# Network Motifs with MASS

### (Midterm Report)

Matt Kipps 10/30/2014

## **Project Details**

- Prof Kim:
- Analyze biological data for statistically significant subgraphs (motifs).
- Prof Fukuda:
- Evaluate MASS implementation against MapReduce and sequential implementations

## What is MASS?

## Multi-Agent Spatial Simulation

- designed for simulations
- creates a virtual space over an arbitrary cluster
- abstracts cluster management from programmer

## What are Network Motifs?

# Statistically significant subgraphs within a network.

#### Given a motif size **n**,

- Find all subgraphs of order **n** within the network
- Determine subgraph equivalence and count the frequency (and compare to random network)
- Motifs are those subgraphs which occur most often

# **Finding Subgraphs with ESU**



## **MASS + Network Motifs**

This project seeks to simulate "crawlers" that move through a network. Replace recursion with spawning new crawlers.

GraphCrawler extends Agent

GraphNode extends Place

# Algorithm





Agents will be searching for a subgraph motif size of 3 nodes.

(For simplicity, this sketch only shows the behavior of the first agent spawned. Another agent will also be spawned at Node 2 and will recover another subgraph not shown here)



Step 1 Agent A is spawned at node

Agent A has a size of 1, so Agent A will keep searching.

Node 1 has only 1 branch so Agent A will not need to spawn any new Agents.



#### Step 2

Agent A is now at Node 2, and represents the subgraph of "1,2"

Agent A has a size of 2, so Agent A will keep searching.

Node 2 has 2 branches so Agent A will traverse one, and will create a child clone to traverse the other. This can be seen in the next step.



### Step 3

Agent A is now at Node 3, with subgraph of "1,2,3" Agent B is spawned with subgraph of "1,2" and directions to move to Node 4

Agent A has a size of 3, so it will terminate itself and deposit the results Node 3.

Notice that Agent B is one step behind Agent A because Agent B must be spawned first and then migrate, before proceeding with the algorithm.



### <u>Step 4</u>

Agent A is now terminated, and its subgraph of "1,2,3" is stored at Node 3.

Agent B migrated to Node 4, and now has a subgraph of "1,2,4"

Agent B has a size of 3, so now it will also terminate itself and deposit the subgraph results at it's final node, Node 4.



#### <u>Step 5</u>

Agent B is now terminated, and its subgraph of "1,2,4" is stored at Node 4.

When the entire network traversal is complete, the MASS-based program collects all data from all network nodes, using the return values through the places callAll() method.

# **Algorithm**

After finding all subgraphs, the subgraphs are collected at the master node.

## Then, sequentially:

- the subgraphs are sent to **labelg** to get canonical labels.
- the canonical labels are counted.

# **Algorithm Progress**

### At this point, basic implementation is complete.

# Performance

## Input

## Network size of ~2500 nodes Analyzing motif of size 5

## **Performance Analysis**

**Execution Time** 



## **Parallel Performance Analysis**

#### Combined Execution Time



# Next Steps

## **Conduct Evaluation**

- Performance vs MapReduce implementation (identical cluster, possibly Google Cloud)
- Programmability of MASS program vs MapReduce program and sequential program

# **Optimize Program**

## Prior to conducting evaluation, I will be focusing on optimizing and refining the program.

Primarily:

- Optimizing MASS Agent handling
- Dispersing Agent spawning in algorithm

# **Agent Population**

Agents



Agents

# One more thing...

## One more thing...

Place.java

### replaced: Vector<Agent> agents = new Vector<Agent>( );

### with:

Set<Agent> agents = Collections.synchronizedSet(
new HashSet<Agent>( ) );



