
	

	

Efficient GPU Parallelization of the Agent-Based Models Using MASS CUDA Library

Elizaveta Kosiachenko

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2018

Committee:

Munehiro Fukuda, Committee Chair

Erika F. Parsons, Committee Member

Clark Olson, Committee Member

Program Authorized to Offer Degree:

Computer Science & Software Engineering

	

	

©Copyright 2018

Elizaveta Kosiachenko

	

	

University of Washington

Abstract

Efficient GPU Parallelization of the Agent-Based Models Using MASS CUDA Library

Elizaveta Kosiachenko

Chair of the Supervisory Committee:

Professor Munehiro Fukuda

Computing & Software Systems

Agent-based models (ABMs) simulate the actions and interactions of autonomous

agents and their effects on the system as a whole. Many disciplines benefit from using

ABMs, such as biological systems modeling or traffic simulations. However, ABMs need

computational scalability for practical simulation and thus consume a lot of time.

Multi-Agent Spatial Simulation (MASS) CUDA is a library, which allows using

CUDA-enabled GPUs to perform multi-agent and spatial simulations efficiently while

maintaining user-friendly and easily extensible API, which does not require the knowledge of

CUDA on the user part. This thesis describes the optimization techniques for the spatial

simulation, which allowed us to achieve up to 3.9 times speed-up compared to the sequential

CPU execution of the same applications. We also propose solutions to challenges of

implementing the support for dynamic agents as part of MASS CUDA library, including

agent instantiation and mapping to the places, agent migration, agent replication and agent

termination.

	

	

Table of contents

1.	 INTRODUCTION	 1	

1.1.	 Agent-Based Models (ABMs) Simulation	 1	

1.2.	 CUDA Parallel Computing Platform	 2	

1.3.	 Opportunities and Challenges CUDA Platform Presents for ABM Simulations	 2	

1.4.	 MASS CUDA Library Concept	 5	

1.5.	 Current Problems in MASS CUDA	 6	

1.6.	 Research Goals and Scope	 6	

2.	 RELATED WORK	 7	

2.1.	 GPU Agent-Based Models, Frameworks and Techniques	 7	

2.2.	 Previous Work on MASS CUDA	 13	

2.3.	 New Research Contribution to MASS CUDA and GPU Agent-Based Modeling	 15	

3.	 PERFORMANCE OPTIMIZATION FOR SPATIAL SIMULATION	 16	

4.	 AGENT-BASED SIMULATION SUPPORT IN MASS CUDA	 26	

4.1.	 Agent Instantiation and Mapping to Places	 26	

4.2.	 Agent Migration	 29	

4.3.	 Agent Replication	 32	

4.4.	 Agent Termination	 32	

5.	 PERFORMANCE ANALYSIS	 33	

5.1.	 Evaluation Environment	 33	

5.2.	 Performance Analysis of a Static System (Heat 2D)	 34	

5.3.	 Performance Analysis of a Dynamic System (SugarScape)	 36	

6.	 CONCLUSION	 38	

6.1.	 Summary of This Work Contribution	 39	

6.2.	 Next Steps	 39	

BIBLIOGRAPHY	 41	

	

	 1	

1. Introduction

This thesis presents the research of the optimization techniques for the spatial

simulation and solutions to challenges of implementing the support for dynamic agents as

part of GPU-based parallel computing library, including agent instantiation and mapping to

the places, agent migration, agent replication and agent termination.

The three main contributions of this work to the ABM research community are: 1)

applying three optimization techniques to make the spatial simulation on the GPU more

efficient, 2) implementing the support for dynamic agents as part of MASS CUDA, including

agent instantiation and mapping to the places, agent migration, agent replication and agent

termination, while 3) maintaining the user-friendly API, which works with a variety of

different applications and does not require an in-depth knowledge of CUDA programming.

1.1. Agent-Based Models (ABMs) Simulation

Agent-based modeling is a technique that is used to simulate the actions and

interactions of autonomous agents and their effects on the system as a whole. An agent-based

model (ABM) describes a system by representing it as a collection of dynamic agents often

operating in a certain limited space. While each individual agent might have a fairly simple

set of operations, the emergent behavior of a collection of these agents can be very complex.

Such emergent behavior can be hard to predict or model with other techniques. Many

disciplines benefit from using ABMs, such as biological systems modeling, disease spread

prediction or traffic simulations. However, for practical application, ABMs often require

large simulation involving thousands of agents. Such scale requires a lot of computational

power and time.

	

	 2	

1.2. CUDA Parallel Computing Platform

One way to provide computational scalability for ABMs is through the use of

graphics processing units (GPUs). Initially designed for manipulating computer graphics and

image processing, GPUs have evolved to be used in general-purpose computing. While

average CPU might have 4 to 16 computing cores, many GPUs have thousands of processing

cores. As a result, they can be very beneficial for the algorithms where the processing of

large blocks of data is done in parallel.

Following the increased interest in general-purpose GPU computing, a lot of useful

tools are being created for harnessing the parallel computing power of GPUs. One such tool

is CUDA - a hardware/software platform developed by NVIDIA Corporation to allow GPUs

to be used for high-performance computing. CUDA is currently the best-supported and most

accessible platform for GPU-based parallel computing [32].

1.3. Opportunities and Challenges CUDA Platform Presents for ABM

Simulations

Due to their high parallel processing power GPUs provide an opportunity to

accelerate the agent-based models’ execution. However, in order to create efficient GPU-

based ABM simulations, the developers need to have a good understanding of the GPU

programmability model and memory hierarchy, which are briefly outlined below [21].

GPU is composed of global memory (DRAM) and several stream multi-processors

(SM) with multiple processing cores. Each SM can support hundreds of concurrent threads.

In CUDA, threads are organized into blocks, and all the blocks comprise a grid.

Threads of the same block run on the same SM and are not separable. Each SM has limited

resources such as shared memory and registers. Blocks assigned to the same SM have to

	

	 3	

compete for these resources. If a single block requests too many resources, the number of

blocks that can be concurrently supported by an SM decreases, and the performance will be

affected. Fortunately, the numbers of blocks and the number of threads per block are

configurable by developers. If one block requests too many resources, one can always reduce

the number of threads per block to reduce the resources requested by one block.

SM creates, manages, schedules, and executes groups of 32 parallel threads, called

warps. Each warp of threads is executing in a batch manner. This represents the single-

instruction-multiple threads (SIMT) parallel programming model utilized by GPU. Full

efficiency is realized when all threads of a warp agree on their execution path. At every

instruction issue time, a warp scheduler selects a warp that has threads ready to execute its

next instruction and issues the instruction to those threads. Execution context (program

counters, registers, etc.) of each warp processed by a multiprocessor is maintained on-chip

during the entire lifetime of a warp. Therefore, switching execution between warps has no

cost.

The memory of GPU has a hierarchical design as shown in Figure 1.1 and each type

of memory has its use case. The global memory has the fewest number of limitations and can

be accessed by all threads in all blocks. The amount of global memory on the device is large,

but its speed of access is rather low. Data locality is very important for the effective

bandwidth of the global memory loads and stores because the device coalesces global

memory accesses issued by threads of a warp into as few transactions as possible to minimize

DRAM bandwidth.

	

	 4	

Figure 1.1: GPU memory hierarchy (from [23])

Constant and texture memory types are allocated on the GPU RAM as well, but are

also cached on-chip during execution, so their effective speed is generally much higher than

that of the global memory. The limitation for these memory types is that they are read-only.

Registers and local memory are only visible within a single thread that declares the

variable. Register memory is very fast but limited in size. If the variable doesn’t fit the

register limitation in size, it’s placed into a local memory, which is a part of the off-chip

global device memory and thus has the same slow speed as the global memory type. Some

on-chip caching is available for local and global memory, but the size of the cache is limited.

Another type of memory, which is widely utilized in various optimization techniques

is shared memory. Only threads within one block can access the same shared memory

address, but the speed of memory fetches is very high. Shared memory can be used as a user-

managed cache, enabling higher bandwidth than is possible using global memory lookups.

	

	 5	

Based on the GPU architecture and memory limitations, there are some specific

challenges related to implementing agent-based models on the GPUs:

• Memory access patterns:

o The straightforward implementation of agent replication and termination

requires frequent dynamic memory allocation, which can be a severe

bottleneck on the GPU, as it requires global synchronization of the device and

thus stall of all the executing warps;

o Search for neighboring agents can be inefficient on the GPU, as neighbors can

be situated anywhere in the global memory and thus memory access does not

coalesce;

• Branch divergence:

o Agent-based models often include agents with different rules of behavior,

which have different execution paths within a kernel. This results in thread

divergence and thus reduces parallelism.

To overcome these challenges and implement an efficient agent-based model running

on GPU users need an in-depth knowledge of CUDA and relevant optimization techniques.

This can be a limitation to subject matter experts, who want to port their applications to GPU,

but not necessarily possess the required GPU-programming skills.

1.4. MASS CUDA Library Concept

The main goal behind MASS CUDA library is to hide the CUDA implementation

details from users and allow subject matter experts to create efficient agent-based simulations

without needing to engage in CUDA programming, yet still, reap the performance benefits of

parallel processing.

	

	 6	

Similarly to MASS Java and MASS C++ [1], MASS CUDA library uses two

important concepts: Agent and Place. Place objects represent locations and remain static

during the whole simulation process. Agent instances execute different instructions, migrate

between Places, can spawn new child Agent instances, or get terminated.

1.5. Current Problems in MASS CUDA

The first version of MASS CUDA was built in 2015 as part of the thesis project of

Hart, N. B. “MASS CUDA: Abstracting Many Core Parallel Programming From Agent

Based Modeling Frameworks” [2]. That version of the library implemented the encapsulation

of the details of GPU parallel programming and provided a user-friendly API that did not

require any CUDA knowledge from the user. However, the library also had several problems.

One issue was poor performance - the resulting execution time of the system was 19% to

54% slower compared to the sequential version of the program depending on the problem

size. Furthermore, that version of the library only supported spatial simulation and did not

implement support of dynamic agents.

1.6. Research Goals and Scope

Based on the problems identified in the previous version of the MASS CUDA library,

this thesis has two main goals:

1) research, implement and evaluate the techniques for optimizing the

performance of the spatial simulation

2) research techniques for support of dynamic agents in ABMs, in particular,

such functions as agent instantiation and mapping to space, agent migration,

agent replication, and agent termination, and implement them as part of

MASS CUDA library

	

	 7	

While implementing new features and optimization techniques, we aim to follow the

existing specification and API for MASS CUDA library as much as possible and limiting the

number of CUDA-specific details exposed, so that the users of the library are not required to

have preliminary GPU programming knowledge.

A benchmarking application was developed to measure the impact of the

implemented performance optimization techniques. The selected application is SugarScape,

which simulates the behavior of ants in the presence of sugar.

2. Related work

2.1. GPU Agent-Based Models, Frameworks and Techniques

There is a significant amount of research in agent-based models’ optimization using

GPU (and CUDA in particular). However, a lot of works are focusing on optimizing specific

problems and not developing a framework suitable for a variety of problems. Furthermore,

those simulations require users to have quite an in-depth knowledge of GPU programmability

model and CUDA language. In the following subsections, we review the work that has been

conducted in relation to application-specific ABMs’ optimization, individual techniques for

ABM simulations implementation as well as the few frameworks developed for optimizing

agent-based models.

Application-specific	ABMs	utilizing	GPU	

There are a number of application-specific implementations of agent-based models on

GPU that proved to provide good performance results and significant speed-up compared to

the sequential execution. Some examples of research papers grouped by the application

domain:

	

	 8	

1) Biology & Medicine:

a) Tuberculosis epidemic simulation [11]: identifying mechanisms of granuloma

formation through the interaction of T-Cells and Macrophages represented as agents;

b) Modeling of blood coagulation system [10]: simulating complex interactions involved

in blood coagulation system involving reactants, enzymes, and products of the

coagulation system.

a) Systemic inflammatory response simulation [4]: generating population-level

behaviors among the circulating blood and the EC cells lining the blood vessels.

b) Protein structure prediction [8]: exploring the folding of different parts of a protein by

concurrent agents.

2) Physics:

a) Molecular dynamics simulation [20]: studying of the metal solidification process

through the interaction of aluminum atoms.

3) Mathematics:

a) Graph theory [9]: using Ant Colony Optimization algorithm to find an optimal path in

a graph (Traveling Salesman Problem);

b) Cooperative Particle swarm optimization [18]: stochastic optimization algorithm

letting all the particles reach the global best in cooperative fashion through

information exchange.

4) Social Studies:

a) Traffic simulation: micro-simulation involving large groups of vehicle agents moving

over the traffic network [30, 33, 34, 37], and traffic signal timing optimization [31];

b) Crowd simulation and path planning: simulating large crowds of complex agents [36],

navigating agents among moving obstacles [5], agent path planning on grid maps [6,

7] or arbitrary surfaces [35].

	

	 9	

c) Collective motion simulation: studying the collective behaviors of self-propelled

biological organisms, such as birds [16, 17] fish [13], or general flocking “boids”

(individuals in animal crowd simulations) [24, 25] by considering the very large

number of interactions among group members.

Some of these research papers describe straightforward implementations of the

respective simulations on GPU; others provide optimization techniques that can also be

applied to a wider range of simulations.

The main challenges identified as part of these works are the complexity of

implementing them while supporting applications of various sizes and dimensionalities;

being very application-specific and not extensible to the broader range of applications;

decreased parallelism and overhead of constant memory transfers between CPU and GPU.

One of the techniques introduced in these works is the use of the tiling algorithm. It

uses fast shared memory of the GPU to load “tiles” of the total grid of places, which are then

executed within one block of threads. The “tiles” periodically exchange data dependencies

between each other. This technique proves to demonstrate good performance results in the

research by Cecilia et al. and Husselmann et al. [9][17]. However, when applied to a library,

which is intended to support simulations of different sizes and dimensionalities, use of such

algorithm would make the code extremely complex and hard to maintain or modify by the

future contributors.

Another technique, which we considered not applicable to MASS CUDA, is the use

of a hybrid GPU/CPU model described in the work by Li, D. et al. [20]. Separation of

functionality between CPU and GPU is very application-specific, so it is not an option for the

library, which should support a variety of different ABM simulations. Additionally, leaving

part of the simulation on the CPU can potentially lead to decreased parallelism and overhead

	

	 10	

of memory transfers between CPU and GPU.

Several works [5][9] introduced custom thread-safe random number generation,

which decreases the penalty of using the slow “cuRAND” library. This technique can be

useful for a big range of ABMs, however in MASS CUDA random number generation is

used only at initial agent allocation for spreading agents across space and thus can be

performed on CPU before agent objects are created on GPU.

Some works introduced non-trivial ways to maintain a list of agents residing in a

particular place. Research by Chen, W. et al.[10] demonstrates a way to store agents in two-

directional linked lists, while the work of Strippgen, D. et al. [33] suggests storing agents in

place in a dynamic FIFO queue. Those techniques are interesting to experiment with, but

because their benefits to performance are non-obvious, we left those experiments beyond the

scope of this research.

Some of the techniques for agent replication and garbage collection include

processing agent replication in batches using a single thread to avoid the need for

synchronization [10] and sorting agents by dead/alive for memory reuse[11]. Implementation

of these techniques was left out of the scope of this research.

The techniques that did find application in our library include storing reusable

parameters for GPU kernels in constant memory [16], use of “pragma unroll” for maximizing

the use of register memory [16] (after experimentation we omitted this technique from the

latest version due to the lack of performance improvement), allocating upper limit of memory

for data structures to avoid dynamic memory allocation on the fly[33].

Despite the usefulness of some of the techniques in these works, all of them focus on

specific simulations and thus might not be applicable to other simulations/domains.

Furthermore, all of these works require users to use CUDA language to implement the

specified simulations and techniques, while one of the main requirements for our project is to

	

	 11	

hide CUDA implementation details from the user and provide user-friendly API that does not

require the in-depth knowledge of GPU programmability model.

Works	focusing	on	specific	techniques	for	implementing	ABMs	on	GPU	

Another category of research is focusing on specific techniques that might improve

the performance of agent-based models. These techniques are intended to be applicable to

various ABMs, not just one specific simulation.

The work by Aaby et al.[3] describes the latency-hiding mechanism for ABM

simulation on GPU, where the grid of agents is separated into blocks allotted to independent

processing elements. The blocks then exchange the data dependencies with neighboring

blocks after updates in agent states. This approach is quite efficient as it takes advantage of

the fast shared memory, which can be accessed by threads in one block. However, the use of

such algorithm to support simulations of different sizes and dimensionalities makes the code

extremely complex and hard to maintain or modify.

Other works by Hermellin et al.[14, 15] presents the GPU environmental delegation

approach, which implies making a clear separation between the agent behaviors, managed by

the CPU, and environmental dynamics, handled by the GPU. This kind of hybrid approach

can better accommodate very dynamic systems, where agents evolve greatly in the course of

the simulation, however leaving part of the simulation on the CPU can potentially decrease

parallelism and introduce an overhead of memory transfers between CPU and GPU.	

Lastly, the research by Li et al.[21] proposes an AgentPool data structure to handle

agent creation and deletion on GPU. An instance of AgentPool is initiated with a fixed

capacity equal to the maximum number of agents in the system, and the actual number of

agents is tracked at runtime. The management of the pool is performed by manipulating

pointers to reduce the overhead of dynamic memory allocation/deallocation on the device.

This is the approach we adopted in our research as well.

	

	 12	

Similarly to simulation-specific ABM implementations, most of the research projects

focusing on specific techniques don’t address the goal of providing user-friendly API that

does not require in-depth knowledge of CUDA programming language.

Agent-based	modeling	frameworks	utilizing	GPU	

A few frameworks are available in the area of ABM frameworks utilizing CUDA-

enabled GPUs: FLAME GPU[26-29], Turtlekit[22] and MCMAS[19].

FLAME GPU is a high performance parallel framework for agent-based modeling,

which is using an XML schema to represent agents, their functions, fields, messages, and

memory allocations. The framework has certain limitations, in particular agents field types

are limited to integer, float, and double data types, and framework use requires XML

scripting skills in addition to the C programming language. Additionally, it does not provide

an execution environment the agents can interact with.

Turtlekit is a Logo-based spatial ABM platform, implemented with Java. Its long-

term goal is to develop a library of GPU modules implementing various environment

dynamics specifically designed for spatial ABMs. Right now it implements the delegation of

some of the agents’ behaviors onto GPU. Because the library takes the hybrid approach of a

partial delegation of simulation to GPU and because it does not yet implement the full range

of possible agent behaviors in its modules, the amount of computation speed-up it can

achieve through parallelism is limited.

MCMAS is a library intended to facilitate the implementation of agent-based models

on GPU and many-core architectures through providing a set of commonly used functions

and data structures. One of the limitations of this library is that the user is limited to the set of

implemented functions, algorithms and data structures, which can be extended only through

writing low-level GPU code. Another disadvantage is, similarly to TurtleKit, the use of the

	

	 13	

hybrid model with only a partial delegation of simulation to GPU, which potentially

decreases parallelism and requires frequent memory transfers between CPU and GPU.

So, while the abovementioned frameworks address the issue of programmability, they

still have some challenges remaining: not easily extendable API and, in case of Turtlekit and

MCMAS, limited parallelism due to the use of the hybrid CPU/GPU model approach, which

potentially decreases parallelism and requires frequent memory transfers between CPU and

GPU.	

We address the challenges of the aforementioned frameworks in MASS CUDA by

providing an easy API, which does not require the knowledge of low-level GPU languages

and is easy to extend by writing functions in C++. Additionally, the simulation is performed

entirely on GPU, which allows to minimize memory transfers between CPU and GPU and

maximize the parallelism in the system.	

2.2. Previous Work on MASS CUDA

While this work is the first to provide full support for dynamic agents as part of

MASS CUDA, it builds on top of thesis project of Hart, N. B. “MASS CUDA: Abstracting

Many Core Parallel Programming From Agent Based Modeling Frameworks”. The work

describes the architecture and implementation techniques for the library, which allow to

abstract away the CUDA implementation details from the user and achieve the APIs which

are very similar to other versions of the MASS library: MASS C++ and MASS Java.

The resulting library completely hid CUDA implementation details from the user with

several exceptions:

• The project must be compiled using nvcc (Nvidia CUDA compiler) with the required

flags/options;

• All files that are normally .cpp are .cu;

	

	 14	

• Functions in user-defined Place or Agent classes should be prepended with the macro

MASS_FUNCTION (stands for __host__ __device__), which enables compiling of

both host and device code.

In the current work we retained the same API as in the Harts thesis work and also

took advantage of the library architectural model and split of library object classes (Place,

Agent, and user classes derived from them) into behavior and state classes.

The architectural model proposed and implemented in that work is Model-View-

Presenter. View represents the API of the library; Model represents the data model on both

GPU and CPU; and Presenter represents the dispatcher coordinating the interaction of Model

and View, performing memory transfers between CPU and GPU, and launching GPU kernels

(functions executed on GPU). The architecture is shown in Figure 2.1.

Figure 2.1: High-level architecture of the MASS CUDA library [2]

We decided to reuse the Model-View-Presenter model in the current work because it

allows hiding the details of CUDA implementation from the user. It also encapsulates the

GPU-specific implementation details into a separate Model component, which allows for

easier code maintenance and modification.

Another technical decision that we reused from Harts work is splitting behavior and

state into two different classes, where the behavior class, Agent or Place, contains all the

	

	 15	

functions as well as a single pointer to a generic AgentState and PlaceState class that contains

all the fields. An array of concrete behavior classes are instantiated both on the host (CPU)

and device(GPU), as well as an array of state classes of equal size. Each behavior instance is

assigned a unique state instance. Memory transfer is achieved by copying the state array from

host to device and back again.

Using this pattern allows for the creation of derived classes by a user which would

extend Agent and Place classes and at the same time to manage all of the memory allocations

and transfers between host and device behind the scenes.

While the primary goal of Harts work - to implement the encapsulation of the details

of GPU parallel programming - was accomplished by his research, the resulting library did

not achieve the performance goals as it showed a performance slowdown when compared to

sequential computation of an identical simulation - the resulting performance of the system

was 19% to 54% slower depending on the problem size. Furthermore, his research focused on

spatial simulation and did not address the challenges of implementing dynamic agents

instantiation, migration, termination and replication.

In the current work we reuse the API, architectural model and some of the technical

decisions outlined above from the Harts thesis, and address some of its shortcomings, in

particular improving the performance of the spatial simulation and addressing the challenges

pertaining to the support for dynamic agents as part of the library: agents instantiation,

mapping to space, migration, replication and termination.

2.3. New Research Contribution to MASS CUDA and GPU Agent-Based

Modeling

This thesis research contribution is three-fold: 1) applying three optimization

	

	 16	

techniques to make the spatial simulation on the GPU efficient, 2) implementing the support

for dynamic agents as part of MASS CUDA, including agent instantiation and mapping to

places, agent migration, agent replication and agent termination, while 3) maintaining the

user-friendly API, which works with a variety of different applications, does not require an

in-depth knowledge of GPU programming and can be easily extended using just C++.

Compared to the previous version of the MASS CUDA library we also simplified it

(decreased the number of lines of code by 32%, while simultaneously adding support for

dynamic agents and improving the library performance). We also made some smaller

improvements to the library functionality, for example, in case there are several GPUs

present on the computer, the library now selects the GPU device with the highest compute

capability instead of hard-coded values as it was implemented previously. This makes the

process of porting the library to a new computer easier.

3. Performance Optimization for Spatial Simulation

While the goal of encapsulating the details of GPU parallel programming has been

accomplished by the previous version of MASS CUDA[2], the resulting library did not

achieve the performance goals as it showed a performance slowdown when compared to the

sequential computation of an identical simulation.

To achieve better performance for the spatial simulation, we implemented and run

performance measurements of several optimization techniques:

• use of constant memory;

• avoiding context switch between GPU kernels;

	

	 17	

• selecting the optimal launch configuration of GPU kernels;

• using the “pragma unroll” compiler directive for loop unrolling;

• replacement of getter and setter function in the object classes with direct

member access.

We also considered implementing the tiling or stencil algorithm but abandoned this

techniques technique due to maintainability issues.

To measure the influence of the implemented techniques on the overall performance

of the library spatial functionality we used the benchmarking application Heat2D, which

simulates heat transfer in a mass of metal following the Euler method. The specifications of

the hardware used in all of the experiments are described in section 5.1.Evaluation

Environment.

Use of constant memory

As previously mentioned, constant memory is a relatively fast kind of GPU memory,

which is initially allocated on the GPU RAM but is also cached during execution. This type

of memory has a limitation of being read-only, so its use is limited to parameters that do not

dynamically change throughout the simulation. In case of MASS CUDA, one such type of

parameter identified is the array holding the relative coordinates of the neighbors that is used

for data exchange between Place objects.

The transfer of even such a small amount of data (array of neighbor coordinates) from

global to constant memory led to a noticeable performance improvement of 4% for the whole

simulation.

	

	 18	

Avoiding context switch between GPU kernels

In CUDA the kernel execution context (registers, cache, etc.) is maintained

throughout the whole life of a kernel, but all the cached data is discarded as soon as the

kernel execution is complete. Combining several GPU kernels operating on the overlapping

data can allow to reuse the cached information and decrease the overall number of memory

requests.

In MASS CUDA library one such combination of functions is exchangeAll() and the

following callAll(). exchangeAll() function in the MASS CUDA library is used to collect

data from the provided array of neighbors and save it into the message array in place. That

data is then used by the subsequent functions invocations. And callAll() is used to execute a

specific user-defined function on all the places objects in a collection. A common use pattern

for these functions is the call to the exchangeAll() to collect some data from the neighboring

places followed by the callAll() to use the collected data in some sort of computation.

We implemented an additional version of exchangeAll() which combines the

exchangeAll() and callAll() functionalities in one GPU kernel call. The user can specify a

function ID that will be executed for all Place objects after data collection is complete. The

specified function is executed in the same GPU kernel that collects the data, so we avoid a

context switch between the data collection kernel and calculation kernel, and thus the cached

data can be reused for the calculation of results in the function that requires this data.

Implementing the modified exchangeAll() function resulted in an improvement of

performance for the Heat2D simulation by 33% compared to the original MASS CUDA

library.

	

	 19	

Selecting the optimal launch configuration of GPU kernels

When making invocations of kernels on GPU developers need to specify the launch

configuration of kernels, in particular, the number of blocks and number of threads per each

block. As mentioned earlier, threads of the same block share limited resources such as shared

memory, registers, and caches. If a single block requests too many resources, the number of

blocks that can be concurrently supported by a GPU stream multiprocessor decreases, and the

performance is negatively affected. Choosing the optimal launch configuration depends on

the types and amount of memory utilization by the program and the specifications of the GPU

device the application is launched on.

The previous version of MASS CUDA used the configuration of 512 threads per

block. We ran a series of experiments using the Heat2D application to find out if this launch

configuration is optimal. We used varying settings for the number of threads per block. The

number of blocks in a grid was calculated as the total number of Places in the simulation

divided by the number of threads per block selected, rounded up.

As shown in Figures 3.1 and 3.2, 512 threads per block was significantly slower than

the optimal configuration for the Heat2D application implemented on top of MASS CUDA.

The best configuration was 24 threads per block. Setting launch configuration parameters to

the optimal values resulted in the 32% performance improvement compared to the original

MASS CUDA library for the biggest simulation size we tested (1000 x 1000 places).

	

	 20	

Figure 3.1: Performance by number of threads per block of the Heat2D spatial simulation

implemented on top of MASS CUDA library

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
		

Simulation	order	

Threads	per	block	

16	

24	

32	

64	

96	

128	

256	

512	

1024	

	

	 21	

Figure 3.2: Performance by number of threads per block of the Heat2D spatial simulation of

size 1000x1000 implemented on top of MASS CUDA library

The explanation for such a low optimal number of threads per block can be the high

utilization of per-block resources by the MASS CUDA simulations, such as registers and

caches. The Places memory space allocated to each thread is large. Therefore, a smaller

number of threads per block can fit their Places memory space in the limited cache memory

and have higher cache hit ratio.

The relevant profiling metrics of the most computation-heavy kernel in the MASS

CUDA simulation – mass::exchangeAllPlacesKernel() - are shown in Table 3.1. According

to the metrics, even though the achieved occupancy (ratio of the active warps per cycle to the

maximum number of warps supported on a multiprocessor) of the 24 threads per block

configuration is lower than the 512 threads per block configuration, its memory utilization is

more efficient: L2 cache hit rate is much higher and the overall number of GPU DRAM

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

16	 24	 32	 64	 96	 128	 256	 512	 1024	

Ti
m
e,
	s
ec
	

Threads	per	block	

	

	 22	

accesses is significantly lower.

GPU kernel

Importance
(% of total

GPU
compute

time)

Avg.
Duration

(ms)

Achieved
Occupan-

cy

L2 Hit
Rate

Device
Memory
(DRAM)

Read
Transactions

Device
Memory
(DRAM)

Write
Transactions

mass::
exchangeAll
PlacesKernel()

at 24 threads
per block

69% 4.26 25% 77% 6.3 M 3.0 M

at 512 threads
per block

87% 9.12 69% 17% 20 980.0 M 5.1 M

Table 3.1: Profiling results for the mass::exchangeAllPlacesKernel() of the MASS CUDA

library executing the Heat2D application of size 1000x1000

Similar experiments were conducted for a different application - SugarScape, which

simulates the behavior of ant colony in the presence of sugar and, in addition to spatial

simulation, also includes dynamic agents. Figure 3.3 gives the best setting for the SugarScape

application of 24 threads per block, similar to Heat2D. So, we can reasonably assume that

this launch configuration of kernels might be optimal or close to optimal for a wider variety

of applications implemented on top of MASS CUDA as well.

	

	 23	

Figure 3.3: Performance by number of threads per block of the SugarScape dynamic agent

simulation implemented on top of MASS CUDA library

Other techniques considered

As part of the process of improving MASS CUDA library spatial simulation

performance, we considered several optimization techniques, which did not provide an

expected boost in performance.

One of such techniques was using the “pragma unroll” compiler optimization

directive, as mentioned in the work by Hidayat et al. [16]. This directive is intended to unroll

loops in the GPU code at the compilation time in order to maximize the usage of the fast

register memory and decrease the processor load. However, upon implementing this compiler

directive in the most computation-heavy kernel in our library, we did not see any noticeable

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

5	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
		

Simulation	order	

Threads	per	block	

16	

32	

24	

64	

128	

256	

512	

1024	

	

	 24	

results in performance. This lack of improvement can be explained by the fact that most of

the loops in our kernels were relatively small (below 10 iterations) and the number of

iterations was known at compile time, so the compiler automatically performed this

optimization, according to CUDA programming guide [23].	

Another technique we tried was the replacement of getter and setter function in the

object classes with direct member access to the respective field. We hoped that this change

might improve memory access patterns within GPU kernels; however, it did not influence the

performance. The explanation for this can be either the automatic optimization of such

functions by the compiler or that these functions, in fact, do not influence GPU memory

access patterns and their overhead is negligible. Upon finishing the experiment, we returned

to the use of getter and setter functions, as they promote better coding style through

encapsulation.

During the implementation of the improved MASS CUDA library, we also considered

a technique mentioned in the works of Cecilia et al. and Husselmann et al.[9][17] - using

tiling or stencil pattern to take advantage of the fast shared memory, accessible by threads in

the same block. As mentioned earlier, the tiling technique uses fast shared memory of the

GPU to load “tiles” of the total grid of places, which are then executed within one block of

threads. During each iteration of the simulation “tiles” exchange data dependencies between

each other. The stencil pattern works in a similar manner but includes the bordering places of

the neighboring tiles into the cached data block. However, because MASS CUDA library is

intended to support applications of different sizes and dimensionalities, use of such

algorithms makes the code for the exchange of data dependencies between the “tiles”(blocks

of threads) very convoluted. So we abandoned this optimization technique in favor of code

maintainability.

Techniques’ contribution to overall library performance improvement (based on the

	

	 25	

Heat2D simulation of size 1000 by 1000) is shown in Figure 3.4. The biggest contribution

was provided through optimizing the number of threads per block for kernel launches.

Second-best was avoiding context switch between GPU kernels through combining

exchangeAll() and callAll() functions to execute in one GPU kernel call. And the smallest,

but still significant contribution was made by the use of constant memory for storing kernel

parameters.

Figure 3.4: Contribution of different performance optimization techniques to the overall

speed-up of the spatial simulation (Heat2D simulation of size 1000x1000)

To sum up, the 3.2 speed-up compared to the previous version of the library was

achieved with three major techniques: the use of constant memory to store data frequently

accessed by threads in different blocks, avoiding context switch between GPU kernels, and

selecting the optimal	launch configuration of kernels. The techniques that did not provide

any performance improvement in MASS CUDA execution were using the “pragma unroll”

compiler directive for loop unrolling and replacement of getter and setter function in the

0	

5	

10	

15	

20	

25	

30	

35	

40	

MASS	CUDA	
prev.version	

MASS	CUDA	

Ti
m
e,
	s
ec
	

Threads	per	block	
optimization	

Avoiding	context	switch	
between	GPU	kernels	

Constant	memory	use	

Simulation	time	

	

	 26	

object classes with direct member access. And the technique that we did not select due to

maintainability issues was the tiling algorithm.

4. Agent-Based Simulation Support in MASS CUDA

An essential goal of our research was to implement the support of dynamic agents as

part MASS CUDA library, in particular, such functions as agent instantiation and mapping to

space, agent migration, agent replication, and agent termination. In this chapter, we discuss

the challenges we faced implementing this functionality and the technical decisions we made

during the implementation process. We also go into more detail on three different approaches

for conflict resolution during agent migration stage: (1) no deterministic migration conflict

resolution; (2) migration conflict resolution using CUDA atomic functions; and (3) our

custom algorithm for migration conflict resolution involving maintaining an array of all the

Agents trying to migrate to a Place as part of that Place.

The general workflow of working with dynamic agents in MASS CUDA includes the

following operations:

• Creation of the agent collection and mapping Agents to Places using the

createAgents() function;

• Calling various functions on Agent objects using the callAll() function, which

invokes the same user-defined method on all of the Agents in a collection;

• Calling the manageAll() function on the Agents collection to perform the

termination, migration or replication of agent instances after invocation of the

terminateAgent(), migrateAgent () or spawn() functions in any of the agents’

functions.

4.1. Agent Instantiation and Mapping to Places

In MASS CUDA agents are instantiated across a grid of places. So, before creating

	

	 27	

the collection of Agents, the user needs to instantiate the MASS library and create the Places

object. After that the user can instantiate Agents and map them to the Places collection using

the createAgents() function with the following signature:

template<typename AgentType, typename AgentStateType>
 Agents* createAgents(int handle, void *argument, int argSize, int nAgents,
 int placesHandle, int maxAgents =0, int* placeIdxs =NULL);

Parameter “handle” is a unique numerical identifier for the collection of Agents,

“argument” and “argSize” define the arguments that can be passed to the Agent object at

creation, “nAgents” is the number of agents to be initially created, “placesHandle” identifies

the grid of places over which the new agents collections will be instantiated. Parameters

“maxAgents” and “placeIdxs” are optional, and are assigned the default values by the library

in case a user provides no values. “maxAgents” is the maximum number of agents that will be

spawned in the system during the course of the computation. The default value for this

parameter is nAgents*2. And “placeIdxs” is the array of Place object indexes of size nAgents,

which defines the location of instantiation for all the agents.

As part of initialization, Agents are mapped to the Places grid using the “placeIdxs”

array, provided by the user, or the default map, which we implemented as part of this work.

The default map randomly distributes Agents over a grid of Places. An array of agents’

locations is created on CPU, using C++ standard library random number generator, and then

copied to the GPU, where it’s used in the instantiation of Agent objects. By creating the array

on CPU, we can avoid the use of the cuRAND library, which can be quite inefficient. The

algorithm we use to generate Place indexes for the Agents is as follows:

void getRandomPlaceIdxs(int idxs[], int nPlaces, int nAgents) {
 int curAllocated = 0;

 // If there is more than 1 agent per place, allocate agents evenly over space:
 if (nAgents > nPlaces) {
 for (int i=0; i<nPlaces; i++) {
 for (int j=0; j<nAgents/nPlaces; j++) {

	

	 28	

 idxs[curAllocated] = i;
 curAllocated ++;
 }
 }
 }

 // Allocate the remaining agents randomly:
 std::unordered_set<int> occupied_places;
 while (curAllocated < nAgents) {
 unsigned int randPlace = rand() % nPlaces; //random number from 0 to nPlaces
 if (occupied_places.count(randPlace)==0) {
 occupied_places.insert(randPlace);
 idxs[curAllocated] = randPlace;
 curAllocated++;
 }
 }
}

When creating Agents, the library allocates more GPU memory space for the agent

collection than the initial number of agents specified. The system allocates the “maxAgents”

number of objects (can be defined by a user) but keeps the extra agents in an inactive state.

Those inactive objects are then used when a user wants to create new agents through

replication. Allocating all of the memory for agents once at the beginning of the simulation

allows avoiding frequent dynamic memory allocation throughout the simulation, which can

be a severe bottleneck on the GPU.

Following the architecture established by Harts work [2], we are splitting the behavior

and state of Agents into two different classes, where the behavior class, Agent, contains all

the functions as well as a single pointer to a generic AgentState class that contains all the

fields. An array of concrete behavior classes are instantiated both on the host(CPU) and

device(GPU), as well as an array of state classes of equal size.

Each Agent object, instantiated on GPU, holds a pointer to the Place object, instantiated

on GPU as well, where it resides, and each Place object holds an array of Agents, which

reside in that place.

When a user subsequently wants to see some Agents’ properties on CPU (e.g., print the

agents’ locations), only the AgentState array is copied from GPU to CPU.

	

	 29	

4.2. Agent Migration

One of the challenges of implementing dynamic agents support is designing the agent

migration mechanism, in particular, the algorithm of resolving conflicts when several agents

try to migrate to the same destination. In case of MASS CUDA, we also wanted to make it

possible for the user of the library to control the conflict resolution rules specific to their

application. Because all the agent threads run in parallel, we also need to manage a data race

between several threads trying to modify the same Place object simultaneously.

There are several solutions to the problem of managing agent migration in a thread-

safe manner:

a) Let Agent threads write into the Place object without specific conflict

resolution rules. In case several agents try to migrate to the same destination,

each following thread will overwrite the entry of the previous agent. So, the last

agent thread to access the Place object gets that place. The benefit of this conflict

resolution scheme is the fast speed of execution because there is no thread

synchronization and thus no related overhead. However, the disadvantage of this

algorithm is the non-deterministic nature of the simulation, because the result

depends on the order of threads getting to a certain execution point.

b) Manage data races between Agent threads through atomic functions. When

several Agent threads try to migrate to the same Place, the atomicCAS() function

from the CUDA standard library is used to select an agent with the smallest index.

Using this algorithm makes the simulation reproducible. However, it does not

allow users to modify the conflict resolution algorithm between migrating agents.

One of the requirements of the MASS CUDA library is to hide all CUDA

implementation details, so we cannot expect users to manipulate CUDA atomic

functions.

	

	 30	

c) Save all the Agents, which try to migrate to a Place, into an array and

perform conflict resolution in a separate function. This is the algorithm that we

developed as part of this thesis work. Following this approach, each place has an

array of agents that want to migrate to this place. Agents register their intent by

saving their pointer into that array. For example, if in a system agents can only

migrate one cell North, West, South or East, the location of all possible migrating

agents will look as pictured in Figure 4.1.A and the array of potential migrating

agents stored in that place will look as pictured in Figure 4.1.B. After all agents

registered their intent to migrate, each Place performs conflict resolution based on

a certain algorithm (can be provided by a user) and selects agents to accept.

Selected agents then migrate to the places that accepted them as part of

manageAll() function. The benefit of this approach is that a user can specify the

conflict resolution rules. This approach also has drawbacks; in particular, the

range of agent migration should be specified in the library parameters as it defines

the size of the incoming agents’ array in each Place. However, limited migration

range is a reasonable assumption in many spatial ABMs.

Figure 4.1.B: Array of potential
migrating agents in a Place object.	

Figure 4.1.A: Potential migrating agents’
locations.	

	

	 31	

As you can see in Figure 4.2, the speed of execution of different migration conflict

resolution algorithms is different. The fastest is the library without specific conflict resolution

rules (option (a) above), the second fastest is the library with the default conflict resolution

using atomic functions (option (b)) and the slowest is our custom algorithm using an array of

incoming agents in each Place (option (c)). Even though the option (c) is 40% slower than

option (a), we chose it to be the conflict resolution mechanism for the primary version of

MASS CUDA, as it is the most versatile and supports user-defined conflict resolution rules.

If users do not require custom conflict resolution rules, they can choose to use the version of

the library without deterministic conflict resolution or the version with atomic functions. So,

MASS CUDA users have a choice between more functionality through overloadable conflict

resolution function or faster execution.

Figure 4.2: Performance of the SugarScape simulation depending on the MASS CUDA

library migration conflict resolution mechanism

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
		

Simulation	order	

Migration	con@lict	resolution	mechanism	

Custom	conMlict	
resolution	

Default	conMlict	
resolution	using	
atomic	functions	

No	deterministic	
conMlict	resolution	

	

	 32	

4.3. Agent Replication

Another challenge we faced while implementing fully functional dynamic agents, as

part of MASS CUDA, was agent replication due to the difficult memory management.

Because in CUDA we cannot allocate memory for the new agents from within the GPU

kernels, the sufficient amount of memory should be allocated beforehand.

The way we addressed this challenge in MASS CUDA is by allocating extra space

holding inactive objects at Agent collection instantiation time. Then, when a user asks to

replicate a new agent, we pick the next available Agent object, set its members to the proper

values and activate the object. GPU data model holds a counter to the current furthest

allocated Agent object, and the counter is incremented using atomicAdd() function from the

CUDA standard library. In the current work, agent replication is not evaluated as part of the

large-scale performance measurement experiments, as our performance-benchmarking app

(SugarScape) does not require the creation of new agents. We check the functional

correctness of the implemented agent replication mechanism using a test program.

4.4. Agent Termination

Another technical decision we had to make while implementing dynamic agents was

the memory management algorithm during agent termination. When the user calls

terminateAgent() function on the Agent object, we do not deallocate the respective memory,

as it can be time-consuming and will partition the memory space allocated for agents.

Instead, we deactivate that object and ignore it for further computation.

Due to limitations in research scope, we did not implement garbage collection as part

of MASS CUDA. Garbage collection for terminated objects can be implemented in multiple

ways. One approach that can be taken involves sorting the agent array based on whether the

agent is alive or dead [11]. The part of the array with dead agents can then be used for

spawning new agents during replication stage. Another way to reuse the memory occupied by

	

	 33	

the terminated agents is to use the stochastic parallel allocation strategy [12] at the agent

replication stage. This algorithm tries to match each gravid (about to reproduce) cell to a

unique empty cell by letting gravid agents look a random offset to the right for a dead agent

in parallel. Implementation and performance evaluation of different garbage collection

algorithms as part of MASS CUDA was left outside of the scope of the current research but is

a good future research topic.

To sum up, we implemented the support for dynamic agents as part of MASS CUDA,

in particular, we proposed and implemented the functions of agent instantiation and mapping

to space, agent migration, agent replication, and agent termination. As part of agent migration

implementation, we discussed three different approaches for migration conflict resolution: no

deterministic migration conflict resolution, migration conflict resolution using CUDA atomic

functions and our custom algorithm for migration conflict resolution involving maintaining

an array of all the Agents trying to migrate to a Place as part of that Place. We described the

advantages of each of the algorithms regarding execution speed and functionality.

5. Performance Analysis

To measure the effectiveness of the techniques we implemented for spatial simulation

performance optimization and the relative performance of the dynamic agent system as part

of MASS CUDA, we run a series of experiments with simulations of different sizes. We also

compared the results with the execution time of the sequential CPU-based versions of these

simulations.

5.1. Evaluation Environment

The resources required for the successful implementation, testing and performance

measurement of the current thesis requires specific hardware and software: modern CPU

running Linux OS with CUDA-compatible GPU and the NVIDIA® CUDA® Toolkit

	

	 34	

installed.

The equipment we used to collect data about applications’ performance has the

specifications shown in Table 5.1.

Processor: Intel Xeon CPU E5-2630 v3

Processor Clock Speed: 2.40GHz

Operating System: Ubuntu Linux 4.4.0

RAM: 32 GB

Compiler: CUDA 8.0 toolkit (NVCC)

Graphics Card: GeForce GTX Titan

CUDA Compute Capability: 3.5

CUDA Cores (Streaming

Multiprocessors):

2688

GPU Max Clock rate: 876 MHz

Memory Clock: 6.0 Gbps

Memory Bandwidth: 288.4 GB/sec

Table 5.1: Specifications of the hardware used in performance evaluation experiments

5.2. Performance Analysis of a Static System (Heat 2D)

To analyze the performance of the Spatial Simulation we used the Heat2D

application, which is a simulation of heat transfer in a mass following the Euler method.

The simulation was run using a square space of values, and the sizes provided are the

length of a single side, so a simulation of order 100 actually has the simulation space of size

100 by 100 and a total of 10,000 Place elements. Each simulation was run at the various sizes

for 3000 iterations with heat being applied for the first 2700 iterations. Results were not

	

	 35	

displayed throughout the simulation in order to isolate run time from other, unrelated I/O

performance factors.

Aside from the implementation of Heat2D using MASS CUDA version described in

this thesis work, we also run experiments with the previous MASS CUDA library version,

described in the work by Hart [2], the sequential CPU implementation of the application and

the direct GPU implementation, which uses plain CUDA calls.

Figure 5.1: Execution time of different implementations of the Heat2D application

As can be observed from Figure 5.1, the current version of MASS CUDA library

provides a significant speed-up for the chosen spatial simulation compared to its predecessor.

It shows a 3.2 times improvement compared to the previous version of the library, which

brings us up to a 3.9 times speed-up compared to the sequential CPU implementation of 1000

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

30.00	

35.00	

40.00	

45.00	

50.00	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
	

Simulation	order	

CPU	sequential	

Direct	GPU	

MASS	CUDA	

MASS	CUDA	prev.	
version	

	

	 36	

by 1000 simulation. The MASS CUDA app still takes more time than the direct GPU

implementation of Heat2D using bare CUDA calls, which is an expected result, as library

adds the overhead of additional layer of abstraction on top of CUDA code.

So, the experiments show that the techniques we implemented for optimizing the

spatial simulation as part of MASS CUDA - the use of constant memory to store data

frequently accessed by threads in different blocks; combining exchangeAll() and callAll()

functions to execute in one GPU kernel call to avoid context switch; and selecting the

optimal	launch configuration of kernels –provided a significant speed-up compared both to

sequential CPU version of the simulation and to the previous version of the library.

5.3. Performance Analysis of a Dynamic System (SugarScape)

For the purpose of assessing the performance on the agent support in MASS CUDA,

we chose SugarScape application, because it’s a widely known simulation problem and

because it requires both spatial and agent functionality of the library. The application

simulates the behavior of ant colony in the presence of sugar (nutrition source). Ants

metabolize sugar and produce pollution, migrate to available places with more sugar and die

if no more sugar is available around them.

Similar to Heat2D, SugarScape experiments are run using a square simulation space

of varying sizes. Each simulation was run for 100 iterations and results were not displayed

throughout the simulation in order to isolate run time from unrelated performance factors.

For the benchmarking purposes, we also developed versions of the SugarScape

running on the CPU in a sequential manner and direct GPU implementation, executing bare

CUDA kernel calls. For this performance comparison we do not have data from the previous

MASS CUDA library version as it did not implement support of dynamic agents and thus it

would not be possible to implement SugarScape on top of it.

	

	 37	

Figure 5.2: Execution time of different implementations of the SugarScape application

As you can see from Figure 5.2, the new version of MASS CUDA with custom

migration conflict resolution provides a 1.8 times speed-up compared to the sequential

implementation. If the application does not require custom conflict resolution rules, then

MASS CUDA can provide up to 2.9 times speed up for the bigger simulation sizes using the

default migration conflict resolution algorithm. Similarly to the Heat2D, we can observe that

MASS CUDA does add some overheat on top of bare GPU implementation of the same

problem, but it also offers significant improvement in programmability and can accommodate

users without the knowledge of CUDA language or GPU architecture.

To achieve good simulation performance of the dynamic agent functionality, we

considered GPU architecture and limitations when selecting implementation techniques and

algorithms. For example, during agent instantiation and mapping we used random number

	-				

	0.50		

	1.00		

	1.50		

	2.00		

	2.50		

	3.00		

5	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e,
	s
ec
		

Simulation	order	

CPU	sequential	

Direct	GPU	

MASS	CUDA	with	
custom	migration	
conMlict	resolution	

MASS	CUDA	with	
default	migration	
conMlict	resolution	

	

	 38	

allocation on CPU instead of the slow cuRAND library on GPU. And for agent termination

and replication we used the agent pooling technique, which allocates a big chunk of memory

and then keeps track of active agents in the system. This approach allows avoiding frequent

dynamic memory allocation throughout the simulation, which can be a severe bottleneck on

the GPU. Additionally, some carryover of the optimization techniques effect from spatial

simulation to the dynamic agent-based system could have occurred.

In summary, both benchmarking applications – spatial Heat2D simulation and

dynamic agent-based SugarScape application – demonstrate good performance speed up

compared to the sequential CPU execution. Optimization techniques that resulted in

increased spatial simulation efficiency are: (1) the use of constant memory to store data

frequently accessed by threads in different blocks; (2) combining exchangeAll() and callAll()

functions to execute in one GPU kernel call to avoid context switch; and (3) selecting the

optimal	launch configuration of kernels. The efficiency of the dynamic agent-based model is

due to the selection of implementation techniques and algorithms that work well with CUDA

architecture and limitations, such as random number allocation on CPU instead of GPU and

the use of agent pooling technique to avoid frequent dynamic memory allocation on GPU

during the course of a simulation.

6. Conclusion

This thesis research is focused on improving the performance of the spatial

simulations and implementing support for dynamic agents as part of MASS CUDA library, in

particular, such functions as agent instantiation and mapping to space, agent migration, agent

replication, and agent termination.

	

	 39	

6.1. Summary of This Work Contribution

As part of the thesis, we describe three main techniques, which allowed us to achieve

3.9 times speed-up in execution time compared to the sequential CPU implementation of a

spatial simulation. The techniques are the use of constant memory to store data frequently

accessed by threads in different blocks, avoiding context switch between GPU kernels by

combining the data exchange and data processing kernels into one, and selecting the optimal	

launch configuration of kernels. We also describe techniques that did not provide any

performance improvement for the spatial simulation, namely the use of the “pragma unroll”

for loop unrolling in GPU kernels and replacement of getter and setter functions in the object

classes with direct member access.

We also implemented the support for dynamic agents as part of MASS CUDA, and

describe the specific techniques used for implementing agent instantiation and mapping to

space, agent migration, agent replication, and agent termination. As part of agent migration

implementation, we discussed three different approaches for migration conflict resolution: no

deterministic migration conflict resolution, migration conflict resolution using CUDA atomic

functions, and our custom algorithm for migration conflict resolution involving maintaining

an array of all the Agents trying to migrate to a Place as part of that Place. We described the

advantages of each of the algorithms in terms of execution speed and functionality.

6.2. Next Steps

The two main areas of future work include the implementation of agent garbage

collection as part of MASS CUDA and evaluating the extensibility of the library to multi-

cluster systems. Implementation and performance evaluation of different agent garbage

collection algorithms as part of MASS CUDA will increase the range of potential

applications that can run on top of the library, including applications with highly dynamic

agent spawning and termination. Evaluating the extensibility of the library functionality and

	

	 40	

implemented optimization techniques to multi-GPU clusters is important as it could result in

even higher performance of ABM simulations.

	

	 41	

Bibliography

1. T. Chuang, M. Fukuda, “A Parallel Multi-Agent Spatial Simulation Environment for

Cluster Systems”, In Proc. of the 16th IEEE International Conference on Computational

Science and Engineering - CSE 2013, pp. 143-150, Sydney, Australia, December, 2013.

[Online]. Available: http://faculty.washington.edu/mfukuda/papers/cse2013_mass.pdf

2. Hart, Nathaniel B. “MASS CUDA: Abstracting Many Core Parallel Programming From

Agent Based Modeling Frameworks”. Diss. University of Washington, 2015. Available:

https://onedrive.live.com/view.aspx?resid=AFB10F7D10CB103C!36244&ithint=file%2c

pdf&app=WordPdf&authkey=!APN9OEQ_n3ufVPk

3. Aaby, Brandon G., Kalyan S. Perumalla, and Sudip K. Seal. “Efficient Simulation of

Agent-Based Models on Multi-Gpu and Multi-Core Clusters.” Proceedings of the 3rd

International ICST Conference on Simulation Tools and Techniques. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering), 2010. 29.

4. Alberts, Samuel et al. “Data-Parallel Techniques for Simulating a Mega-Scale Agent-

Based Model of Systemic Inflammatory Response Syndrome on Graphics Processing

Units.” Simulation 88.8 (2012): 895–907.

5. Bleiweiss, Avi. “Multi Agent Navigation on the GPU.” Games Developpement

Conference. N.p., 2009. 39–42.

6. Caggianese, Giuseppe, and Ugo Erra. “Exploiting Gpus for Multi-Agent Path Planning on

Grid Maps.” High Performance Computing and Simulation (HPCS), 2012 International

Conference on. IEEE, 2012. 482–488.

7. Caggianese, Giuseppe, and Ugo Erra. “Gpu Accelerated Multi-Agent Path Planning

Based on Grid Space Decomposition.” Procedia Computer Science 9 (2012): 1847–1856.

http://faculty.washington.edu/mfukuda/papers/cse2013_mass.pdf
https://onedrive.live.com/view.aspx?resid=AFB10F7D10CB103C!36244&ithint=file%2cpdf&app=WordPdf&authkey=!APN9OEQ_n3ufVPk
https://onedrive.live.com/view.aspx?resid=AFB10F7D10CB103C!36244&ithint=file%2cpdf&app=WordPdf&authkey=!APN9OEQ_n3ufVPk

	

	 42	

8. Campeotto, Federico, Agostino Dovier, and Enrico Pontelli. “Protein Structure Prediction

on GPU: A Declarative Approach in a Multi-Agent Framework.” Parallel Processing

(Icpp), 2013 42nd International Conference on. IEEE, 2013. 474–479.

9. Cecilia, José M. et al. “Enhancing Data Parallelism for Ant Colony Optimization on

GPUs.” Journal of Parallel and Distributed Computing 73.1 (2013): 42–51.

10. Chen, W. et al. “Agent Based Modeling of Blood Coagulation System: Implementation

Using a GPU Based High Speed Framework.” 2011 Annual International Conference of

the IEEE Engineering in Medicine and Biology Society. N.p., 2011. 145–148.

11. D’Souza, Roshan M. et al. “Data-Parallel Algorithms for Agent-Based Model Simulation

of Tuberculosis on Graphics Processing Units.” Proceedings of the 2009 Spring

Simulation Multiconference. Society for Computer Simulation International, 2009. 21.

12. D’Souza, Roshan M., Mikola Lysenko, and Keyvan Rahmani. “SugarScape on Steroids:

Simulating over a Million Agents at Interactive Rates.” Proceedings of Agent2007

Conference. Chicago, IL. N.p., 2007.

13. Erra, Ugo et al. “An Efficient GPU Implementation for Large Scale Individual-Based

Simulation of Collective Behavior.” High Performance Computational Systems Biology,

2009. HIBI’09. International Workshop on. IEEE, 2009. 51–58.

14. Hermellin, Emmanuel, and Fabien Michel. “Gpu Delegation: Toward a Generic

Approach for Developping Mabs Using Gpu Programming.” Proceedings of the 2016

International Conference on Autonomous Agents & Multiagent Systems. International

Foundation for Autonomous Agents and Multiagent Systems, 2016. 1249–1258.

15. Hermellin, Emmanuel, and Fabien Michel. “Overview of Case Studies on Adapting

MABS Models to GPU Programming.” International Conference on Practical

Applications of Agents and Multi-Agent Systems. Springer, 2016. 125–136.

	

	 43	

16. Hidayat, R. et al. “Multi-Agent System with Multiple Group Modelling for Bird Flocking

on GPU.” 2016 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP). N.p., 2016. 680–685.

17. Husselmann, Alwyn V., and Ken A. Hawick. “Simulating Species Interactions and

Complex Emergence in Multiple Flocks of Boids with Gpus.” Proc. IASTED

International Conference on Parallel and Distributed Computing and Systems (PDCS

2011). N.p., 2011. 100–107.

18. Kumar, Jitendra, Lotika Singh, and Sandeep Paul. “GPU Based Parallel Cooperative

Particle Swarm Optimization Using C-CUDA: A Case Study.” Fuzzy Systems (FUZZ),

2013 IEEE International Conference on. IEEE, 2013. 1–8.

19. Laville, Guillaume et al. “MCMAS: A Toolkit to Benefit from Many-Core Architecure in

Agent-Based Simulation.” Euro-Par 2013: Parallel Processing Workshops. Springer,

Berlin, Heidelberg, 2013. 544–554.

20. Li, D. et al. “A Efficient Algorithm for Molecular Dynamics Simulation on Hybrid CPU-

GPU Computing Platforms.” 2016 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). N.p., 2016. 1357–

1363.

21. Li, Xiaosong, Wentong Cai, and Stephen John Turner. “Supporting Efficient Execution of

Continuous Space Agent-Based Simulation on GPU.” Concurrency and Computation:

Practice and Experience 28.12 (2016): 3313–3332.

22. Michel, Fabien. “Translating Agent Perception Computations into Environmental

Processes in Multi-Agent-Based Simulations: A Means for Integrating Graphics

Processing Unit Programming within Usual Agent-Based Simulation Platforms.” Systems

Research and Behavioral Science 30.6 (2013): 703–715.

	

	 44	

23. NVIDIA. NVIDIA CUDA programming guide. Technical Report, 2013. (Available from:

http://docs.nvidia.com/cuda/cuda-c-programming-guide)

24. Passos, E. et al. “Supermassive Crowd Simulation on Gpu Based on Emergent Behavior.”

Proceedings of the Seventh Brazilian Symposium on Computer Games and Digital

Entertainment. Citeseer, 2008. 70–75.

25. Passos, Erick Baptista et al. “A Bidimensional Data Structure and Spatial Optimization

for Supermassive Crowd Simulation on GPU.” Computers in Entertainment (CIE) 7.4

(2009): 60.

26. Richmond, Paul et al. “High Performance Cellular Level Agent-Based Simulation with

FLAME for the GPU.” Briefings in bioinformatics 11.3 (2010): 334–347.

27. Richmond, Paul, Simon Coakley, and Daniela Romano. “Cellular Level Agent Based

Modelling on the Graphics Processing Unit.” High Performance Computational Systems

Biology, 2009. HIBI’09. International Workshop on. IEEE, 2009. 43–50.

28. Richmond, Paul, Simon Coakley, and Daniela M. Romano. “A High Performance Agent

Based Modelling Framework on Graphics Card Hardware with CUDA.” Proceedings of

The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume

2. International Foundation for Autonomous Agents and Multiagent Systems, 2009.

1125–1126.

29. Richmond, Paul, and Daniela Romano. “Agent Based Gpu, a Real-Time 3d Simulation

and Interactive Visualisation Framework for Massive Agent Based Modelling on the

Gpu.” Proceedings International Workshop on Supervisualisation. N.p., 2008.

30. Sano, Yoshihito, Yoshiaki Kadono, and Naoki Fukuta. “A Performance Optimization

Support Framework for Gpu-Based Traffic Simulations with Negotiating Agents.” Recent

Advances in Agent-Based Complex Automated Negotiation. Springer, 2016. 141–156.

http://docs.nvidia.com/cuda/cuda-c-programming-guide

	

	 45	

31. Shen, Zhen, Kai Wang, and Fenghua Zhu. “Agent-Based Traffic Simulation and Traffic

Signal Timing Optimization with GPU.” Intelligent Transportation Systems (Itsc), 2011

14th International Ieee Conference on. IEEE, 2011. 145–150.

32. Storti, Duane, and Mete Yurtoglu. CUDA for Engineers: An Introduction to High-

Performance Parallel Computing. Addison-Wesley Professional, 2015.

33. Strippgen, David, and Kai Nagel. “Multi-Agent Traffic Simulation with CUDA.” High

Performance Computing & Simulation, 2009. HPCS’09. International Conference on.

IEEE, 2009. 106–114.

34. Strippgen, David, and Kai Nagel. “Using Common Graphics Hardware for Multi-Agent

Traffic Simulation with CUDA.” Proceedings of the 2nd International Conference on

Simulation Tools and Techniques. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2009. 62.

35. Torchelsen, Rafael P. et al. “Real-Time Multi-Agent Path Planning on Arbitrary

Surfaces.” Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games. ACM, 2010. 47–54.

36. Vigueras, Guillermo, Juan M. Orduna, and Miguel Lozano. “A GPU-Based Multi-Agent

System for Real-Time Simulations.” Advances in Practical Applications of Agents and

Multiagent Systems. Springer, 2010. 15–24.

37. Wang, Kai, and Zhen Shen. “A GPU Based Trafficparallel Simulation Module of

Artificial Transportation Systems.” Service Operations and Logistics, and Informatics

(SOLI), 2012 IEEE International Conference on. IEEE, 2012. 160–165.

