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OVERVIEW

1. Parallelize network motif finding.

2. Compare MASS and MPI.



UNDERSTANDING THE 
PROBLEM



QUESTION

Can we parallelize network motif finding?



UNDERSTANDING THE PROBLEM

•What are network motifs?

•Why are we trying to find a parallel 
solution?



NETWORK MOTIFS

Recurring subgraph isomorphs within a 
larger network
 statistically significant compared to random networks



NETWORK MOTIFS

…why are we trying to find motifs?

One of the applications is biology.

Network motifs might provide insight to 
connections between the molecular level 
and system level of biological systems.



NETWORK MOTIFS

Network motifs can be determined using a 
3-step process
1. Find all subgraphs within a target network

2. Aggregate subgraphs into subgraph groups 
(isomorphs)

3. Compare frequency of subgraph groups to random 
networks



NETWORK MOTIFS

We are focused primarily on parallelizing 
Step 1.
 Step 2 is accomplished relatively quickly with McKay’s 

nauty algorithm

 Step 3, random network evaluation, is beyond the 
scope of this project



NETWORK MOTIF STEP 1

Find all subgraphs within a target network.

We will use the graph traversal algorithm 
Enumerate SUbgraphs (ESU).



NETWORK MOTIF STEP 2

Aggregate subgraphs into subgraph groups 
(isomorphs).

This is accomplished using the labelg program.
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PARALLELIZATION MOTIVATION

Subgraphs in a target network 
increase exponentially with motif size 
(subgraph size).



PARALLELIZATION MOTIVATION

Does it really matter? Examine performance of a 
real biological data set (5,000 node network)…

Motif Size Execution Time (sec)

2 0.629

3 1.214

4 21.619

5 1522.486

6 180000.000

7 ?

Sequential implementation, modern CPU 



PARALLELIZATION MOTIVATION

For the size of our data sets, finding 
network motifs using a complete 
enumeration algorithm like ESU is 
unfeasible sequentially.



SOLVING THE PROBLEM



SOLVING THE PROBLEM

1. Implement network motif finding

2. Design and implement parallel programs 
using various tools/approaches



SOLVING THE PROBLEM

1. Implement network motif finding
a. Parse input data

b. Find all subgraphs

c. Get corresponding isomorphs



PARSER

Graphs are represented with a simple text-
based input file.

The parser must turn this into a graph 
object.

A

B

C D
Node_A Node_B
Node_B Node_C
Node_A Node_C
Node_C Node_D



SUBGRAPH FINDING

Find all subgraphs. This can be done by 
implementing the ESU algorithm.



SUBGRAPH FINDING



CONVERT TO ISOMORPHS

For this step, we leverage labelg.

The labelg program requires a
special data format.

The good news is that the output can 
be read as strings.

The other good news is that a Java 
converter for the input has already 
been written (thanks to Vartika
Verma).

FGEZo
F_Oxo
FgCXW
FI_xo
FI_gw
F_Oxw
FCOjg
FCOzw
F?C^W
F?AZW
F?Azw
FIQ|o
FDHGw
F@OsW
F?K~g
F?C~o
F`AZW
F?AZO
F?Azo
F?GUW
F?NRo
F_WXg
F?C^G
F@DLW
F_oxw
FANLg
FGcuW
F?Fbw
F?C~W
F?Cmg
F_?zo
FG?\w
F?Fbo
F?C~O
F?C}o
F_?zw
F?Oto
F?C~G

F?C}W
F?L~o
FCdrO
F`Ogw
F?C}O
F@`@w
FPCYW
FAG^G
F_GZw
F?org
FPDIw
FBY\w
FAG[w
F_KuW
F_Lvw
F?HSo
F?Dlo
F@?Nw
F@YQw
F@G^w
F?djw
FGoXg
F?opw
Fq?gw
F`GYw
FWC]W
F@?Mw
FAI^w
F@G]w
FPO]w
F@FJw
FAI^o
F@`Ng
F_G^_
F@IQW
F`GZw
F?hPw
FODZo

F?G^w
F?Svw
F??Ng
F??^w
F??^o
F?G^g
F?G]w
F?O~w
F?G^_
F@oZG
F?G]g
F`G]w
FGC^W
F?SvW
F?dfw
FCXsw
F??~w
F??^W
F?O~g
F?G]_
F@P\W
F@@Kw
F@`Jw
F??^O
F??~o
F?O~_
FGC^G
F?G]W
F?W}g
FGQXw
F??^G
F?`~w
F??}w
FAIZo
F?Sv?
F@`Jg
F?df_
F??}o

FCDjw
FCO_w
F?O|o
F?\v_
FQO|o
F?@~w
F?O|g
F?KuG
F?@~o
F?O|_
FCOpW
F?StW
FGC\W
FACnW
F@pHg
F@`Hw
F?luW
FGC|o
FhGWw
F?H\w
F@J]w
F?StG
FKdPW
F@J]o
F?ozg
F?\tw
FPHYw
F?oz_
F?Ddw
F?SsW
FAClw
FI_|w
F?P|w
F?_ZG
F@QJg
F?Ddo
F?Ltw
FCDHW

FCO~W
F@hVw
FoDPO
F?`
F@IYo
FoD_w
F@MQW
Fo@Xo
F?`
FDPkw
F?Ffw
F`BHo
F@Aiw
F?Nvw
F?Ffo
F@ouW
F`BHw
F@NAw
F@Aio
F?B~w
F_Lpw
F?`
F@K]G
F_
F??
F?YZg
FOPXw
F@C}W
F@DNG
F?ovg
F@RHw



SEQUENTIAL IMPLEMENTATION

These 3 pieces comprise the bulk of the 
sequential network motif finder.



DATA FLOW

Input file

Parser
Subgraph 

Finder 
(ESU)

Canonical 
Labeler

(labelg)

Raw data

Network Subgraphs

Program 
output

Canonical labels



MASS AND MPI



SOLVING THE PROBLEM

2. Design and implement parallel programs 
using various tools/approaches

a. MASS (simulation)

b. MASS (hybrid)

c. MPI



WORKING WITH MASS

MASS is an environment for parallelizing 
programs across a cluster.

It is being developed by Prof. Fukuda and 
the MASS research group here at UWB.



WORKING WITH MASS

A user defines component behavior.

Many components interact with each other 
over a virtual space (a simulation).

The space exists across a computing cluster.



SIMULATION DESIGN

Simulation implementation – get all 
subgraphs by implementing “crawlers” that 
move according to the ESU algorithm.
Create a graph as the virtual space

 Each crawler represents one subgraph

When faced with a branching decision, a crawler follows 
one path, and clones itself to follow the other.



SIMULATION DESIGN: DATA FLOW

Input file

Parser MASS

Canonical 
Labeler

(labelg)

Raw data

Network

Subgraphs

Program 
output

Canonical labels

Cluster

Nodes
Crawlers

Crawlers

Subgraphs (aggregated)



SIMULATION WALKTHROUGH



SIMULATION WALKTHROUGH



SIMULATION WALKTHROUGH



MPI

MPI (Message Passing Interface) is a library 
for message passing across a group of 
processes.



MPI DESIGN

ESU is easily parallelizable at the 
subgraph root level.

Partition the ESU work for each node of the 
target graph across the MPI cluster and the 
local threads of cluster nodes.



MPI DESIGN: DATA FLOW

Input file

Parser MPI

Canonical 
Labeler

(labelg)
Raw data

Network

Program 
output

Canonical labels

Cluster 
Node

Cluster 
Node

Cluster 
Node

Network

Network

Network

Subgraphs

Canonical 
Labeler

(labelg)

Subgraphs

Canonical 
Labeler

(labelg)

Subgraphs
Canonical labels

(Aggregated)



PARTITIONING ESU

A B C D E F G H I J K L M N O P Q R S T U V W X

adjacencyList

Graph

adjacencyList

adjacencyList

LWP LWP LWP LWP

Cluster 
Node

Cluster 
Node



PARTITIONING ESU



HYBRID DESIGN

Hybrid implementation – mimics MPI design
Again, ESU is easily parallelizable at the subgraph root 
level – partition the network nodes (which are the 
subgraph roots) as “work” using the MASS virtual space.

Not really the way MASS was designed...

 But, we know MASS partitions the virtual space across 
the cluster and across threads at each cluster node.



HYBRID DESIGN: DATA FLOW

Input file

Parser MASS

labelg

Raw data

Network

Subgraphs

Program 
output

Canonical
labels

Cluster 
Node

Cluster 
Node

Cluster 
Node

Network &
partition

Network & partition

Network &
partition

Subgraphs (aggregated)



RESULTS



LEGEND

“Sequential” – sequential network motif program

“MASS Simulation” – simulation program that uses the MASS library

“MASS Hybrid” – hybrid program that uses the MASS library

“MPI” – program that uses the MPI library



MASS SIMULATION
2365 nodes, motif  4
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COMPARISON
2365 nodes, motif  5
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MASS HYBRID
5134 nodes, motif  5
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MPI
5134 nodes, motif  5
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MASS HYBRID VS MPI
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MASS HYBRID VS MPI
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OBSERVATIONS & ANALYSIS



PERFORMANCE

MASS Simulation implementation shows 
promise in parallelizability at scale.

However, it also struggles with memory 
usage at scale.

For the tested scenarios, this program 
performed significantly slower compared to 
the other programs.



PERFORMANCE

MASS Hybrid implementation and MPI 
implementation are very comparable in 
terms of performance.

This is despite MPI having several (small) 
advantages:

• Dynamic partitioning between local threads within a 
cluster node

• distrubuted labelg execution minimizing data transfer



PERFORMANCE CONCERNS

All implementations are at risk of load 
imbalance, especially as the network motif 
size gets larger.

This occurs when the number of subgraphs
generated from a single root is extremely 
large.



PROGRAMMABILITY

The MASS Simulation program presented a unique 
challenge due to the design principles (entity 
“behavior”).

Very little user-level synchronization required.

Zero thread management.

Somewhat limited by the inherent design of MASS.

It proved difficult to control the rate of crawler 
spawning (limited library tools).



PROGRAMMABILITY

The MASS Hybrid program is unusual in that it does 
not necessarily mirror the intentions of MASS.

Clear separation of program logic from 
parallelization logic.

Required some knowledge of how the library works.

Less control over fine-tuning.

Zero user-level thread management and 
synchronization.



PROGRAMMABILITY

The MPI program is a fairly simple parallel 
implementation of the ESU algorithm.

Extremely customizable. Flexible communication 
protocol, but requires some experience.

No threading support, nor any synchronization 
support (requires user to implement).

Risk of tight coupling between parallelization code 
and algorithm code makes things harder to change.



FUTURE CONSIDERATIONS

Extend all implementations to include 
RAND-ESU variation of ESU.

For MPI, exchange status periodically 
across the cluster for global dynamic 
partitioning.

Compare these programs to an 
implementation using Hadoop (currently 
under development at UWB).



QUESTIONS?
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LINKS

MASS research project homepage: 

http://depts.washington.edu/dslab/MASS/index.html

mpiJava homepage (with links to MPI): 

http://www.hpjava.org/mpiJava.html

nauty and Traces homepage (labelg): 

http://cs.anu.edu.au/~bdm/nauty/

Sequential program (ESU in Java):

https://github.com/mtkp/network-motif

Parallel program (ESU with MPI): 

https://github.com/mtkp/mpi-network-motif

http://depts.washington.edu/dslab/MASS/index.html
http://www.hpjava.org/mpiJava.html
http://cs.anu.edu.au/~bdm/nauty/
https://github.com/mtkp/network-motif
https://github.com/mtkp/mpi-network-motif

