
	

	

Efficient GPU Parallelization of the Agent-Based Models Using MASS CUDA Library 

 

Elizaveta Kosiachenko 

 

 

A thesis 

submitted in partial fulfillment of the 

requirements for the degree of 

 

 

Master of Science in Computer Science & Software Engineering 

 

 

University of Washington 

2018 

 

 

Committee: 

Munehiro Fukuda, Committee Chair 

Erika F. Parsons, Committee Member 

Clark Olson, Committee Member 

 

 

Program Authorized to Offer Degree: 

Computer Science & Software Engineering



	

	

©Copyright 2018 

Elizaveta Kosiachenko 



	

	

 

University of Washington 

 

Abstract 

Efficient GPU Parallelization of the Agent-Based Models Using MASS CUDA Library 

Elizaveta Kosiachenko 

 

Chair of the Supervisory Committee: 

Professor Munehiro Fukuda 

Computing & Software Systems 

 

Agent-based models (ABMs) simulate the actions and interactions of autonomous 

agents and their effects on the system as a whole. Many disciplines benefit from using 

ABMs, such as biological systems modeling or traffic simulations. However, ABMs need 

computational scalability for practical simulation and thus consume a lot of time. 

Multi-Agent Spatial Simulation (MASS) CUDA is a library, which allows using 

CUDA-enabled GPUs to perform multi-agent and spatial simulations efficiently while 

maintaining user-friendly and easily extensible API, which does not require the knowledge of 

CUDA on the user part. This thesis describes the optimization techniques for the spatial 

simulation, which allowed us to achieve up to 3.9 times speed-up compared to the sequential 

CPU execution of the same applications. We also propose solutions to challenges of 

implementing the support for dynamic agents as part of MASS CUDA library, including 

agent instantiation and mapping to the places, agent migration, agent replication and agent 

termination. 
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1. Introduction 

This thesis presents the research of the optimization techniques for the spatial 

simulation and solutions to challenges of implementing the support for dynamic agents as 

part of GPU-based parallel computing library, including agent instantiation and mapping to 

the places, agent migration, agent replication and agent termination. 

The three main contributions of this work to the ABM research community are: 1) 

applying three optimization techniques to make the spatial simulation on the GPU more 

efficient, 2) implementing the support for dynamic agents as part of MASS CUDA, including 

agent instantiation and mapping to the places, agent migration, agent replication and agent 

termination, while 3) maintaining the user-friendly API, which works with a variety of 

different applications and does not require an in-depth knowledge of CUDA programming. 

1.1. Agent-Based Models (ABMs) Simulation 

Agent-based modeling is a technique that is used to simulate the actions and 

interactions of autonomous agents and their effects on the system as a whole. An agent-based 

model (ABM) describes a system by representing it as a collection of dynamic agents often 

operating in a certain limited space. While each individual agent might have a fairly simple 

set of operations, the emergent behavior of a collection of these agents can be very complex. 

Such emergent behavior can be hard to predict or model with other techniques. Many 

disciplines benefit from using ABMs, such as biological systems modeling, disease spread 

prediction or traffic simulations. However, for practical application, ABMs often require 

large simulation involving thousands of agents. Such scale requires a lot of computational 

power and time. 
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1.2. CUDA Parallel Computing Platform 

One way to provide computational scalability for ABMs is through the use of 

graphics processing units (GPUs). Initially designed for manipulating computer graphics and 

image processing, GPUs have evolved to be used in general-purpose computing. While 

average CPU might have 4 to 16 computing cores, many GPUs have thousands of processing 

cores. As a result, they can be very beneficial for the algorithms where the processing of 

large blocks of data is done in parallel. 

Following the increased interest in general-purpose GPU computing, a lot of useful 

tools are being created for harnessing the parallel computing power of GPUs. One such tool 

is CUDA - a hardware/software platform developed by NVIDIA Corporation to allow GPUs 

to be used for high-performance computing. CUDA is currently the best-supported and most 

accessible platform for GPU-based parallel computing [32]. 

1.3. Opportunities and Challenges CUDA Platform Presents for ABM 

Simulations 

Due to their high parallel processing power GPUs provide an opportunity to 

accelerate the agent-based models’ execution. However, in order to create efficient GPU-

based ABM simulations, the developers need to have a good understanding of the GPU 

programmability model and memory hierarchy, which are briefly outlined below [21]. 

GPU is composed of global memory (DRAM) and several stream multi-processors 

(SM) with multiple processing cores. Each SM can support hundreds of concurrent threads.  

In CUDA, threads are organized into blocks, and all the blocks comprise a grid. 

Threads of the same block run on the same SM and are not separable. Each SM has limited 

resources such as shared memory and registers. Blocks assigned to the same SM have to 
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compete for these resources. If a single block requests too many resources, the number of 

blocks that can be concurrently supported by an SM decreases, and the performance will be 

affected. Fortunately, the numbers of blocks and the number of threads per block are 

configurable by developers. If one block requests too many resources, one can always reduce 

the number of threads per block to reduce the resources requested by one block. 

SM creates, manages, schedules, and executes groups of 32 parallel threads, called 

warps. Each warp of threads is executing in a batch manner. This represents the single-

instruction-multiple threads (SIMT) parallel programming model utilized by GPU. Full 

efficiency is realized when all threads of a warp agree on their execution path. At every 

instruction issue time, a warp scheduler selects a warp that has threads ready to execute its 

next instruction and issues the instruction to those threads. Execution context (program 

counters, registers, etc.) of each warp processed by a multiprocessor is maintained on-chip 

during the entire lifetime of a warp. Therefore, switching execution between warps has no 

cost.  

The memory of GPU has a hierarchical design as shown in Figure 1.1 and each type 

of memory has its use case. The global memory has the fewest number of limitations and can 

be accessed by all threads in all blocks. The amount of global memory on the device is large, 

but its speed of access is rather low. Data locality is very important for the effective 

bandwidth of the global memory loads and stores because the device coalesces global 

memory accesses issued by threads of a warp into as few transactions as possible to minimize 

DRAM bandwidth. 
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Figure 1.1: GPU memory hierarchy (from [23]) 

Constant and texture memory types are allocated on the GPU RAM as well, but are 

also cached on-chip during execution, so their effective speed is generally much higher than 

that of the global memory. The limitation for these memory types is that they are read-only. 

Registers and local memory are only visible within a single thread that declares the 

variable. Register memory is very fast but limited in size. If the variable doesn’t fit the 

register limitation in size, it’s placed into a local memory, which is a part of the off-chip 

global device memory and thus has the same slow speed as the global memory type. Some 

on-chip caching is available for local and global memory, but the size of the cache is limited. 

Another type of memory, which is widely utilized in various optimization techniques 

is shared memory. Only threads within one block can access the same shared memory 

address, but the speed of memory fetches is very high. Shared memory can be used as a user-

managed cache, enabling higher bandwidth than is possible using global memory lookups. 
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Based on the GPU architecture and memory limitations, there are some specific 

challenges related to implementing agent-based models on the GPUs: 

• Memory access patterns: 

o The straightforward implementation of agent replication and termination 

requires frequent dynamic memory allocation, which can be a severe 

bottleneck on the GPU, as it requires global synchronization of the device and 

thus stall of all the executing warps; 

o Search for neighboring agents can be inefficient on the GPU, as neighbors can 

be situated anywhere in the global memory and thus memory access does not 

coalesce; 

• Branch divergence: 

o Agent-based models often include agents with different rules of behavior, 

which have different execution paths within a kernel. This results in thread 

divergence and thus reduces parallelism. 

To overcome these challenges and implement an efficient agent-based model running 

on GPU users need an in-depth knowledge of CUDA and relevant optimization techniques. 

This can be a limitation to subject matter experts, who want to port their applications to GPU, 

but not necessarily possess the required GPU-programming skills. 

1.4. MASS CUDA Library Concept 

The main goal behind MASS CUDA library is to hide the CUDA implementation 

details from users and allow subject matter experts to create efficient agent-based simulations 

without needing to engage in CUDA programming, yet still, reap the performance benefits of 

parallel processing. 
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Similarly to MASS Java and MASS C++ [1], MASS CUDA library uses two 

important concepts: Agent and Place. Place objects represent locations and remain static 

during the whole simulation process. Agent instances execute different instructions, migrate 

between Places, can spawn new child Agent instances, or get terminated. 

1.5. Current Problems in MASS CUDA 

The first version of MASS CUDA was built in 2015 as part of the thesis project of 

Hart, N. B. “MASS CUDA: Abstracting Many Core Parallel Programming From Agent 

Based Modeling Frameworks” [2]. That version of the library implemented the encapsulation 

of the details of GPU parallel programming and provided a user-friendly API that did not 

require any CUDA knowledge from the user. However, the library also had several problems. 

One issue was poor performance - the resulting execution time of the system was 19% to 

54% slower compared to the sequential version of the program depending on the problem 

size. Furthermore, that version of the library only supported spatial simulation and did not 

implement support of dynamic agents. 

1.6. Research Goals and Scope 

Based on the problems identified in the previous version of the MASS CUDA library, 

this thesis has two main goals: 

1) research, implement and evaluate the techniques for optimizing the 

performance of the spatial simulation 

2) research techniques for support of dynamic agents in ABMs, in particular, 

such functions as agent instantiation and mapping to space, agent migration, 

agent replication, and agent termination, and implement them as part of 

MASS CUDA library 
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While implementing new features and optimization techniques, we aim to follow the 

existing specification and API for MASS CUDA library as much as possible and limiting the 

number of CUDA-specific details exposed, so that the users of the library are not required to 

have preliminary GPU programming knowledge. 

A benchmarking application was developed to measure the impact of the 

implemented performance optimization techniques. The selected application is SugarScape, 

which simulates the behavior of ants in the presence of sugar. 

2. Related work 

2.1. GPU Agent-Based Models, Frameworks and Techniques 

There is a significant amount of research in agent-based models’ optimization using 

GPU (and CUDA in particular). However, a lot of works are focusing on optimizing specific 

problems and not developing a framework suitable for a variety of problems. Furthermore, 

those simulations require users to have quite an in-depth knowledge of GPU programmability 

model and CUDA language. In the following subsections, we review the work that has been 

conducted in relation to application-specific ABMs’ optimization, individual techniques for 

ABM simulations implementation as well as the few frameworks developed for optimizing 

agent-based models. 

Application-specific	ABMs	utilizing	GPU	

There are a number of application-specific implementations of agent-based models on 

GPU that proved to provide good performance results and significant speed-up compared to 

the sequential execution. Some examples of research papers grouped by the application 

domain:  
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1) Biology & Medicine: 

a) Tuberculosis epidemic simulation [11]: identifying mechanisms of granuloma 

formation through the interaction of T-Cells and Macrophages represented as agents; 

b) Modeling of blood coagulation system [10]: simulating complex interactions involved 

in blood coagulation system involving reactants, enzymes, and products of the 

coagulation system. 

a) Systemic inflammatory response simulation [4]: generating population-level 

behaviors among the circulating blood and the EC cells lining the blood vessels. 

b) Protein structure prediction [8]: exploring the folding of different parts of a protein by 

concurrent agents. 

2) Physics: 

a) Molecular dynamics simulation [20]: studying of the metal solidification process 

through the interaction of aluminum atoms. 

3) Mathematics: 

a) Graph theory [9]: using Ant Colony Optimization algorithm to find an optimal path in 

a graph (Traveling Salesman Problem); 

b) Cooperative Particle swarm optimization [18]: stochastic optimization algorithm 

letting all the particles reach the global best in cooperative fashion through 

information exchange. 

4) Social Studies: 

a) Traffic simulation: micro-simulation involving large groups of vehicle agents moving 

over the traffic network [30, 33, 34, 37], and traffic signal timing optimization [31]; 

b) Crowd simulation and path planning: simulating large crowds of complex agents [36], 

navigating agents among moving obstacles [5], agent path planning on grid maps [6, 

7] or arbitrary surfaces [35]. 
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c) Collective motion simulation: studying the collective behaviors of self-propelled 

biological organisms, such as birds [16, 17] fish [13], or general flocking “boids” 

(individuals in animal crowd simulations) [24, 25] by considering the very large 

number of interactions among group members. 

 

Some of these research papers describe straightforward implementations of the 

respective simulations on GPU; others provide optimization techniques that can also be 

applied to a wider range of simulations.  

The main challenges identified as part of these works are the complexity of 

implementing them while supporting applications of various sizes and dimensionalities; 

being very application-specific and not extensible to the broader range of applications; 

decreased parallelism and overhead of constant memory transfers between CPU and GPU.  

One of the techniques introduced in these works is the use of the tiling algorithm. It 

uses fast shared memory of the GPU to load “tiles” of the total grid of places, which are then 

executed within one block of threads. The “tiles” periodically exchange data dependencies 

between each other. This technique proves to demonstrate good performance results in the 

research by Cecilia et al. and Husselmann et al. [9][17]. However, when applied to a library, 

which is intended to support simulations of different sizes and dimensionalities, use of such 

algorithm would make the code extremely complex and hard to maintain or modify by the 

future contributors. 

Another technique, which we considered not applicable to MASS CUDA, is the use 

of a hybrid GPU/CPU model described in the work by Li, D. et al. [20]. Separation of 

functionality between CPU and GPU is very application-specific, so it is not an option for the 

library, which should support a variety of different ABM simulations. Additionally, leaving 

part of the simulation on the CPU can potentially lead to decreased parallelism and overhead 
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of memory transfers between CPU and GPU. 

Several works [5][9] introduced custom thread-safe random number generation, 

which decreases the penalty of using the slow “cuRAND” library. This technique can be 

useful for a big range of ABMs, however in MASS CUDA random number generation is 

used only at initial agent allocation for spreading agents across space and thus can be 

performed on CPU before agent objects are created on GPU.  

Some works introduced non-trivial ways to maintain a list of agents residing in a 

particular place. Research by Chen, W. et al.[10] demonstrates a way to store agents in two-

directional linked lists, while the work of Strippgen, D. et al. [33] suggests storing agents in 

place in a dynamic FIFO queue. Those techniques are interesting to experiment with, but 

because their benefits to performance are non-obvious, we left those experiments beyond the 

scope of this research. 

Some of the techniques for agent replication and garbage collection include 

processing agent replication in batches using a single thread to avoid the need for 

synchronization [10] and sorting agents by dead/alive for memory reuse[11]. Implementation 

of these techniques was left out of the scope of this research. 

The techniques that did find application in our library include storing reusable 

parameters for GPU kernels in constant memory [16], use of “pragma unroll” for maximizing 

the use of register memory [16] (after experimentation we omitted this technique from the 

latest version due to the lack of performance improvement), allocating upper limit of memory 

for data structures to avoid dynamic memory allocation on the fly[33]. 

Despite the usefulness of some of the techniques in these works, all of them focus on 

specific simulations and thus might not be applicable to other simulations/domains. 

Furthermore, all of these works require users to use CUDA language to implement the 

specified simulations and techniques, while one of the main requirements for our project is to 
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hide CUDA implementation details from the user and provide user-friendly API that does not 

require the in-depth knowledge of GPU programmability model. 

Works	focusing	on	specific	techniques	for	implementing	ABMs	on	GPU	

Another category of research is focusing on specific techniques that might improve 

the performance of agent-based models. These techniques are intended to be applicable to 

various ABMs, not just one specific simulation. 

The work by Aaby et al.[3] describes the latency-hiding mechanism for ABM 

simulation on GPU, where the grid of agents is separated into blocks allotted to independent 

processing elements. The blocks then exchange the data dependencies with neighboring 

blocks after updates in agent states. This approach is quite efficient as it takes advantage of 

the fast shared memory, which can be accessed by threads in one block. However, the use of 

such algorithm to support simulations of different sizes and dimensionalities makes the code 

extremely complex and hard to maintain or modify. 

Other works by Hermellin et al.[14, 15] presents the GPU environmental delegation 

approach, which implies making a clear separation between the agent behaviors, managed by 

the CPU, and environmental dynamics, handled by the GPU. This kind of hybrid approach 

can better accommodate very dynamic systems, where agents evolve greatly in the course of 

the simulation, however leaving part of the simulation on the CPU can potentially decrease 

parallelism and introduce an overhead of memory transfers between CPU and GPU.	

Lastly, the research by Li et al.[21] proposes an AgentPool data structure to handle 

agent creation and deletion on GPU. An instance of AgentPool is initiated with a fixed 

capacity equal to the maximum number of agents in the system, and the actual number of 

agents is tracked at runtime. The management of the pool is performed by manipulating 

pointers to reduce the overhead of dynamic memory allocation/deallocation on the device. 

This is the approach we adopted in our research as well. 
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Similarly to simulation-specific ABM implementations, most of the research projects 

focusing on specific techniques don’t address the goal of providing user-friendly API that 

does not require in-depth knowledge of CUDA programming language. 

Agent-based	modeling	frameworks	utilizing	GPU	

A few frameworks are available in the area of ABM frameworks utilizing CUDA-

enabled GPUs: FLAME GPU[26-29], Turtlekit[22] and MCMAS[19].  

FLAME GPU is a high performance parallel framework for agent-based modeling, 

which is using an XML schema to represent agents, their functions, fields, messages, and 

memory allocations. The framework has certain limitations, in particular agents field types 

are limited to integer, float, and double data types, and framework use requires XML 

scripting skills in addition to the C programming language. Additionally, it does not provide 

an execution environment the agents can interact with. 

Turtlekit is a Logo-based spatial ABM platform, implemented with Java. Its long-

term goal is to develop a library of GPU modules implementing various environment 

dynamics specifically designed for spatial ABMs. Right now it implements the delegation of 

some of the agents’ behaviors onto GPU. Because the library takes the hybrid approach of a 

partial delegation of simulation to GPU and because it does not yet implement the full range 

of possible agent behaviors in its modules, the amount of computation speed-up it can 

achieve through parallelism is limited. 

MCMAS is a library intended to facilitate the implementation of agent-based models 

on GPU and many-core architectures through providing a set of commonly used functions 

and data structures. One of the limitations of this library is that the user is limited to the set of 

implemented functions, algorithms and data structures, which can be extended only through 

writing low-level GPU code. Another disadvantage is, similarly to TurtleKit, the use of the 
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hybrid model with only a partial delegation of simulation to GPU, which potentially 

decreases parallelism and requires frequent memory transfers between CPU and GPU. 

So, while the abovementioned frameworks address the issue of programmability, they 

still have some challenges remaining: not easily extendable API and, in case of Turtlekit and 

MCMAS, limited parallelism due to the use of the hybrid CPU/GPU model approach, which 

potentially decreases parallelism and requires frequent memory transfers between CPU and 

GPU.	

We address the challenges of the aforementioned frameworks in MASS CUDA by 

providing an easy API, which does not require the knowledge of low-level GPU languages 

and is easy to extend by writing functions in C++. Additionally, the simulation is performed 

entirely on GPU, which allows to minimize memory transfers between CPU and GPU and 

maximize the parallelism in the system.	

2.2. Previous Work on MASS CUDA 

While this work is the first to provide full support for dynamic agents as part of 

MASS CUDA, it builds on top of thesis project of Hart, N. B. “MASS CUDA: Abstracting 

Many Core Parallel Programming From Agent Based Modeling Frameworks”. The work 

describes the architecture and implementation techniques for the library, which allow to 

abstract away the CUDA implementation details from the user and achieve the APIs which 

are very similar to other versions of the MASS library: MASS C++ and MASS Java.  

The resulting library completely hid CUDA implementation details from the user with 

several exceptions: 

• The project must be compiled using nvcc (Nvidia CUDA compiler) with the required 

flags/options; 

• All files that are normally .cpp are .cu; 
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• Functions in user-defined Place or Agent classes should be prepended with the macro 

MASS_FUNCTION (stands for __host__ __device__), which enables compiling of 

both host and device code. 

In the current work we retained the same API as in the Harts thesis work and also 

took advantage of the library architectural model and split of library object classes (Place, 

Agent, and user classes derived from them) into behavior and state classes. 

The architectural model proposed and implemented in that work is Model-View-

Presenter. View represents the API of the library; Model represents the data model on both 

GPU and CPU; and Presenter represents the dispatcher coordinating the interaction of Model 

and View, performing memory transfers between CPU and GPU, and launching GPU kernels 

(functions executed on GPU). The architecture is shown in Figure 2.1. 

 

Figure 2.1: High-level architecture of the MASS CUDA library [2] 

We decided to reuse the Model-View-Presenter model in the current work because it 

allows hiding the details of CUDA implementation from the user. It also encapsulates the 

GPU-specific implementation details into a separate Model component, which allows for 

easier code maintenance and modification. 

Another technical decision that we reused from Harts work is splitting behavior and 

state into two different classes, where the behavior class, Agent or Place, contains all the 
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functions as well as a single pointer to a generic AgentState and PlaceState class that contains 

all the fields. An array of concrete behavior classes are instantiated both on the host (CPU) 

and device(GPU), as well as an array of state classes of equal size. Each behavior instance is 

assigned a unique state instance. Memory transfer is achieved by copying the state array from 

host to device and back again.  

Using this pattern allows for the creation of derived classes by a user which would 

extend Agent and Place classes and at the same time to manage all of the memory allocations 

and transfers between host and device behind the scenes. 

While the primary goal of Harts work - to implement the encapsulation of the details 

of GPU parallel programming - was accomplished by his research, the resulting library did 

not achieve the performance goals as it showed a performance slowdown when compared to 

sequential computation of an identical simulation - the resulting performance of the system 

was 19% to 54% slower depending on the problem size. Furthermore, his research focused on 

spatial simulation and did not address the challenges of implementing dynamic agents 

instantiation, migration, termination and replication.  

In the current work we reuse the API, architectural model and some of the technical 

decisions outlined above from the Harts thesis, and address some of its shortcomings, in 

particular improving the performance of the spatial simulation and addressing the challenges 

pertaining to the support for dynamic agents as part of the library: agents instantiation, 

mapping to space, migration, replication  and termination. 

 

2.3. New Research Contribution to MASS CUDA and GPU Agent-Based 

Modeling 

This thesis research contribution is three-fold: 1) applying three optimization 
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techniques to make the spatial simulation on the GPU efficient, 2) implementing the support 

for dynamic agents as part of MASS CUDA, including agent instantiation and mapping to 

places, agent migration, agent replication and agent termination, while 3) maintaining the 

user-friendly API, which works with a variety of different applications, does not require an 

in-depth knowledge of GPU programming and can be easily extended using just C++. 

Compared to the previous version of the MASS CUDA library we also simplified it 

(decreased the number of lines of code by 32%, while simultaneously adding support for 

dynamic agents and improving the library performance). We also made some smaller 

improvements to the library functionality, for example, in case there are several GPUs 

present on the computer, the library now selects the GPU device with the highest compute 

capability instead of hard-coded values as it was implemented previously. This makes the 

process of porting the library to a new computer easier. 

3. Performance Optimization for Spatial Simulation 

While the goal of encapsulating the details of GPU parallel programming has been 

accomplished by the previous version of MASS CUDA[2], the resulting library did not 

achieve the performance goals as it showed a performance slowdown when compared to the 

sequential computation of an identical simulation. 

To achieve better performance for the spatial simulation, we implemented and run 

performance measurements of several optimization techniques:  

 

• use of constant memory;  

• avoiding context switch between GPU kernels; 
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• selecting the optimal launch configuration of GPU kernels; 

• using the “pragma unroll” compiler directive for loop unrolling; 

•  replacement of getter and setter function in the object classes with direct 

member access. 

We also considered implementing the tiling or stencil algorithm but abandoned this 

techniques technique due to maintainability issues. 

To measure the influence of the implemented techniques on the overall performance 

of the library spatial functionality we used the benchmarking application Heat2D, which 

simulates heat transfer in a mass of metal following the Euler method. The specifications of 

the hardware used in all of the experiments are described in section 5.1.Evaluation 

Environment. 

Use of constant memory 

As previously mentioned, constant memory is a relatively fast kind of GPU memory, 

which is initially allocated on the GPU RAM but is also cached during execution. This type 

of memory has a limitation of being read-only, so its use is limited to parameters that do not 

dynamically change throughout the simulation. In case of MASS CUDA, one such type of 

parameter identified is the array holding the relative coordinates of the neighbors that is used 

for data exchange between Place objects.  

The transfer of even such a small amount of data (array of neighbor coordinates) from 

global to constant memory led to a noticeable performance improvement of 4% for the whole 

simulation. 
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Avoiding context switch between GPU kernels 

In CUDA the kernel execution context (registers, cache, etc.) is maintained 

throughout the whole life of a kernel, but all the cached data is discarded as soon as the 

kernel execution is complete. Combining several GPU kernels operating on the overlapping 

data can allow to reuse the cached information and decrease the overall number of memory 

requests.   

In MASS CUDA library one such combination of functions is exchangeAll() and the 

following callAll(). exchangeAll() function in the MASS CUDA library is used to collect 

data from the provided array of neighbors and save it into the message array in place. That 

data is then used by the subsequent functions invocations. And callAll() is used to execute a 

specific user-defined function on all the places objects in a collection. A common use pattern 

for these functions is the call to the exchangeAll() to collect some data from the neighboring 

places followed by the callAll() to use the collected data in some sort of computation. 

We implemented an additional version of exchangeAll() which combines the 

exchangeAll() and callAll() functionalities in one GPU kernel call. The user can specify a 

function ID that will be executed for all Place objects after data collection is complete. The 

specified function is executed in the same GPU kernel that collects the data, so we avoid a 

context switch between the data collection kernel and calculation kernel, and thus the cached 

data can be reused for the calculation of results in the function that requires this data. 

Implementing the modified exchangeAll() function resulted in an improvement of 

performance for the Heat2D simulation by 33% compared to the original MASS CUDA 

library. 
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Selecting the optimal launch configuration of GPU kernels 

When making invocations of kernels on GPU developers need to specify the launch 

configuration of kernels, in particular, the number of blocks and number of threads per each 

block. As mentioned earlier, threads of the same block share limited resources such as shared 

memory, registers, and caches. If a single block requests too many resources, the number of 

blocks that can be concurrently supported by a GPU stream multiprocessor decreases, and the 

performance is negatively affected. Choosing the optimal launch configuration depends on 

the types and amount of memory utilization by the program and the specifications of the GPU 

device the application is launched on.  

The previous version of MASS CUDA used the configuration of 512 threads per 

block. We ran a series of experiments using the Heat2D application to find out if this launch 

configuration is optimal. We used varying settings for the number of threads per block. The 

number of blocks in a grid was calculated as the total number of Places in the simulation 

divided by the number of threads per block selected, rounded up. 

As shown in Figures 3.1 and 3.2, 512 threads per block was significantly slower than 

the optimal configuration for the Heat2D application implemented on top of MASS CUDA. 

The best configuration was 24 threads per block. Setting launch configuration parameters to 

the optimal values resulted in the 32% performance improvement compared to the original 

MASS CUDA library for the biggest simulation size we tested (1000 x 1000 places). 
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Figure 3.1: Performance by number of threads per block of the Heat2D spatial simulation 

implemented on top of MASS CUDA library 
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Figure 3.2: Performance by number of threads per block of the Heat2D spatial simulation of 

size 1000x1000 implemented on top of MASS CUDA library 
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accesses is significantly lower.  

GPU kernel 

Importance 
(% of total 

GPU 
compute 

time) 

Avg. 
Duration 

(ms) 

Achieved 
Occupan-

cy 

L2 Hit 
Rate 

Device 
Memory 
(DRAM) 

Read 
Transactions 

Device 
Memory 
(DRAM) 

Write 
Transactions 

mass:: 
exchangeAll 
PlacesKernel()  

at 24 threads 
per block 

69% 4.26 25% 77% 6.3 M 3.0 M 

at 512 threads 
per block 

87% 9.12 69% 17% 20 980.0 M 5.1 M 

Table 3.1: Profiling results for the mass::exchangeAllPlacesKernel() of the MASS CUDA 

library executing the Heat2D application of size 1000x1000 

Similar experiments were conducted for a different application - SugarScape, which 

simulates the behavior of ant colony in the presence of sugar and, in addition to spatial 

simulation, also includes dynamic agents. Figure 3.3 gives the best setting for the SugarScape 

application of 24 threads per block, similar to Heat2D. So, we can reasonably assume that 

this launch configuration of kernels might be optimal or close to optimal for a wider variety 

of applications implemented on top of MASS CUDA as well. 
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Figure 3.3: Performance by number of threads per block of the SugarScape dynamic agent 

simulation implemented on top of MASS CUDA library 
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results in performance. This lack of improvement can be explained by the fact that most of 

the loops in our kernels were relatively small (below 10 iterations) and the number of 

iterations was known at compile time, so the compiler automatically performed this 

optimization, according to CUDA programming guide [23].	

Another technique we tried was the replacement of getter and setter function in the 

object classes with direct member access to the respective field. We hoped that this change 

might improve memory access patterns within GPU kernels; however, it did not influence the 

performance. The explanation for this can be either the automatic optimization of such 

functions by the compiler or that these functions, in fact, do not influence GPU memory 

access patterns and their overhead is negligible. Upon finishing the experiment, we returned 

to the use of getter and setter functions, as they promote better coding style through 

encapsulation. 

During the implementation of the improved MASS CUDA library, we also considered 

a technique mentioned in the works of Cecilia et al. and Husselmann et al.[9][17] - using 

tiling or stencil pattern to take advantage of the fast shared memory, accessible by threads in 

the same block. As mentioned earlier, the tiling technique uses fast shared memory of the 

GPU to load “tiles” of the total grid of places, which are then executed within one block of 

threads. During each iteration of the simulation “tiles” exchange data dependencies between 

each other. The stencil pattern works in a similar manner but includes the bordering places of 

the neighboring tiles into the cached data block. However, because MASS CUDA library is 

intended to support applications of different sizes and dimensionalities, use of such 

algorithms makes the code for the exchange of data dependencies between the “tiles”(blocks 

of threads) very convoluted. So we abandoned this optimization technique in favor of code 

maintainability.  

Techniques’ contribution to overall library performance improvement (based on the 
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Heat2D simulation of size 1000 by 1000) is shown in Figure 3.4. The biggest contribution 

was provided through optimizing the number of threads per block for kernel launches. 

Second-best was avoiding context switch between GPU kernels through combining 

exchangeAll() and callAll() functions to execute in one GPU kernel call. And the smallest, 

but still significant contribution was made by the use of constant memory for storing kernel 

parameters. 

 

Figure 3.4: Contribution of different performance optimization techniques to the overall 

speed-up of the spatial simulation (Heat2D simulation of size 1000x1000) 

To sum up, the 3.2 speed-up compared to the previous version of the library was 

achieved with three major techniques: the use of constant memory to store data frequently 

accessed by threads in different blocks, avoiding context switch between GPU kernels, and 

selecting the optimal	launch configuration of kernels. The techniques that did not provide 

any performance improvement in MASS CUDA execution were using the “pragma unroll” 

compiler directive for loop unrolling and replacement of getter and setter function in the 

0	

5	

10	

15	

20	

25	

30	

35	

40	

MASS	CUDA	
prev.version	

MASS	CUDA	

Ti
m
e,
	s
ec
	

Threads	per	block	
optimization	

Avoiding	context	switch	
between	GPU	kernels	

Constant	memory	use	

Simulation	time	



	

	 26	

object classes with direct member access. And the technique that we did not select due to 

maintainability issues was the tiling algorithm. 

4. Agent-Based Simulation Support in MASS CUDA 

An essential goal of our research was to implement the support of dynamic agents as 

part MASS CUDA library, in particular, such functions as agent instantiation and mapping to 

space, agent migration, agent replication, and agent termination. In this chapter, we discuss 

the challenges we faced implementing this functionality and the technical decisions we made 

during the implementation process. We also go into more detail on three different approaches 

for conflict resolution during agent migration stage: (1) no deterministic migration conflict 

resolution; (2) migration conflict resolution using CUDA atomic functions; and (3) our 

custom algorithm for migration conflict resolution involving maintaining an array of all the 

Agents trying to migrate to a Place as part of that Place. 

The general workflow of working with dynamic agents in MASS CUDA includes the 

following operations: 

• Creation of the agent collection and mapping Agents to Places using the 

createAgents() function; 

• Calling various functions on Agent objects using the callAll() function, which 

invokes the same user-defined method on all of the Agents in a collection; 

• Calling the manageAll()  function on the Agents collection to perform the 

termination, migration or replication of agent instances after invocation of the 

terminateAgent(), migrateAgent () or spawn() functions in any of the agents’ 

functions. 

4.1. Agent Instantiation and Mapping to Places 

In MASS CUDA agents are instantiated across a grid of places. So, before creating 
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the collection of Agents, the user needs to instantiate the MASS library and create the Places 

object. After that the user can instantiate Agents and map them to the Places collection using 

the createAgents() function with the following signature: 

template<typename AgentType, typename AgentStateType> 
    Agents* createAgents(int handle, void *argument, int argSize, int nAgents, 
        int placesHandle, int maxAgents =0, int* placeIdxs =NULL); 
 

Parameter “handle” is a unique numerical identifier for the collection of Agents, 

“argument” and “argSize” define the arguments that can be passed to the Agent object at 

creation, “nAgents” is the number of agents to be initially created, “placesHandle” identifies 

the grid of places over which the new agents collections will be instantiated. Parameters 

“maxAgents” and “placeIdxs” are optional, and are assigned the default values by the library 

in case a user provides no values. “maxAgents” is the maximum number of agents that will be 

spawned in the system during the course of the computation. The default value for this 

parameter is nAgents*2. And “placeIdxs” is the array of Place object indexes of size nAgents, 

which defines the location of instantiation for all the agents. 

As part of initialization, Agents are mapped to the Places grid using the “placeIdxs” 

array, provided by the user, or the default map, which we implemented as part of this work. 

The default map randomly distributes Agents over a grid of Places. An array of agents’ 

locations is created on CPU, using C++ standard library random number generator, and then 

copied to the GPU, where it’s used in the instantiation of Agent objects. By creating the array 

on CPU, we can avoid the use of the cuRAND library, which can be quite inefficient. The 

algorithm we use to generate Place indexes for the Agents is as follows: 

void getRandomPlaceIdxs(int idxs[], int nPlaces, int nAgents) { 
    int curAllocated = 0; 
 
    // If there is more than 1 agent per place, allocate agents evenly over space: 
    if (nAgents > nPlaces) { 
        for (int i=0; i<nPlaces; i++) { 
            for (int j=0; j<nAgents/nPlaces; j++) { 
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                idxs[curAllocated] = i; 
                curAllocated ++; 
            } 
        } 
    } 
 
    // Allocate the remaining agents randomly: 
    std::unordered_set<int> occupied_places; 
    while (curAllocated < nAgents) { 
        unsigned int randPlace = rand() % nPlaces; //random number from 0 to nPlaces 
        if (occupied_places.count(randPlace)==0) { 
            occupied_places.insert(randPlace); 
            idxs[curAllocated] = randPlace; 
            curAllocated++; 
        } 
    } 
} 

When creating Agents, the library allocates more GPU memory space for the agent 

collection than the initial number of agents specified. The system allocates the “maxAgents” 

number of objects (can be defined by a user) but keeps the extra agents in an inactive state. 

Those inactive objects are then used when a user wants to create new agents through 

replication. Allocating all of the memory for agents once at the beginning of the simulation 

allows avoiding frequent dynamic memory allocation throughout the simulation, which can 

be a severe bottleneck on the GPU. 

Following the architecture established by Harts work [2], we are splitting the behavior 

and state of Agents into two different classes, where the behavior class, Agent, contains all 

the functions as well as a single pointer to a generic AgentState class that contains all the 

fields. An array of concrete behavior classes are instantiated both on the host(CPU) and 

device(GPU), as well as an array of state classes of equal size.  

Each Agent object, instantiated on GPU, holds a pointer to the Place object, instantiated 

on GPU as well, where it resides, and each Place object holds an array of Agents, which 

reside in that place. 

When a user subsequently wants to see some Agents’ properties on CPU (e.g., print the 

agents’ locations), only the AgentState array is copied from GPU to CPU. 
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4.2. Agent Migration 

One of the challenges of implementing dynamic agents support is designing the agent 

migration mechanism, in particular, the algorithm of resolving conflicts when several agents 

try to migrate to the same destination. In case of MASS CUDA, we also wanted to make it 

possible for the user of the library to control the conflict resolution rules specific to their 

application. Because all the agent threads run in parallel, we also need to manage a data race 

between several threads trying to modify the same Place object simultaneously. 

There are several solutions to the problem of managing agent migration in a thread-

safe manner:  

a) Let Agent threads write into the Place object without specific conflict 

resolution rules. In case several agents try to migrate to the same destination, 

each following thread will overwrite the entry of the previous agent. So, the last 

agent thread to access the Place object gets that place. The benefit of this conflict 

resolution scheme is the fast speed of execution because there is no thread 

synchronization and thus no related overhead. However, the disadvantage of this 

algorithm is the non-deterministic nature of the simulation, because the result 

depends on the order of threads getting to a certain execution point. 

b) Manage data races between Agent threads through atomic functions. When 

several Agent threads try to migrate to the same Place, the atomicCAS() function 

from the CUDA standard library is used to select an agent with the smallest index. 

Using this algorithm makes the simulation reproducible. However, it does not 

allow users to modify the conflict resolution algorithm between migrating agents. 

One of the requirements of the MASS CUDA library is to hide all CUDA 

implementation details, so we cannot expect users to manipulate CUDA atomic 

functions.  
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c) Save all the Agents, which try to migrate to a Place, into an array and 

perform conflict resolution in a separate function. This is the algorithm that we 

developed as part of this thesis work. Following this approach, each place has an 

array of agents that want to migrate to this place. Agents register their intent by 

saving their pointer into that array. For example, if in a system agents can only 

migrate one cell North, West, South or East, the location of all possible migrating 

agents will look as pictured in Figure 4.1.A and the array of potential migrating 

agents stored in that place will look as pictured in Figure 4.1.B. After all agents 

registered their intent to migrate, each Place performs conflict resolution based on 

a certain algorithm (can be provided by a user) and selects agents to accept. 

Selected agents then migrate to the places that accepted them as part of 

manageAll() function. The benefit of this approach is that a user can specify the 

conflict resolution rules. This approach also has drawbacks; in particular, the 

range of agent migration should be specified in the library parameters as it defines 

the size of the incoming agents’ array in each Place. However, limited migration 

range is a reasonable assumption in many spatial ABMs. 

 

 

Figure 4.1.B: Array of potential 
migrating agents in a Place object.	

Figure 4.1.A: Potential migrating agents’ 
locations.	
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As you can see in Figure 4.2, the speed of execution of different migration conflict 

resolution algorithms is different. The fastest is the library without specific conflict resolution 

rules (option (a) above), the second fastest is the library with the default conflict resolution 

using atomic functions (option (b)) and the slowest is our custom algorithm using an array of 

incoming agents in each Place (option (c)). Even though the option (c) is 40% slower than 

option (a), we chose it to be the conflict resolution mechanism for the primary version of 

MASS CUDA, as it is the most versatile and supports user-defined conflict resolution rules. 

If users do not require custom conflict resolution rules, they can choose to use the version of 

the library without deterministic conflict resolution or the version with atomic functions. So, 

MASS CUDA users have a choice between more functionality through overloadable conflict 

resolution function or faster execution. 

 

Figure 4.2: Performance of the SugarScape simulation depending on the MASS CUDA 

library migration conflict resolution mechanism 

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
		

Simulation	order	

Migration	con@lict	resolution	mechanism	

Custom	conMlict	
resolution	

Default	conMlict	
resolution	using	
atomic	functions	

No	deterministic	
conMlict	resolution	



	

	 32	

4.3. Agent Replication 

Another challenge we faced while implementing fully functional dynamic agents, as 

part of MASS CUDA, was agent replication due to the difficult memory management. 

Because in CUDA we cannot allocate memory for the new agents from within the GPU 

kernels, the sufficient amount of memory should be allocated beforehand. 

The way we addressed this challenge in MASS CUDA is by allocating extra space 

holding inactive objects at Agent collection instantiation time. Then, when a user asks to 

replicate a new agent, we pick the next available Agent object, set its members to the proper 

values and activate the object. GPU data model holds a counter to the current furthest 

allocated Agent object, and the counter is incremented using atomicAdd() function from the 

CUDA standard library. In the current work, agent replication is not evaluated as part of the 

large-scale performance measurement experiments, as our performance-benchmarking app 

(SugarScape) does not require the creation of new agents. We check the functional 

correctness of the implemented agent replication mechanism using a test program. 

4.4. Agent Termination 

Another technical decision we had to make while implementing dynamic agents was 

the memory management algorithm during agent termination. When the user calls 

terminateAgent() function on the Agent object, we do not deallocate the respective memory, 

as it can be time-consuming and will partition the memory space allocated for agents. 

Instead, we deactivate that object and ignore it for further computation.  

Due to limitations in research scope, we did not implement garbage collection as part 

of MASS CUDA. Garbage collection for terminated objects can be implemented in multiple 

ways. One approach that can be taken involves sorting the agent array based on whether the 

agent is alive or dead [11]. The part of the array with dead agents can then be used for 

spawning new agents during replication stage. Another way to reuse the memory occupied by 
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the terminated agents is to use the stochastic parallel allocation strategy [12] at the agent 

replication stage. This algorithm tries to match each gravid (about to reproduce) cell to a 

unique empty cell by letting gravid agents look a random offset to the right for a dead agent 

in parallel. Implementation and performance evaluation of different garbage collection 

algorithms as part of MASS CUDA was left outside of the scope of the current research but is 

a good future research topic. 

To sum up, we implemented the support for dynamic agents as part of MASS CUDA, 

in particular, we proposed and implemented the functions of agent instantiation and mapping 

to space, agent migration, agent replication, and agent termination. As part of agent migration 

implementation, we discussed three different approaches for migration conflict resolution: no 

deterministic migration conflict resolution, migration conflict resolution using CUDA atomic 

functions and our custom algorithm for migration conflict resolution involving maintaining 

an array of all the Agents trying to migrate to a Place as part of that Place. We described the 

advantages of each of the algorithms regarding execution speed and functionality. 

5. Performance Analysis 

To measure the effectiveness of the techniques we implemented for spatial simulation 

performance optimization and the relative performance of the dynamic agent system as part 

of MASS CUDA, we run a series of experiments with simulations of different sizes. We also 

compared the results with the execution time of the sequential CPU-based versions of these 

simulations. 

5.1. Evaluation Environment 

The resources required for the successful implementation, testing and performance 

measurement of the current thesis requires specific hardware and software: modern CPU 

running Linux OS with CUDA-compatible GPU and the NVIDIA® CUDA® Toolkit 
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installed.  

The equipment we used to collect data about applications’ performance has the 

specifications shown in Table 5.1. 

Processor: Intel Xeon CPU E5-2630 v3 

Processor Clock Speed:  2.40GHz 

Operating System:  Ubuntu Linux 4.4.0 

RAM: 32 GB 

Compiler:  CUDA 8.0 toolkit (NVCC) 

Graphics Card:  GeForce GTX Titan 

CUDA Compute Capability: 3.5 

CUDA Cores (Streaming 

Multiprocessors): 

2688 

GPU Max Clock rate: 876 MHz 

Memory Clock: 6.0 Gbps 

Memory Bandwidth:  288.4 GB/sec 

Table 5.1: Specifications of the hardware used in performance evaluation experiments 

5.2. Performance Analysis of a Static System (Heat 2D) 

To analyze the performance of the Spatial Simulation we used the Heat2D 

application, which is a simulation of heat transfer in a mass following the Euler method. 

The simulation was run using a square space of values, and the sizes provided are the 

length of a single side, so a simulation of order 100 actually has the simulation space of size 

100 by 100 and a total of 10,000 Place elements. Each simulation was run at the various sizes 

for 3000 iterations with heat being applied for the first 2700 iterations. Results were not 



	

	 35	

displayed throughout the simulation in order to isolate run time from other, unrelated I/O 

performance factors. 

Aside from the implementation of Heat2D using MASS CUDA version described in 

this thesis work, we also run experiments with the previous MASS CUDA library version, 

described in the work by Hart [2], the sequential CPU implementation of the application and 

the direct GPU implementation, which uses plain CUDA calls. 

 

Figure 5.1: Execution time of different implementations of the Heat2D application 
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by 1000 simulation. The MASS CUDA app still takes more time than the direct GPU 

implementation of Heat2D using bare CUDA calls, which is an expected result, as library 

adds the overhead of additional layer of abstraction on top of CUDA code. 

So, the experiments show that the techniques we implemented for optimizing the 

spatial simulation as part of MASS CUDA - the use of constant memory to store data 

frequently accessed by threads in different blocks; combining exchangeAll() and callAll() 

functions to execute in one GPU kernel call to avoid context switch; and selecting the 

optimal	launch configuration of kernels –provided a significant speed-up compared both to 

sequential CPU version of the simulation and to the previous version of the library. 

5.3. Performance Analysis of a Dynamic System (SugarScape) 

For the purpose of assessing the performance on the agent support in MASS CUDA, 

we chose SugarScape application, because it’s a widely known simulation problem and 

because it requires both spatial and agent functionality of the library. The application 

simulates the behavior of ant colony in the presence of sugar (nutrition source). Ants 

metabolize sugar and produce pollution, migrate to available places with more sugar and die 

if no more sugar is available around them. 

Similar to Heat2D, SugarScape experiments are run using a square simulation space 

of varying sizes. Each simulation was run for 100 iterations and results were not displayed 

throughout the simulation in order to isolate run time from unrelated performance factors. 

For the benchmarking purposes, we also developed versions of the SugarScape 

running on the CPU in a sequential manner and direct GPU implementation, executing bare 

CUDA kernel calls. For this performance comparison we do not have data from the previous 

MASS CUDA library version as it did not implement support of dynamic agents and thus it 

would not be possible to implement SugarScape on top of it. 
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Figure 5.2: Execution time of different implementations of the SugarScape application 
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allocation on CPU instead of the slow cuRAND library on GPU. And for agent termination 

and replication we used the agent pooling technique, which allocates a big chunk of memory 

and then keeps track of active agents in the system. This approach allows avoiding frequent 

dynamic memory allocation throughout the simulation, which can be a severe bottleneck on 

the GPU. Additionally, some carryover of the optimization techniques effect from spatial 

simulation to the dynamic agent-based system could have occurred. 

In summary, both benchmarking applications – spatial Heat2D simulation and 

dynamic agent-based SugarScape application – demonstrate good performance speed up 

compared to the sequential CPU execution. Optimization techniques that resulted in 

increased spatial simulation efficiency are: (1) the use of constant memory to store data 

frequently accessed by threads in different blocks; (2) combining exchangeAll() and callAll() 

functions to execute in one GPU kernel call to avoid context switch; and (3) selecting the 

optimal	launch configuration of kernels. The efficiency of the dynamic agent-based model is 

due to the selection of implementation techniques and algorithms that work well with CUDA 

architecture and limitations, such as random number allocation on CPU instead of GPU and 

the use of agent pooling technique to avoid frequent dynamic memory allocation on GPU 

during the course of a simulation. 

6. Conclusion 

This thesis research is focused on improving the performance of the spatial 

simulations and implementing support for dynamic agents as part of MASS CUDA library, in 

particular, such functions as agent instantiation and mapping to space, agent migration, agent 

replication, and agent termination. 
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6.1. Summary of This Work Contribution 

As part of the thesis, we describe three main techniques, which allowed us to achieve 

3.9 times speed-up in execution time compared to the sequential CPU implementation of a 

spatial simulation. The techniques are the use of constant memory to store data frequently 

accessed by threads in different blocks, avoiding context switch between GPU kernels by 

combining the data exchange and data processing kernels into one, and selecting the optimal	

launch configuration of kernels. We also describe techniques that did not provide any 

performance improvement for the spatial simulation, namely the use of the “pragma unroll” 

for loop unrolling in GPU kernels and replacement of getter and setter functions in the object 

classes with direct member access. 

We also implemented the support for dynamic agents as part of MASS CUDA, and 

describe the specific techniques used for implementing agent instantiation and mapping to 

space, agent migration, agent replication, and agent termination. As part of agent migration 

implementation, we discussed three different approaches for migration conflict resolution: no 

deterministic migration conflict resolution, migration conflict resolution using CUDA atomic 

functions, and our custom algorithm for migration conflict resolution involving maintaining 

an array of all the Agents trying to migrate to a Place as part of that Place. We described the 

advantages of each of the algorithms in terms of execution speed and functionality.  

6.2. Next Steps 

The two main areas of future work include the implementation of agent garbage 

collection as part of MASS CUDA and evaluating the extensibility of the library to multi-

cluster systems. Implementation and performance evaluation of different agent garbage 

collection algorithms as part of MASS CUDA will increase the range of potential 

applications that can run on top of the library, including applications with highly dynamic 

agent spawning and termination. Evaluating the extensibility of the library functionality and 
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implemented optimization techniques to multi-GPU clusters is important as it could result in 

even higher performance of ABM simulations. 
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