and

executing queries to traverse graph and manipulating graph data. Comprehensive testing ensures

the functionality of the enhanced agent-based graph DB system. Results include successful

execution and verification of building the property graph from csv files, along with the execution

and verification of CREATE and MATCH cypher queries.

In summary, this project demonstrates the successful extension of the agent-based graph DB

system to handle complex node and relationship property information, accurate execution of

CREATE and MATCH cypher queries, and outlined plans for future development. This project

report encapsulates the goals, design, implementation, and evaluation of the project,

underscoring the significance of enhancing the agent-based graph DB system for handling

complex and interconnected data structures.

 2

Table of Contents
1. Introduction .. 6

1.1 Background and motivation ... 6

2. Previous Work .. 8

2.1 Existing MASS Java library .. 8

2.2 Existing agent-based graph DB system ... 10

2.2.1 GraphPlaces and VertexPlace ... 11

2.2.2 GraphAgent .. 13

3. Related Works .. 13

3.1 Neo4j .. 14

3.2 RedisGraph ... 14

3.3 JanusGraph ... 15

3.4 ArangoDB .. 16

3.5 Summary of related works ... 16

4. Design and Implementation ... 17

4.1 Overall Design ... 17

4.2 Design Principle 1: Adopting Property Graph Model ... 18

4.2.1 Property graph model ... 18

4.2.2 Implementation of property graph model ... 20

4.3 Design Principle 2: Supporting Cypher Query Language .. 22

4.3.1 Cypher Query Language ... 22

4.3.2 Implementation of Cypher processing pipeline .. 24

4.4 Design Principle 3: In-Memory Distributed Graph Structure .. 26

4.5 Design Principle 4: Agents and PropertyGraphAgent ... 27

4.5.1 Initialization of Agents and PropertyGraphAgent ... 28

4.5.2 Agents’ callAll() and manageAll() .. 29

5. Evaluation ... 31

5.1 Verification of building graph from CSV files .. 31

 3

5.2 Verification of executing CREATE Cypher clauses .. 32

5.2.1 Test case 1: Creating two nodes with labels and properties in a single clause. 33

5.2.2 Test case 2: Establishing a relationship between two existing nodes. 33

5.2.3 Test case 3: Creating multiple nodes and relationships within one path pattern. ... 34

5.2.4 Test case 4: Creating nodes and relationships with multiple path patterns. 35

5.3 Verification of executing MATCH Cypher clauses ... 35

5.3.1 Test case 1: Matching all nodes in a graph. .. 35

5.3.2 Test case 2: Matching nodes with a label. .. 36

5.3.3 Test case 3: Matching nodes with a label and a property. 36

5.3.4 Test case 4: Matching all nodes with a relationship to a specific node. 37

5.3.5 Test case 5: Matching nodes with specific relationship type and property. 37

5.3.6 Test case 6: Matching nodes along a path with simple relationships. 38

5.3.7 Test case 7: Matching nodes along a path with complex relationships. 39

5.4 Summary of evaluation ... 40

6. Conclusion .. 41

Bibliography .. 42

 4

List of Figures
Figure 2.1: MASS library architecture with Places and Agents [8]. .. 10

Figure 2.2: The existing agent-based graph DB system with GraphPlaces. 12

Figure 2.3: Attributes in the VertexPlace class. .. 12

Figure 2.4: An illustration of GraphPlaces and VertexPlace in a cluster network. 13

Figure 4.1: Overall design of the whole project. .. 18

Figure 4.2: An illustration of a node in the property graph model [10]. 19

Figure 4.3: An illustration of relationship in the property graph model [10]. 19

Figure 4.4: A path demonstration in the property graph model [10]. .. 20

Figure 4.5: Attributes in the PropertyVertexPlace class. .. 21

Figure 4.6: An illustration of PropertyGraphPlaces and PropertyVertexPlace in a cluster

network. ... 21

Figure 4.7: A demonstration of a MATCH clause applied to a single node pattern. 23

Figure 4.8: A demonstration of three MATCH clauses applied to a single relationship pattern. . 23

Figure 4.9: A visual way of matching path pattern in Cypher. .. 24

Figure 4.10: Cypher processing pipeline. .. 24

Figure 4.11: ANTLR4 autogenerates code files from Cypher.g4. .. 25

Figure 4.12: The grammatical structure of a CREATE query text. .. 25

Figure 4.13: The enhanced agent-based graph DB system with PropertyGraphPlaces. 27

Figure 4.14: A demonstration of agents initialized in a cluster network. 28

Figure 4.15: The code snippet of PropertyGraphAgent's constructor. ... 29

Figure 4.16: The iteration cycle of callAll() and manageAll(). ... 30

Figure 4.17: An example of agents traversing the enhanced agent-based graph DB. 31

Figure 5.1: An example of node csv file. ... 32

Figure 5.2: An example of relationship csv file. .. 32

Figure 5.3: The graph constructed from csv files. .. 32

Figure 5.4: The output of the CREATE clause test case 1. .. 33

Figure 5.5: The output of the CREATE clause test case 2. .. 34

 5

Figure 5.6: The output of the CREATE clause test case 3. .. 34

Figure 5.7: Graphical representation of the graph constructed from csv files in Section 5.1. 35

Figure 5.8: The Output of the MATCH clause test case 1. .. 36

Figure 5.9: The output of the MATCH clause test case 2. .. 36

Figure 5.10: The output of the MATCH clause test case 3. .. 36

Figure 5.11: The output of the MATCH clause test case 4 with graphical illustration. 37

Figure 5.12: The output of the MATCH clause test case 5 with graphical illustration. 38

Figure 5.13: The output of the MATCH clause test case 6 with graphical illustration. 39

Figure 5.14: The output of the MATCH clause test case 7 with graphical illustration. 40

List of Tables

Table 2.1: Graph DB system leveraging the MASS Java library. ... 10

Table 4.1: Enhanced property graph DB system leveraging MASS Java library. 21

Table 4.2: The relation between parse-tree, AST and execution steps. 26

 6

1. Introduc9on

1.1 Background and moAvaAon

With the rise of big data and the need to analyze interconnected data, graph DB system has

gained popularity as a valuable tool for managing and exploring large and complex datasets [1].

A graph DB is a type of DB that uses graph structures to represent and store data. In a graph DB,

data is organized as nodes and edges. Nodes represent entities, and edges represent the

relationships between those entities. For instance, in a film industry graph DB, nodes can

represent various entities such as movies, actors, directors, genres, and production companies.

Edges between nodes signify relationships, such as actors starring in movies or directors directing

films. This graph-based representation allows for efficient exploring and analysis of complex

relationships and connections within the data. A graph DB system refers to the entire software

ecosystem built around the graph DB. It encompasses not only the storage mechanism but also

the query language, data management tools, indexing mechanisms, and other features that

enable users to interact with and manipulate the data stored in the graph DB [1,2].

Traditional methods in the field of big data analytics have heavily relied on data streaming tools

like Hadoop MapReduce, and Apache Spark to handle and analyze vast amounts of data [3].

These tools have been instrumental in enabling real-time data processing and building scalable

analytics pipelines. Their support for big-data computing and data sciences, with data formats

primarily in text, has made them widely adopted tools. However, it is important to note that

these data streaming tools may face limitations when it comes to analyzing complex data

structures such as graphs. Data streaming tools often operate based on the principle of dividing

data into smaller chunks and processing them individually. This approach may not be ideal for

complex data structures like graphs, as they consist of interconnected nodes and edges.

Decomposing and streaming such structures through memory can lead to challenges in

maintaining the integrity of relationships and may require additional processing steps to

reconstruct the complete structure.

 7

When dealing with a dataset with graph structure, it is more logical to retain the structure in

distributed memory and deploy agents, (i.e., autonomous execution entities) within it, as

opposed to breaking down the structure and streaming with traditional data streaming tools [4].

Agents hold significant potential in supporting the analysis of graph DB due to their ability to be

deployed repetitively within data structures mapped over distributed memory. With agent-based

graph DB system, it can achieve efficient graph construction and analysis, facilitating the

processing of highly interconnected data [5].

Throughout previous years, the Distributed Systems Laboratory (DSL) at the University of

Washington has developed an agent-based graph DB system that leverages the MASS Java library.

Their approach involves constructing graphs over a cluster system, deploying numerous reactive

agents to datasets, and assigning these agents the task of computing data attributes or

relationships. [6]. Nevertheless, the current graph DB system is structured to accommodate

nodes and edges with specific properties. Each node in the graph is defined by its unique

identifier (ID), and edges are characterized by the IDs of connected nodes along with a weighted

relationship. This simplicity of the existing agent-based graph DB system may be suitable for

scenarios where the relationships between entities can be adequately represented using only

these three attributes. However, it is essential to recognize that a more complex data model with

additional attributes would be required for applications where richer information about nodes

and relationships is necessary. In the film industry example provided earlier, a complex data

model might be used to represent people and movies with detailed relationships, each with its

own properties. The property graph model, with its ability to represent nodes, relationships, and

attributes, aligns seamlessly with the requirements of such a complex data model in the film

industry. This capstone project seeks to re-engineer the existing agent-based graph DB system to

enhance its capability to handle complex datasets with property information about nodes and

relationships in accordance with the property graph model.

When utilizing a graph DB system, a query mechanism is typically necessary for creating,

manipulating, and retrieving data. However, the existing agent-based graph DB system does not

support any query language. Cypher, as an open query language designed for graph databases,

is particularly optimized for querying property graph models. This capstone project seeks to

 8

integrate Cypher with the agent-based graph DB system by implementing CREATE and MATCH

Cypher clauses.

Given the motivations outlined, our DSL team is presently dedicated to improving the existing

agent-based graph DB system and evaluating its performance using benchmark applications.

While Michelle Dea is tasked with building these benchmark applications, utilizing various large

graph datasets to measure the execution performance of MASS, Neo4J, and ArangoDB, my

responsibility involves enhancing the functionality of the agent-based graph DB system. The

project goals for this capstone work are as follows: 1) re-engineer the existing agent-based graph

DB system to enhance its capability to handle graph datasets with various property information

about nodes and relationships in accordance with the property graph model, 2) integrate Cypher

into the agent-based graph DB system by implementing CREATE and MATCH Cypher clauses, and

3) conduct comprehensive testing on the functionality of the enhanced agent-based graph DB

system to ensure its functionality meet the desired standards.

2. Previous Work

This section aims to provide an in-depth overview of the MASS Java library and the existing agent-

based graph DB system. It also discusses challenges posed by the existing agent-based graph DB

system and outlines the tasks intended to mitigate these challenges within the scope of this

project.

2.1 ExisAng MASS Java library

At its core, MASS leverages a distributed architecture to manage and process large-scale datasets

efficiently. In the distributed environment, the system operates across multiple computing nodes,

with each equipped with its own memory and processing capabilities. Data is stored in memory

for efficient access and manipulation. The MASS Java library excels at managing simulations

where entities, represented as Agents, dynamically interact with each other and their

environment, depicted as Places [7].

 9

Places serve as the spatial framework upon which simulations are constructed. They are the

elements organized in a matrix and distributed across a cluster of computing nodes. Each Place

instance is uniquely identified by a set of matrix indices and possesses the ability to exchange

information stored within it with other places within the simulation [7]. Once initialized, a Place

instance remains fixed on its respective computing node throughout program execution.

Agents represent the dynamic entities that inhabit and interact within the spatial framework

defined by Places [7]. They are the execution instances capable of residing in a specific place and

interact with the data stored within the place they inhabit. Agents can also spawn new agents,

terminate themselves, migrate between places, and interact with other agents and places.

Agents are organized into bags and allocated to processes within the distributed computing

environment, with threads managing their execution and interaction, which facilitates parallel

execution.

MASS leverages the parallel execution of Places and Agents through multithreaded

communication processes, which are forked across cluster nodes and interconnected via

Transmission Control Protocol (TCP) sockets [8]. Utilizing message passing, places and agents can

exchange data, coordinate distributed computations, and synchronize updates to maintain data

consistency across the distributed environment. TCP ensures reliable and ordered delivery of

messages between places and agents.

Figure 2.1 illustrates the distribution of places across a cluster of three computing nodes, each

with four execution threads for parallel manipulation of places and agents [8]. An Agents instance,

containing a bag of agents, is associated with each Places instance. Parallel computation involving

Places and Agents is facilitated using methods like Places.callAll(func) for invoking a specified

function across all places, Agents.callAll(func) for executing a given function across all agents,

Places.exchangeAll(func) for exchanging data among neighboring places via a function call, and

Agents.manageAll() for handling agent creation, termination, and migration operations

scheduled in the last Agents.callAll().

 10

Figure 2.1: MASS library architecture with Places and Agents [8].

2.2 ExisAng agent-based graph DB system

In recent years, DSL has built with an agent-based graph DB system leveraging the MASS Java

library [9]. The agent-based graph DB system comprises two essential components: GraphPlaces

and GraphAgent. GraphPlaces, as explained in Table 2.1, extends from Places and includes a

collection of VertexPlace, which further extends from Place. Meanwhile, GraphAgent extends

from Agent.

Table 2.1: Graph DB system leveraging the MASS Java library.

 11

2.2.1 GraphPlaces and VertexPlace

The GraphPlaces class is designed to store and manage graph data. GraphPlaces serve as

fundamental components for a graph DB. It provides functionalities for creating and modifying

graph structures. GraphPlaces instances embody a graph consisting of vertices and edges.

Vertices are represented by instances of VertexPlace, while edges are implicitly defined by the

edge attributes of the VertexPlace instances. Figure 2.2 describes the distribution of three

GraphPlaces instances across a cluster of three computing nodes. It adheres to the in-memory

distributed structure of Places but stores places in Vectors, which can dynamically expand to

accommodate large datasets.

Figure 2.3 is partial code of the VertexPlace class, which defines edges using a list of neighbor IDs

stored in Vector<Object> neighbors and neighbor edge weights stored in Vector<Object> weights.

Figure 2.4 is an example of the VertexPlace instances distributed evenly across a cluster of three

computing nodes. Each VertexPlace is characterized by three attributes: its unique identifier (ID),

a list of neighbor IDs, and a list of corresponding edge weights. The edges within this

representation are all outgoing edges and are implicitly defined by the associated lists of

neighbor IDs and edge weights within each VertexPlace.

The simplicity of the existing graph DB system may be suitable for straightforward scenarios

where the relationships between entities can be adequately represented using only these three

attributes (vertex ID, neighbor ID, edge weight). However, it poses limitations when dealing with

more complex datasets requiring richer information about nodes and their connections. Consider

the earlier example within the film industry, the dataset must store detailed information about

people and movies, including their relationships. Nodes could represent individuals (e.g., actors,

directors) and movies, each with numerous attributes such as names, birthdates, genres, release

dates, and ratings. Edges would represent relationships such as ACTED_IN and DIRECTED. Each

of these relationships could have additional attributes. For instance, the ACTED_IN relationship

might include the role played and the year of performance. The existing agent-based graph DB

system fails to adequately store and manage such complex datasets with rich and detailed node

and edge information.

 12

This project aims to re-engineer the existing system by adopting the property graph model, which

addresses the above limitations. The property graph model organizes data into nodes, edges and

properties. Nodes represent entities in the graph, relationships define connections between

nodes, and properties store key-value pairs associated with nodes and relationships. The

property graph model allows for flexible and efficient representation of complex datasets with

rich relationships between entities. Neo4j, RedisGraph and JanusGraph are all based on the

property graph model [10]. Property graph model is particularly well-suited for scenarios where

the relationships between data points are as important as the data points themselves, such as

social networks, recommendation systems, and network infrastructure management.

Figure 2.2: The exiskng agent-based graph DB system with GraphPlaces.

Figure 2.3: Alributes in the VertexPlace class.

 13

Figure 2.4: An illustrakon of GraphPlaces and VertexPlace in a cluster network.

2.2.2 GraphAgent

The GraphAgent class inherits from Agent and updates the map function with one that distributes

the initial population of agents across the graph. GraphAgent also incorporates the necessary

operations for agents to function properly within the graph data structure, including spawn(),

migration(), and kill(). Following the graph's construction, agents could migrate from one vertex

to another through the edges. The current GraphAgent lacks the capability to retain path results

during graph DB traversal. This project extends GraphAgent class to a new class named

PropertyGraphAgent to address the above limitation. This extension will empower agents to

carry path results as they navigate and explore the graph DB, enhancing their functionality within

the system.

3. Related Works

In this section, we describe the data storage and management in four industrial graph DB systems,

Neo4j, RedisGraph, JanusGraph, and ArangoDB, outlining their key strengths and weaknesses.

The selection of these graph DB systems is driven by their significant presence and popularity in

the industry.

 14

3.1 Neo4j

Neo4j is a leading graph DB system designed to efficiently store, manage, and query highly

interconnected data. It excels in handling complex relationships and interconnectedness

inherent in real-world datasets, making it ideal for applications like social networks,

recommendation engines, and many more [2].

Neo4j offers two primary deployment options: single-instance and clustered. In a single-instance

setup, Neo4j runs on a single computing node. This setup is suitable for smaller-scale

deployments or development environments where the entire graph DB can fit on a single

machine's resources. While this approach offers advantages such as low latency and high

throughput, it may pose limitations in scenarios requiring scalability beyond the capacity of a

single machine. Scaling resources vertically by upgrading hardware is the only option, which may

not be cost-effective or sufficient for long-term growth.

Neo4j can also be deployed in a clustered environment, where multiple instances of Neo4j across

different computing nodes collaborate to form a distributed system. In a clustered setup, each

computing node stores a portion of the graph DB on its local disk. Neo4j also employs an

extensive caching mechanism to improve query performance by caching frequently accessed

data in memory. While Neo4j's clustered environment caters to scalability requirements by

distributing graph data across multiple nodes, inter-node communication in the clustered setup

may introduce higher latency compared to a single-instance environment, especially over

networks with high latency or congestion. Besides, as data is stored on disks, it typically involves

slower access times compared to in-memory storage due to the physical read or write operations

required to access data from the disk. These can result in performance degradation, affecting

overall system responsiveness and query execution times.

3.2 RedisGraph

RedisGraph is an in-memory graph DB system deployed with a single-instance setup [12].

Leveraging Redis's in-memory storage, RedisGraph facilitates rapid traversal and querying of

graph data. However, storing graph data in the memory of a single computing node can lead to

 15

substantial memory requirements, particularly for sizable datasets, which constrains its

scalability.

Redis announced the phase-out of RedisGraph in 2023, citing multiple reasons for the decision.

A primary factor was the higher-than-expected costs of expanding support and sales capacities

for RedisGraph, despite its technical competitiveness. Redis aims to concentrate on segments

with more substantial growth potential, such as Search and Query, JSON, and Vector features

within Redis Enterprise.

Despite the phasing out of RedisGraph, we continue to examine its advantages and challenges,

as its in-memory deployment is comparable to our agent-based graph DB system. The main

limitation of RedisGraph lies in its scalability within a single-node environment. In contrast,

deployment in our agent-based graph DB system is configured within a distributed environment

comprising multiple computing nodes. Our approach addresses the scalability issue present in

RedisGraph while enabling low latency and high efficiency in graph traversal and manipulation

with data store in memory.

3.3 JanusGraph

JanusGraph is an open-source graph DB released in 2017 [13]. It offers two primary ways to store

data: in-memory storage and disk-based storage. In the in-memory storage option, graph data is

stored exclusively in the memory of a single computing node. Similar to RedisGraph, JanusGraph

with the in-memory storage option faces challenges related to scalability.

JanusGraph also supports disk-based storage, which can be distributed across a cluster network.

JanusGraph supports various distributed storage backends such as Apache Cassandra, Apache

HBase, Google Cloud Bigtable, and others. Similar to Neo4j's clustered setup, JanusGraph with

disk-based storage is highly scalable but may encounter potential latency issues and performance

degradation.

 16

3.4 ArangoDB

ArangoDB stands out as a multi-model DB system, accommodating various data formats like key-

value pairs, documents, and graphs [14]. ArangoDB can be deployed in various configurations to

suit different needs [15]. Running a single server instance of ArangoDB is the simplest way to

start, where the ArangoDB server binary is run stand-alone without replication, failover

capabilities, or clustering with other nodes. However, single server instances may face scalability

limitations similar to Neo4j's single-instance setup.

ArangoDB clusters, on the other hand, consist of multiple servers and facilitates synchronous

data replication between servers [15]. Similar to Neo4j’s clustered setup, ArangoDB's clustering

feature offers high scalability but may experience latency issues and performance degradation.

3.5 Summary of related works

RedisGraph and JanusGraph’s single-node setup leverages in-memory storage, enabling rapid

traversal and querying of graph DBs with low latency. However, in a single computing node setup,

they may face scalability constraints due to limited memory size. Similarly, Neo4j and ArangoDB

encounter scalability issues in their single-instance setups due to limited disk space. While

distributed setups are available for Neo4j, JanusGraph, and ArangoDB to distribute graph data

across multiple computing nodes, they may encounter potential latency issues and performance

degradation due to disk-based storage and the distributed environment.

As explained in the previous sections, the existing agent-based graph DB system exhibits two

limitations. Firstly, it cannot store and manage complex datasets containing property information

pertaining to nodes and edges. Secondly, it lacks support for any query languages. To tackle the

constraints of the existing agent-based graph DB system and address the scalability, latency, and

performance degradation issues encountered by industrial graph DB systems, our project

adheres to four design principles outlined below and further elaborated in Section 4: 1) adopting

property graph model to handle complex datasets; 2) supporting Cypher query language with a

standardized query interface; 3) adhering to the existing in-memory distributed graph structure;

and 4) using agents and PropertyGraphAgent for graph traversal and analysis.

 17

4. Design and Implementa9on

This section will elaborate on the project's overall design, as well as the design and

implementation of crucial components, aligning with the four design principles outlined in

Section 3.

4.1 Overall Design

The entire design and implementation of this project is presented in Figure 4.1. The main design

of the whole project follows a three-tier architecture pattern, with presentation layer, logic layer

and data access layer. Presentation Layer is about the interface that users interact with. Users

have no direct access to the underlying graph data or knowledge of the DB structure. Users make

requests to the system through the GraphManager component. Logic Layer serves as an

intermediary between the presentation layer and the data access layer. This layer contains the

GraphManager class, which exposes create, read, or update methods to users, providing a high-

level interface for interaction with graph DB. Data Access Layer is where the actual agent-based

property graph DB resides. Users, through the GraphManager, interact with the DB using Cypher

queries.

When a user inputs a Cypher query to query the graph DB, GraphDBHandler will call

GraphManager’s queryHandler() method, which is responsible for handling Cypher queries. In

the queryHandler method, the Cypher query text undergoes parsing into AST representation

using the CypherVisitor method. This AST serves as the foundation for constructing an execution

plan tailored to the query's requirements. Through the invocation of

ProeprtyGraphCypherQuery.execute() method, the execution plan is built, and each step is

executed within the provided context, interacting with agent-based graph DB via the

PropertyGraphCypherQueryContext interface. The underlying structures of the graph DB and

query handler are abstracted from users, ensuring they only need to be concerned with the high-

level create, read, or update operations, while the Graph DB and Cypher Handler manages the

low-level details of graph DB and query parsing and execution.

 18

Figure 4.1: Overall design of the whole project.

4.2 Design Principle 1: AdopAng Property Graph Model

The existing agent-based graph DB system poses limitations when dealing with complex datasets

with property information about nodes and edges. This project aims to re-engineer the existing

system by leveraging the property graph model, which is capable of representing data with nodes,

edges and properties. This subsection provides a comprehensive overview of the property graph

model, elaborating on its key concepts and principles. Subsequently, it delves into an explanation

of the implementation process for enhancing the existing agent-based graph DB in accordance

with the principles of the property graph model.

4.2.1 Property graph model

For domains with inherently connected and interdependent data, such as social networks, or

supply chains, the property graph model provides a natural and efficient way to model and

represent complex node information and relationships between nodes. The Property Graph

 19

Model is a type of graph model that represents data as a graph, consisting of nodes, relationships,

and properties [1,2,11].

Nodes are the entities (discrete objects) in the graph, which can be tagged with labels,

representing their different roles in a domain [10]. Nodes can also hold any number of key-value

pairs, or properties. The simplest possible graph is a single node with no relationships. Consider

the following graph as shown in Figure 4.2, it consists of a single node and represents an entity

in the film industry. The node labels are Person and Actor. The node properties are “name: Tom

Hanks” and “born: 1956”.

Figure 4.2: An illustrakon of a node in the property graph model [10].

A relationship defines the connection between a source node and a target node. Relationships

provide directed and named connections between two node entities. Relationships always have

a direction, a type, a start node, and an end node, and they can have properties, just like nodes

[10]. Nodes can have any number or type of relationships. Although relationships are always

directed, they can be navigated efficiently in any direction. Relationships play a pivotal role in

structuring nodes, enabling a graph to take on various forms such as a list, a tree, a map, or a

compound entity. These structures can be further combined to create intricate, interconnected

systems. Figure 4.3 is an example of a relationship example in a film industry. The relationship

type is ACTED_IN. The properties are “roles: ['Forrest']” and “performance: 5”.

Figure 4.3: An illustrakon of relakonship in the property graph model [10].

 20

A path in the property graph model represents a sequence of nodes and relationships traversed

from one node to another. Figure 4.4 is an example of a path example in the film industry. Path

captures the route or journey through the graph from a starting point to an endpoint. It can

include multiple nodes and relationships, providing valuable insights into the connections

between entities in the graph. Traversals in property graph DB involve navigating through a path

by following relationships from one node to another based on certain criteria.

Figure 4.4: A path demonstrakon in the property graph model [10].

4.2.2 Implementa;on of property graph model

As demonstrated in Table 4.1, to enhance the functionality of the existing system in accordance

with the property graph model, a new PropertyGraphPlaces class is designed and implemented

to extend GraphPlaces, while a new PropertyVertexPlace class is designed and implemented to

extend VertexPlace.

The PropertyVertexPlace class is designed to represent nodes or vertices in a graph structure in

accordance with the property graph model. The Java code snippet, as shown in Figure 4.5,

presents the implementation of the PropertyVertexPlace class. The key attributes of the

PropertyVertexPlace class include 'labels' and 'nodeProperties' for denoting node label and

property information, along with 'toRelationship' and 'fromRelationship' for retaining

relationship details. The ‘nextVertex’ is list to store the vertex IDs of nodes where an agent is

expected to migrate to.

Figure 4.6 is an illustration of the PropertyGraphPlaces instances and the PropertyVertexPlace

instances in a cluster network with three computing nodes. The PropertyGraphPlaces instance

has a collection of the PropertyVertexPlace instances, which are distributed evenly across the

cluster network. With its methods, such as addPropertyVertex(), setRelationEdge(),

 21

propertyGraphCallAll(), and getPropertyGraph(), it is tailored to streamline the creation,

modification, and examination of property graphs.

Table 4.1: Enhanced property graph DB system leveraging MASS Java library.

Figure 4.5: Alributes in the PropertyVertexPlace class.

Figure 4.6: An illustrakon of PropertyGraphPlaces and PropertyVertexPlace in a cluster network.

 22

4.3 Design Principle 2: SupporAng Cypher Query Language

The existing agent-based graph DB system does not support any query languages. Cypher is a

declarative query language specifically designed for querying and manipulating graph data stored

property graph DB systems, such as Neo4j and RedisGraph [1]. This project aims to integrate

Cypher with our agent-based graph DB system to provide users with a standard query interface.

This subsection provides an overview of the key patterns and principles in the Cypher query

language. Subsequently, it delves into detailing the Cypher processing pipeline to integrate

Cypher with our agent-based graph DB system.

4.3.1 Cypher Query Language

Cypher provides a user-friendly and expressive syntax for interacting with nodes, relationships,

and attributes within the property graph model, making it an ideal tool for navigating and

analyzing complex data structures like those found in the film industry example. In illustrations

of the property graph model, nodes are represented as circles, and relationships as arrows. In

Cypher, these circles are denoted by a pair of parentheses, referred to as node patterns, while

the arrows are represented as dashes accompanied by either a greater-than or less-than symbol,

referred to as relationship patterns [16].

In Cypher, users can target specific nodes in the graph with node pattern by specifying criteria

such as labels, properties, or a combination of both. Every graph pattern contains at least one

node pattern. Figure 4.7 is a detailed illustration of a MATCH clause applied to a single node

pattern, which is targeting an entity in a film industry graph database. In this demonstration, the

node comprises the following components: a label denoted as ‘Movie’, a property with key of

'title' and value of 'Wall Street', and an assigned variable, denoted as ‘mv’, which enables the

referencing of designated nodes in subsequent clauses, aiding in the construction of complex

queries. The initial MATCH clause locates all nodes labeled as ‘Movie’ within the graph possessing

the ‘title’ property set to ‘Wall Street’, associating them with the variable mv. Subsequently, this

variable, mv, is propagated to the subsequent RETURN clause, which retrieves and presents the

information associated with the same node.

 23

Figure 4.7: A demonstration of a MATCH clause applied to a single node pattern.

Relationship is represented in Cypher with dashes and/or an arrow to indicate its direction. The

simplest possible relationship pattern is a pair of dashes (‘--‘). This pattern specifies a relationship

with any direction and does not filter on any relationship type or property. To specify a particular

direction, an arrow '<' or '>' is added to the left or right-hand side of dashes respectively (‘-->’ or

‘<--‘). Figure 4.8 includes three detailed MATCH queries applied with different directional

relationship patterns, targeting the relationships in a film industry graph database. These query

examples match for relationships of type ‘ACTED_IN’ and property with key of ‘role’ and value of

‘Bud Fox’. Unlike nodes, information within a relationship pattern must be enclosed by square

brackets. The first query does not specify the direction of the relationships, so it matches

relationships in any direction between node a and node b. The second query specifically retrieves

relationships with direction from node a to node b. The third query specifically retrieves

relationships with direction from node b to node a.

Figure 4.8: A demonstrakon of three MATCH clauses applied to a single relakonship palern.

In the property graph model, a path represents a sequence of nodes and relationships that form

a connected chain within the graph. Path patterns in Cypher mirror this structure, encompassing

a sequence of node patterns and relationship patterns. A path pattern must include at least one

node pattern and also initiate and terminate with a node pattern. It must alternate between node

and relationship patterns. By specifying start and end nodes, as well as optional conditions along

a path pattern, users can construct complex queries to extract valuable insights from the graph

data. Figure 4.9 is a visual way of matching a path pattern in Cypher. This path pattern includes

two node patterns and one relationship pattern. This MATCH clause seeks to fetch path results

 24

within a graph DB where a node representing a person named 'Dan' is connected by an outgoing

'LOVES' relationship to another node representing a person named 'Ann'.

Figure 4.9: A visual way of matching path palern in Cypher.

4.3.2 Implementa;on of Cypher processing pipeline

Figure 4.10 describes the Cypher query processing pipeline. It begins with the input of a Cypher

query text, which specifies the query clause with patterns to be performed on the graph data.

Once the Cypher query is received, it undergoes parsing into a parse-tree, a hierarchical

representation of its syntactic structure, and then being translated into an Abstract Syntax Tree

(AST), which captures the essential semantic structure of the parse-tree. Upon the construction

of AST, it is transformed into an execution plan, which is essentially a tree of execution steps

required to fulfill the query efficiently. Once the execution plan is generated, it is executed

against the agent-based property graph DB and the results of the query execution are retrieved.

Throughout this pipeline, our project leverages optimization techniques and algorithms to ensure

efficient query processing and timely retrieval of results from the graph DB system, thereby

facilitating effective data querying and analysis.

Figure 4.10: Cypher processing pipeline.

For converting query text into a parse-tree, ANTLR4 (ANother Tool for Language Recognition,

version four) stands out as an optimal choice due to its capabilities as a powerful parser generator

[17]. There exists an ANTLR4 grammar file specifically tailored for Cypher, named Cypher.g4.

 25

Upon incorporating Cypher.g4 into the application with the ANTLR4 plugin, ANTLR automatically

generates numerous code files corresponding to Cypher.g4, as illustrated in Figure 4.11. The

input query text first undergoes conversion to CharStream, followed by the generation of lexer

with CypherLexer and parse-tree by CypherParser sequentially. Appendix C1 presents the code

snippet for parsing the query string to parse-tree.

In a parse-tree, each node corresponds to a syntactic element of the query, such as keywords,

identifiers, operators, or expressions. Analyzing the parse-tree with LISP-style tree structure

could make it easier to understand and analyze the grammatical structure of the parse-tree.

Figure 4.12 shows the LISP-style tree structure for the parse-tree of the query clause “CREATE

(charlie:Person:Actor {name: 'Charlie Sheen'})”. Each node in this tree structure corresponds to

a specific syntactic construct in accordance with the methods defined in the CypherVisitor

interface. By aligning the tree structure with the CypherVisitor interface's methods, we can

establish a direct correspondence between the two. This alignment facilitates the translation of

parse-tree into AST using the CypherVisitor mechanism.

Figure 4.11: ANTLR4 autogenerates code files from Cypher.g4.

Figure 4.12: The grammakcal structure of a CREATE query text.

Table 4.2 enumerates the key nodes in the parse-tree that require translation to the AST using

specific CypherVisitor functions. These nodes are then transformed into execution steps through

 26

distinct ExecutionPlanBuilder functions. For instance, the oC_CREATE node in the parse tree is

converted to a CypherCreateClause in the AST using the visitOC_Create() method of the

CypherVisitor. Similarly, the oC_PatternPart node becomes a CypherPatternPart in the AST after

being processed by the visitOC_PatternPart() method. Once in the AST, the CypherCreateClause

node is handled by the ExecutionPlanBuilder's visitCreateClause() method, resulting in the

creation of a JoinExecutionStep. Likewise, the CypherPatternPart node in the AST is processed by

the ExecutionPlanBuilder's visitCreateClausePatternPart() method, generating a

CreatePatternExecutionStep. In our project, the PropertyGraphCypherVisitor class is designed to

implement the CypherVisitor interface. The function flow of PropertyGraphCypherVisitor is

explained in Appendix B1, and its corresponding AST is shown in Appendix B2. Appendix B3

presents a detailed tree structure of execution steps based on our current project

implementation. The code snippet for the PropertyGraphCypherVisitor class can be found in

Appendix C2. Appendix C3 includes a Java code snippet illustrating the construction of an

execution plan for a CREATE clause.

Table 4.2: The relakon between parse-tree, AST and execukon steps.

4.4 Design Principle 3: In-Memory Distributed Graph Structure

In the four industrial graph DB systems studied in this section, scalability issues arise from single

computing node setups, while high latency and performance degradation stem from disk read

and write operations in cluster networks. This project aims to enhance the agent-based graph DB

system by adhering to its existing in-memory distributed graph structure, which will ensure high

efficiency in reading and writing data from memory and address the scalability issue with a cluster

network. The in-memory distributed graph structure of the existing agent-based graph DB system

was shown in Figure 2.2, with GraphPlaces stored in the memory of each computing node and

Execution StepExecutionPlanBuilder
functionASTCypherVisitor

functionParse Tree

JoinExecutionStepvisitCreateClause()CypherCreateClausevisitOC_Create()oC_CREATE

CreatePatternExecutionStepvisitCreateClausePatternPart()CypherPatternPartvisitOC_PatternPart()oC_PatternPart

CreateNodePatternExecutionStepvisitCreateNodePattern()CypherNodePatternvisitOC_NodePattern()oC_NodePattern

CreateRelationshipPatternExecutionStepvisitCreateRelationshipPattern()CypherRelationshipPatternvisitOC_RelationshipPattern()oC_RelationshipPattern

 27

distributed across a cluster network. The enhanced graph DB system also maintains such

structure. Figure 4.13 illustrates the distribution of three PropertyGraphPlaces instances across

a cluster network comprising three computing nodes. Each PropertyGraphPlaces instance stores

a segment of graph data and resides in the memory of one computing node in the cluster network.

Figure 4.13: The enhanced agent-based graph DB system with PropertyGraphPlaces.

4.5 Design Principle 4: Agents and PropertyGraphAgent

Neo4j, JanusGraph and ArangoDB all face the challenge of performance degradation due to inter-

node communication in the distributed environment. In this project, agents are deployed to

explore the graph DB, aiming to minimize inter-node communication and improve system

performance. Besides, the PropertyGraphAgent class empowers agents to carry path results as

they navigate and explore the graph DB. This subsection will outline the initialization process of

agents in the enhanced agent-based graph DB system. It will then elaborate on the process of

agents traversing the graph DB to retrieve results upon the execution of MATCH query clauses.

 28

4.5.1 Ini;aliza;on of Agents and PropertyGraphAgent

Figure 4.14: A demonstrakon of agents inikalized in a cluster network.

In this project, agents are responsible for traversing the graph and fetching results for the MATCH

Cypher clause. As demonstrated in Figure 4.14, an Agents instances will be initialized on each

computing node in the system, and each contains a bag of PropertyGraphAgent instances. In the

enhanced system, upon initialization, one PropertyGraphAgent instance will reside in each place.

The PropertyGraphAgent class extends the Agent class and introduces a new attribute called

pathResult, as presented in Figure 4.15. In graph traversal operations, agents often need to

navigate through the graph and collect information about the paths they traverse. The pathResult

attribute serves as a container to store these traversal results. The constructor of

PropertyGraphAgent takes an argument, which is expected to be the pathResult of its parent

agent, if available. Upon instantiation, the constructor checks if the argument’s content is null. If

it is null, then there is no parent agent and the current PropertyGraphAgent instance initializes

pathResult as an empty list. Otherwise, the current PropertyGraphAgent instance has a parent

and thus initializes its pathResult with a copy of the provided argument to carry forward this

information. This mechanism ensures that the PropertyGraphAgent instances can inherit and

 29

utilize path information from their parent agents, if available, facilitating seamless continuation

of path traversal operations within the property graph.

Figure 4.15: The code snippet of PropertyGraphAgent's constructor.

4.5.2 Agents’ callAll() and manageAll()

In the agent-based graph DB system, callAll() and manageAll() are methods that facilitate

communication and coordination among agents. As shown in Figure 4.16, agents will undergo

several iterations of the callAll() and manageAll() cycle to retrieve MATCH query results from the

graph DB. The number of iterations depends on the number of node patterns in the MATCH query

clause. Initially, callAll() is invoked to trigger all agents within the system to verify if the current

place where it resides satisfies the node pattern information. If validated, the current place’s ID

is added to its pathResults list, and neighbor places are determined via the relationship pattern

and updated in its nextVertex field, facilitating agents to migrate to its neighbor places.

Subsequently, manageAll() is called to coordinate the lifecycle of agents, encompassing the

stages of spawn, kill, and migration. In the spawn stage, new agents are created based on the

nextVertex information and assigned to specific places within the system. In the kill stage, agents

that reside in the places that do not match the current node pattern are terminated. In the

migration stage, agents that are allowed to migrate will be moved to the designated places.

Migration can occur either locally within the same computing node or remotely between

 30

different nodes. This cycle repeats until all MATCH clause criteria are met. The results list is then

returned to the main server at the end of the callAll() method.

Figure 4.17 illustrates the process of agents exploring the graph DB when executing the MATCH

clause, such as "MATCH (a)-[r1]->(b)-[r2]->(c)". Each place maintains a list to gather all the agents

residing in it, along with another list to store neighbor vertex IDs. Initially, one agent resides in

each place, such as Agent1 in Place 1 and Agent2 in Place 2. Upon the first iteration of callAll(),

Places 1 and 2 are identified as the correct vertices according to node pattern 'a'. Based on

relationship 'r1', both Places 1 and 2 have corresponding relationships with Place 3. Consequently,

Agent1 updates Place 1's NextVertex list with Place 3, and Agent2 updates Place 2's list similarly.

During the first iteration of manageAll(), new agents are spawned based on NextVertex

information. In this stage, only Place 3 is listed, so no additional agents are spawned. Agent1 and

Agent2 migrate to Place 3, becoming Agent13 and Agent23, respectively. In the subsequent

iteration of callAll(), Place 3 is confirmed as the correct vertex for node pattern 'b'. Considering

relationship 'r2', Places 4, 5, and 6 are identified as corresponding neighbor vertices to Place 3.

Agent13 or Agent23 updates Place 3's NextVertex list with these places. During the subsequent

manageAll() iteration, new agents are spawned for each Agent13 and Agent23 and migrated to

new places, with six agents in total, labeled Agent134, Agent234, Agent135, Agent235, Agent136,

and Agent236. The third iteration of callAll() verifies if Places 4, 5, and/or 6 satisfy node pattern

'c'. At this stage, all MATCH clause criteria are fulfilled, and the results lists carried by each agent

are returned to the main server. During the third iteration of manageAll(), no new agents are

spawned or migrated; instead, all existing agents are terminated.

Figure 4.16: The iterakon cycle of callAll() and manageAll().

 31

Figure 4.17: An example of agents traversing the enhanced agent-based graph DB.

5. Evalua9on

This section aims to verify the functionality of the re-engineered system from the viewpoint of

three key aspects: 1) the construction of a property graph from CSV files within a distributed

environment; 2) the ability to update the graph structure using CREATE Cypher clauses; and 3)

the utilization of agents to access and traverse the graph, leveraging the MATCH Cypher clause

to fulfill query requirements. The dataset in the test mimics the film industry.

5.1 VerificaAon of building graph from CSV files

Figure 5.1 provides an example of a CSV file containing vertex information, while Figure 5.2

illustrates a CSV file containing relationship information. Utilizing data from these two files, a

graph was constructed and partially visualized in Figure 5.3. This graph spans across three server

nodes and comprises seven vertices. The vertex IDs, node labels, node properties, and

relationship direction, types, and properties have been validated to align accurately with the

corresponding data in the CSV files. In this way, the re-engineered graph DB system has

demonstrated its capability to handle complex data and relationships in accordance with the

property graph model.

 32

Figure 5.1: An example of node csv file.

Figure 5.2: An example of relakonship csv file.

Figure 5.3: The graph constructed from csv files.

5.2 VerificaAon of execuAng CREATE Cypher clauses

CREATE Cypher clauses serve to generate new nodes or relationships within the graph DB. In this

subsection, the functionality and performance of supporting CREATE clauses are evaluated

 33

through four test cases, facilitating the update of the graph DB. All the evaluations are conducted

within a clustered environment comprising three server nodes.

5.2.1 Test case 1: Crea;ng two nodes with labels and proper;es in a single clause.

This test case aims to evaluate the functionality of creating multiple nodes in a single CREATE

clause, ensuring that the graph DB can be updated properly. Before executing the CREATE query,

an empty graph is built across the distributed environment. The resultant graph following the

execution of this query clause is depicted in Figure 5.4. Upon executing the aforementioned

query, two nodes with ID as id01 and id02 were instantiated and integrated into the cluster

network, each endowed with its unique identifier, labels, and properties. Subsequent validation

confirms the accuracy of these attributes, aligning perfectly with the query's specifications.

Figure 5.4: The output of the CREATE clause test case 1.

5.2.2 Test case 2: Establishing a rela;onship between two exis;ng nodes.

This test case aims to assess the functionality of updating relationships between existing nodes

using the CREATE Cypher clause. This query clause was executed sequentially after the previous

CREATE clause. Upon execution, a relationship was built from Vertex id01 directed to Vertex id02.

Relationship information is added to the 'toRelationship' attribute of Vertex id01, indicating an

outgoing relationship, and meanwhile it is also added to the 'fromRelationship' attribute of

Vertex id02, indicating an incoming relationship. The relationship attributes include neighbor ID,

relationship type ‘ACTED_IN’, and properties (role=’nothing’). The updated graph is depicted in

Figure 5.5, validating the correct execution of this CREATE clause.

 34

Figure 5.5: The output of the CREATE clause test case 2.

5.2.3 Test case 3: Crea;ng mul;ple nodes and rela;onships with one path paMern.

Figure 5.6 validates the graph constructed with the “CREATE (a)-[:KNOWS]->(b)-[:KNOWS]->(c)<-

[:KNOWS]-(d)” clause. Vertex ‘a’ has a relationship to Vertex ‘b’ with the relationship type of

‘KNOWS’. Similarly, Vertex ‘b’ and Vertex ‘d’ have relationships to Vertex ‘c’ with the relationship

type of ‘KNOWS’.

Figure 5.6: The output of the CREATE clause test case 3.

 35

5.2.4 Test case 4: Crea;ng nodes and rela;onships with mul;ple path paMerns.

A graph as shown in Figure 5.3 can be created using a complex CREATE clause as shown in

Appendix D1.

5.3 VerificaAon of execuAng MATCH Cypher clauses

MATCH Cypher clauses are designed not only to match nodes or relationships but also to fetch

graph traversing results. In this subsection, the functionality and performance of supporting

MATCH clauses are assessed through seven test cases, which enable the access and traversal of

the graph constructed in Section 5.1 and depicted in Figure 5.3. For enhanced visualization, a

corresponding graphical representation is provided in Figure 5.7. All evaluations are conducted

within a cluster network comprising three computing nodes.

Figure 5.7: Graphical representakon of the graph constructed from csv files in Seckon 5.1.

5.3.1 Test case 1: Matching all nodes in a graph.

The ‘MATCH (n)’ clause involves executing a MATCH query to identify and retrieve every node

present within the graph structure. This test assesses the ability of the MATCH Cypher clause to

comprehensively traverse the entire graph, ensuring that no node is omitted from the results. In

the graph shown in Figure 5.7, there are seven vertices. The output of this MATCH clause is

 36

displayed in Figure 5.8, with seven nodes retrieved from the graph, which confirms the accuracy

of the execution of this MATCH clause.

Figure 5.8: The Output of the MATCH clause test case 1.

5.3.2 Test case 2: Matching nodes with a label.

This test case is to retrieve a node from the graph with a label of ‘Movie’. It evaluates the

capability of the MATCH Cypher clause to accurately identify vertices that satisfy the label

condition. The output of executing this MATCH clause is shown in Figure 5.9. After retrieving the

vertices with the IDs of 'thepresident' and 'wallstreet' from the graph, the output is confirmed to

be consistent with the graph.

Figure 5.9: The output of the MATCH clause test case 2.

5.3.3 Test case 3: Matching nodes with a label and a property.

Test Case 3 involves matching nodes within the graph based on both their label and a specific

property, which evaluates the capability of the MATCH Cypher clause to accurately identify

vertices that satisfy both the specified label and property conditions. In the graph, there is only

one vertex with the ID of ‘wallStreet’ that has the label of ‘Movie’ and the property of ‘title = Wall

Street’. The output demonstrated in Figure 5.10 is accurate.

Figure 5.10: The output of the MATCH clause test case 3.

 37

5.3.4 Test case 4: Matching all nodes with a rela;onship to a specific node.

Test Case 4 targets all nodes that are connected to a node labeled ‘director’ with the property

‘name’ as ‘Rob Reiner’. This test assesses the capability of the MATCH clause to traverse

relationships effectively and retrieve nodes connected to a specified starting node. As depicted

in Figure 5.11, the vertex labeled 'director' with the name 'Rob Reiner' is uniquely identified as

'rob' in the graph. Additionally, two vertices, identified by the IDs 'thePresident' and 'martin', are

connected to 'rob'. The output of the MATCH clause confirms the presence of these two vertices

('thePresident' and 'martin'), thus validating the execution of this test case.

Figure 5.11: The output of the MATCH clause test case 4 with graphical illustrakon.

5.3.5 Test case 5: Matching nodes with specific rela;onship type and property.

Test Case 5 focuses on matching nodes in a graph based on a specific relationship type 'ACTED_IN'

and a property of 'role = Bud Fox'. This test assesses whether the query successfully filters nodes

based on both relationship type and property criteria, ensuring that only relevant nodes are

 38

included in the output. The output of this test case is demonstrated in Figure 5.12. In this graph,

‘charlie’ and ‘wallStreet’ are two vertices connected via the specified relationship. Since the

direction of the relationship is not specified in the query, either variable 'a' or 'b' can be assigned

to represent 'charlie', while the other represents 'wallStreet'.

Figure 5.12: The output of the MATCH clause test case 5 with graphical illustrakon.

5.3.6 Test case 6: Matching nodes along a path with simple rela;onships.

Test Case 6 involves matching nodes along a path with simple relationships in a graph. The query

in the test seeks to identify sequences of nodes labeled as 'Person' connected by simple

relationships, where each node is connected to the next one. This test evaluates the system’s

ability to use agents to traverse paths within the graph by following relationships between nodes.

The output of this test case is demonstrated in Figure 5.13. There is one path identified with the

input query, which is validated in accordance with the graph.

 39

Figure 5.13: The output of the MATCH clause test case 6 with graphical illustrakon.

5.3.7 Test case 7: Matching nodes along a path with complex rela;onships.

Test Case 7 involves matching nodes along a path with complex relationships in a graph. The

tested query clause seeks to identify sequences of nodes labeled as 'Person' connected by

complex relationships, involving both directed and property-constrained relationships.

Specifically, the query aims to find nodes 'a' and 'c' that are connected to a node 'b' representing

a movie titled 'Wall Street'. Node 'a' must be connected to 'b' via an 'ACTED_IN' relationship,

while 'c' must be connected to 'b' via a 'DIRECTED' relationship. The output is shown in Figure

5.14, with three vertices identified to ‘ACTED_IN’ the ‘Wall Street’ movie and one vertex

identified to “DIRECTED” that movie.

 40

Figure 5.14: The output of the MATCH clause test case 7 with graphical illustrakon.

5.4 Summary of evaluaAon

Through the comprehensive evaluation of all test cases, we successfully validated the

functionality of the enhanced graph DB system. This validation extends to its effectiveness in

managing complex datasets within a property graph model and its support for Cypher CREATE

and MATCH clauses within an in-memory distributed graph structure. Notably, the system's

capability to traverse the graph using agents to retrieve desired results for MATCH clause

execution underscores its ability to seamlessly handle complex queries.

 41

6. Conclusion

In this project, we embarked on a thorough exploration aimed at refining and augmenting the

capabilities of our existing agent-based graph DB system. Below is the summary of the work done

in this project: 1) a comprehensive review was conducted, encompassing both previous

endeavors and related research, to identify any limitations and propose corresponding remedies;

2) integrating valuable insights from this review into our project's scope, we proceeded to re-

engineer the system to accommodate the handling of complex vertex and relationship properties

in alignment with the property graph model; 3) we further enhanced the functionality of the

system by implementing a Cypher processing pipeline, thereby rendering it compatible with the

Cypher query language; 4) this enhancement was seamlessly integrated into the existing in-

memory distributed graph database structure; and 5) leveraging PropertyGraphAgent, we

enabled efficient traversal of the graph database to fetch results when executing MATCH clauses.

Despite the significant advancements achieved in this project, two limitations persist,

necessitating the following improvements. Firstly, while the implementation successfully

incorporates CREATE and MATCH clauses, there remains a need to extend support to other

essential clauses such as DELETE, which facilitates the removal of nodes or relationships, and

RETURN, enabling the retrieval of results in various formats. Moreover, to enhance the power of

the MATCH clause, the implementation and integration of WHERE and WITH clauses are

necessary. Secondly, the current dataset utilized for testing purposes is relatively small, which

poses a limitation in accurately gauging the system's performance. To address this, future work

entails procuring and employing larger datasets to conduct thorough benchmarking exercises.

Initiatives like Michelle Dea's Benchmark program, aimed at testing the system with large real-

world datasets and comparing its performance with other graph DB systems like ArangoDB and

Neo4j, will be instrumental in validating and refining the system's efficacy and scalability.

 42

Bibliography
[1] I. Robinson, James. Webber, and E. Eifrem, Graph databases, First edition. Sebastopol, CA:

O’Reilly Media, Inc., 2013.

[2] Sonal. Raj, Neo4j High Performance : design, build, and administer scalable graph database

systems for your applications using Neo4j. in Community Experience Distilled. Packt

Publishing, 2015.

[3] D. Eadline, “Hadoop and Spark fundamentals : LiveLessons,” Pearson, 2018.

[4] A. Li and M. Fukuda, “Agent-Based Parallelization of a Multi-Dimensional Semantic

Database Model,” in IRI, IEEE, 2023, pp. 64–69. doi: 10.1109/IRI58017.2023.00019.

[5] Y. Hong and M. Fukuda, “Pipelining Graph Construction and Agent-based Computation

over Distributed Memory,” in 2022 IEEE International Conference on Big Data (Big Data),

2022, pp. 4616–4624. doi: 10.1109/BigData55660.2022.10020903.

[6] V. Mohan, A. Potturi, and M. Fukuda, “Automated agent migration over distributed data

structures,” in In Proceedings of the 15th International Conference on Agents and Artificial

Intelligence, 2022.

[7] “MASS Java Manual,” Aug. 2016, Accessed: Apr. 16, 2024. [Online]. Available:

https://depts.washington.edu/dslab/MASS/docs/MASS%20Java%20Technical%20Manual

.pdf

[8] J. Gilroy, S. Paronyan, J. Acoltzi, and M. Fukuda, “Agent-Navigable Dynamic Graph

Construction and Visualization over Distributed Memory,” in Big Data, IEEE, 2020, pp.

2957–2966. doi: 10.1109/BigData50022.2020.9378298.

[9] Brian Luger and Munehiro Fukuda, “Wiki Graph Programming with MASS Java.” Accessed:

Apr. 14, 2024. [Online]. Available:

https://bitbucket.org/mass_library_developers/mass_java_core/wiki/GraphPlaces%20Cl

ass%20and%20Cytoscape%20Integration

[10] “Graph Database Concepts.” Accessed: Apr. 14, 2024. [Online]. Available:

https://neo4j.com/docs/getting-started/appendix/graphdb-

 43

concepts/#:~:text=The%20Neo4j%20property%20graph%20database,node%20and%20a

%20target%20node.

[11] Emil Eifrem, “Meet openCypher.” Accessed: Apr. 14, 2024. [Online]. Available:

https://neo4j.com/blog/open-cypher-sql-for-

graphs/?utm_source=Google&utm_medium=PaidSearch&utm_campaign=Evergreenutm

_content=AMS-Search-SEMCE-DSA-None-SEM-SEM-

NonABM&utm_term=&utm_adgroup=DSA-use-

cases&gad_source=1&gclid=CjwKCAjwoPOwBhAeEiwAJuXRh3FPxkkDEQ-

WrFs5zy06iQ65lckn4TPxJiICKa3J9LdaodMgZ7aX3BoCP-sQAvD_BwE

[12] “RadisGraph”, Accessed: Apr. 26, 2024. [Online]. Available:

https://redis.io/docs/latest/operate/oss_and_stack/stack-with-enterprise/deprecated-

features/graph/

[13] “JanusGraph”, Accessed: Apr. 18, 2024. [Online]. Available: https://janusgraph.org/

[14] D. Fernandes and J. Bernardino, Graph Databases Comparison: AllegroGraph, ArangoDB,

InfiniteGraph, Neo4J, and OrientDB. 2018. doi: 10.5220/0006910203730380.

[15] “What is ArangoDB?”, Accessed: Apr. 19, 2024. [Online]. Available:

https://docs.arangodb.com/stable/about-arangodb/

[16] “Cypher Manual”, Accessed: Apr. 28, 2024. [Online]. Available:

https://neo4j.com/docs/cypher-

manual/current/introduction/?utm_medium=PaidSearch&utm_source=Google&utm_ca

mpaign=Evergreen&utm_adgroup=DSA&utm_content=AMS-Search-SEMCE-DSA-None-

SEM-SEM-NonABM&gclid=Cj0KCQjwir2xBhC_ARIsAMTXk85_2bL9xuwQz86a_Z-

TkrJ89idlrfBtHpmGTLAuaMzMLfftsPMjtEkaAhwcEALw_wcB

[17] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf, 2013.

 44

Appendix A

A1. Code package:

Code package can be downloaded from Bitbucket:

mass_java_appl, QueryGraphDB branch:

https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/

mass_java_core, QueryGraphDB bracnch:

https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/

For more information of the files and folders containing the code that implemented in this project,

it can be found at mass_java_appl, QueryGraphDB branch, QueryGraphDB folder, README.md

file.

A2. Build and Run:

1. to make changes to MASS_java_core and rebuild, go to ‘~/mass_java_appl/QueryGraphDB’

folder and then run ‘sh build_mass.sh’

2. to rebuild and run the QueryGraphDB application, go to ‘~/mass_java_appl/QueryGraphDB’

folder and then run ‘sh build_run.sh’

A3. Tips for running PropertyGraphPlaces and PropertyGraphAgent in remote nodes:

1. Local node communicates with remote nodes via message passing, with code in three

classes: Message.java, MThread.java, MProcess.java.

2. To implement a new funckon in PropertyGraphPlaces, needs to send message to remote

nodes. Then update Message.java’s message type, MThread.java’s status, MProcess’s start()

funckon to listen to the message and handle it.

3. If remote nodes cannot handle PropertyGraphPlaces or PropertyGraphAgent properly, go

through the code to see if there are any caskng issues (may need to cast Places to

PropertyGraphPlaces, Place to PropertyVertexPlace, or Agent to PropertyGraphAgent).

 45

Appendix B

B1. FuncJon flow of PropertyGraphCypherVisitor

 46

B2. Abstract Syntax Tree (AST)

 47

B3. ExecuJonStep tree

 48

Appendix C

C1: Java code snippet for parsing query string and process it with Cypher Visitor

The parse() method starts by converting the input query string into a CodePointCharStream,

which is then processed by a CypherLexer to generate tokens. These tokens are subsequently fed

into a CypherParser to construct a parse tree starting from the root rule oC_Cypher. A

PropertyGraphCypherVisitor object is then constructed to traverse the parse tree following the

process flow outlined in Appendxi B1. This traversal produces and returns a CypherStatement

object that represents the AST form of the query.

 49

C2: Java code snippet for the PropertyGraphCypherVisitor class with visitOC_Create() as an
example.

The PropertyGraphCypherVisitor class extends CypherBaseVisitor<CypherAstBase> and

implements ANTLR4’s CypherVisitor interface. This visitor pattern implementation overrides

specific methods to handle various parts of the Cypher grammar. For example:

1) The visitOC_Create() method processes CREATE clauses by visikng the palern parts and

colleckng them into an immutable list of CypherPalernPart objects, which are then used

to construct and return a CypherCreateClause.

 50

2) The visitOC_PalernPart() method handles palern parts by extrackng the variable and

visikng the palern elements, combining them into a CypherPalernPart.

3) The visitOC_PalernElement() method manages palern elements by inikalizing a list of

CypherElementPalern, visikng node palerns and relakonship palerns sequenkally.

4) The visitOC_NodePalern() method processes node palerns by creakng a new

CypherNodePalern with the variable, properkes, and labels extracted from the context.

5) The visitOC_RelakonshipPalern method addresses relakonship palerns, extrackng

relakonship direckon, types and properkes, and constructs a CypherRelakonshipPalern

based on these components.

More methods are outlined in Appendix B1. Each of these methods ensures the correct extraction

and construction of the AST nodes demonstrated in Appendix B2, adhering to the Cypher query

language's grammar and semantics.

 51

C3: Java code snippet for ExecutionPlanBuilder class with visitCreateClause() as an example.

 52

The ExecutionPlanBuilder class constructs an execution plan for processing Cypher queries in our

agent-based graph database. It provides methods to traverse and convert different components

of a Cypher query into executable steps. For example,

1) The build() method inikates the process by invoking visitStatement, which in turn calls

visitQueryOrUnion() to handle either a single query or a union of queries.

2) The visitQuery() method iterates through the clauses of a Cypher query (such as MATCH,

CREATE, RETURN), converkng each clause into corresponding execukon steps.

3) Specialized methods like visitCreateClause() and visitCreateClausePalernPart() methods

break down CREATE clauses into more granular steps, handling palerns of nodes and

relakonships.

More methods are outlined in Appendix B3. Each of these methods ensures the correct extraction

and construction of the ExecutionStep nodes in the execution plan tree.

 53

C4: Java code snippet for Agents’ callAll() and PropertyGraphAgent’s callMethod().

 54

The provided Java code snippets demonstrate the usage of Agents for executing MATCH Cypher

clauses in our graph database system. Firstly, the execute method initializes an Agents instance

in each computing node in the cluster network. These Agents instances initialize and allocate one

PropertyGraphAgent to each PropertyVertexPlace. PropertyGraphAgent instances are

responsible for executing specific tasks related to the MATCH clause across the distributed graph.

The heart of the execution lies in the PropertyGraphDoAll() method. This method orchestrates

the distributed execution by iterating over a specified number of iterations. During each iteration,

it invokes the callAllSetup() method, which locally executes the callAll() method on the current

node and sends a callAll message to remote nodes, passing the necessary arguments for

executing the MATCH query.

Within the callAll() method, each agent's callMethod() function is invoked with the appropriate

functionId. The functionId serves as a key to determine the specific operation to be performed

by the agent. For example, when functionId is 0, indicating a MATCH operation, the agent

executes the executeMatch() method. This method is responsible for traversing the local portion

of the graph assigned to the agent and identifying patterns that match the criteria specified in

the Cypher MATCH clause. As the agents complete their computations, the results are collected

and aggregated to form a comprehensive response to the MATCH query. The callAll() method

manages this aggregation process, ensuring that the results from each agent are combined

effectively.

 55

Appendix D

D1. Cypher queries

 56

D2. Printed Graph 1st CREATE query clause

 57

D3. Printed results for various Match query clauses

 58

 59

D4. Printed graph aZer 2nd CREATE clause

 60

D5. Printed result for MATCH clause on the updated Graph

