
PARALLELIZING NETWORK
MOTIFS

Matt Kipps

Fall 2014

OVERVIEW

1. Parallelize network motif finding.

2. Compare MASS and MPI.

UNDERSTANDING THE
PROBLEM

QUESTION

Can we parallelize network motif finding?

UNDERSTANDING THE PROBLEM

•What are network motifs?

•Why are we trying to find a parallel
solution?

NETWORK MOTIFS

Recurring subgraph isomorphs within a
larger network
 statistically significant compared to random networks

NETWORK MOTIFS

…why are we trying to find motifs?

One of the applications is biology.

Network motifs might provide insight to
connections between the molecular level
and system level of biological systems.

NETWORK MOTIFS

Network motifs can be determined using a
3-step process
1. Find all subgraphs within a target network

2. Aggregate subgraphs into subgraph groups
(isomorphs)

3. Compare frequency of subgraph groups to random
networks

NETWORK MOTIFS

We are focused primarily on parallelizing
Step 1.
 Step 2 is accomplished relatively quickly with McKay’s

nauty algorithm

 Step 3, random network evaluation, is beyond the
scope of this project

NETWORK MOTIF STEP 1

Find all subgraphs within a target network.

We will use the graph traversal algorithm
Enumerate SUbgraphs (ESU).

NETWORK MOTIF STEP 2

Aggregate subgraphs into subgraph groups
(isomorphs).

This is accomplished using the labelg program.

1 2 2 4 5 6 7

N
um

b
e
r

o
f

U
n
d

ir
e
ct

e
d

 S
ub

g
ra

p
h
s

Motif Size

PARALLELIZATION MOTIVATION

Subgraphs in a target network
increase exponentially with motif size
(subgraph size).

PARALLELIZATION MOTIVATION

Does it really matter? Examine performance of a
real biological data set (5,000 node network)…

Motif Size Execution Time (sec)

2 0.629

3 1.214

4 21.619

5 1522.486

6 180000.000

7 ?

Sequential implementation, modern CPU

PARALLELIZATION MOTIVATION

For the size of our data sets, finding
network motifs using a complete
enumeration algorithm like ESU is
unfeasible sequentially.

SOLVING THE PROBLEM

SOLVING THE PROBLEM

1. Implement network motif finding

2. Design and implement parallel programs
using various tools/approaches

SOLVING THE PROBLEM

1. Implement network motif finding
a. Parse input data

b. Find all subgraphs

c. Get corresponding isomorphs

PARSER

Graphs are represented with a simple text-
based input file.

The parser must turn this into a graph
object.

A

B

C D
Node_A Node_B
Node_B Node_C
Node_A Node_C
Node_C Node_D

SUBGRAPH FINDING

Find all subgraphs. This can be done by
implementing the ESU algorithm.

SUBGRAPH FINDING

CONVERT TO ISOMORPHS

For this step, we leverage labelg.

The labelg program requires a
special data format.

The good news is that the output can
be read as strings.

The other good news is that a Java
converter for the input has already
been written (thanks to Vartika
Verma).

FGEZo
F_Oxo
FgCXW
FI_xo
FI_gw
F_Oxw
FCOjg
FCOzw
F?C^W
F?AZW
F?Azw
FIQ|o
FDHGw
F@OsW
F?K~g
F?C~o
F`AZW
F?AZO
F?Azo
F?GUW
F?NRo
F_WXg
F?C^G
F@DLW
F_oxw
FANLg
FGcuW
F?Fbw
F?C~W
F?Cmg
F_?zo
FG?\w
F?Fbo
F?C~O
F?C}o
F_?zw
F?Oto
F?C~G

F?C}W
F?L~o
FCdrO
F`Ogw
F?C}O
F@`@w
FPCYW
FAG^G
F_GZw
F?org
FPDIw
FBY\w
FAG[w
F_KuW
F_Lvw
F?HSo
F?Dlo
F@?Nw
F@YQw
F@G^w
F?djw
FGoXg
F?opw
Fq?gw
F`GYw
FWC]W
F@?Mw
FAI^w
F@G]w
FPO]w
F@FJw
FAI^o
F@`Ng
F_G^_
F@IQW
F`GZw
F?hPw
FODZo

F?G^w
F?Svw
F??Ng
F??^w
F??^o
F?G^g
F?G]w
F?O~w
F?G^_
F@oZG
F?G]g
F`G]w
FGC^W
F?SvW
F?dfw
FCXsw
F??~w
F??^W
F?O~g
F?G]_
F@P\W
F@@Kw
F@`Jw
F??^O
F??~o
F?O~_
FGC^G
F?G]W
F?W}g
FGQXw
F??^G
F?`~w
F??}w
FAIZo
F?Sv?
F@`Jg
F?df_
F??}o

FCDjw
FCO_w
F?O|o
F?\v_
FQO|o
F?@~w
F?O|g
F?KuG
F?@~o
F?O|_
FCOpW
F?StW
FGC\W
FACnW
F@pHg
F@`Hw
F?luW
FGC|o
FhGWw
F?H\w
F@J]w
F?StG
FKdPW
F@J]o
F?ozg
F?\tw
FPHYw
F?oz_
F?Ddw
F?SsW
FAClw
FI_|w
F?P|w
F?_ZG
F@QJg
F?Ddo
F?Ltw
FCDHW

FCO~W
F@hVw
FoDPO
F?`
F@IYo
FoD_w
F@MQW
Fo@Xo
F?`
FDPkw
F?Ffw
F`BHo
F@Aiw
F?Nvw
F?Ffo
F@ouW
F`BHw
F@NAw
F@Aio
F?B~w
F_Lpw
F?`
F@K]G
F_
F??
F?YZg
FOPXw
F@C}W
F@DNG
F?ovg
F@RHw

SEQUENTIAL IMPLEMENTATION

These 3 pieces comprise the bulk of the
sequential network motif finder.

DATA FLOW

Input file

Parser
Subgraph

Finder
(ESU)

Canonical
Labeler

(labelg)

Raw data

Network Subgraphs

Program
output

Canonical labels

MASS AND MPI

SOLVING THE PROBLEM

2. Design and implement parallel programs
using various tools/approaches

a. MASS (simulation)

b. MASS (hybrid)

c. MPI

WORKING WITH MASS

MASS is an environment for parallelizing
programs across a cluster.

It is being developed by Prof. Fukuda and
the MASS research group here at UWB.

WORKING WITH MASS

A user defines component behavior.

Many components interact with each other
over a virtual space (a simulation).

The space exists across a computing cluster.

SIMULATION DESIGN

Simulation implementation – get all
subgraphs by implementing “crawlers” that
move according to the ESU algorithm.
Create a graph as the virtual space

 Each crawler represents one subgraph

When faced with a branching decision, a crawler follows
one path, and clones itself to follow the other.

SIMULATION DESIGN: DATA FLOW

Input file

Parser MASS

Canonical
Labeler

(labelg)

Raw data

Network

Subgraphs

Program
output

Canonical labels

Cluster

Nodes
Crawlers

Crawlers

Subgraphs (aggregated)

SIMULATION WALKTHROUGH

SIMULATION WALKTHROUGH

SIMULATION WALKTHROUGH

MPI

MPI (Message Passing Interface) is a library
for message passing across a group of
processes.

MPI DESIGN

ESU is easily parallelizable at the
subgraph root level.

Partition the ESU work for each node of the
target graph across the MPI cluster and the
local threads of cluster nodes.

MPI DESIGN: DATA FLOW

Input file

Parser MPI

Canonical
Labeler

(labelg)
Raw data

Network

Program
output

Canonical labels

Cluster
Node

Cluster
Node

Cluster
Node

Network

Network

Network

Subgraphs

Canonical
Labeler

(labelg)

Subgraphs

Canonical
Labeler

(labelg)

Subgraphs
Canonical labels

(Aggregated)

PARTITIONING ESU

A B C D E F G H I J K L M N O P Q R S T U V W X

adjacencyList

Graph

adjacencyList

adjacencyList

LWP LWP LWP LWP

Cluster
Node

Cluster
Node

PARTITIONING ESU

HYBRID DESIGN

Hybrid implementation – mimics MPI design
Again, ESU is easily parallelizable at the subgraph root
level – partition the network nodes (which are the
subgraph roots) as “work” using the MASS virtual space.

Not really the way MASS was designed...

 But, we know MASS partitions the virtual space across
the cluster and across threads at each cluster node.

HYBRID DESIGN: DATA FLOW

Input file

Parser MASS

labelg

Raw data

Network

Subgraphs

Program
output

Canonical
labels

Cluster
Node

Cluster
Node

Cluster
Node

Network &
partition

Network & partition

Network &
partition

Subgraphs (aggregated)

RESULTS

LEGEND

“Sequential” – sequential network motif program

“MASS Simulation” – simulation program that uses the MASS library

“MASS Hybrid” – hybrid program that uses the MASS library

“MPI” – program that uses the MPI library

MASS SIMULATION
2365 nodes, motif 4

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

MASS Simulation - Comparing Threads Per Node

1

2

4

Sequential

COMPARISON
2365 nodes, motif 5

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

Comparing Implementations (1 Thread Per Node)

MASS Simulation

MASS Hybrid

MPI

Sequential

MASS HYBRID
5134 nodes, motif 5

0

200000

400000

600000

800000

1000000

1200000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

MASS Hybrid - Comparing Threads Per Node

1

2

4

Sequential

MPI
5134 nodes, motif 5

0

200000

400000

600000

800000

1000000

1200000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

MPI - Comparing Threads Per Node

1

2

4

Sequential

MASS HYBRID VS MPI

0

200000

400000

600000

800000

1000000

1200000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

MASS Hybrid vs MPI (1 Thread Per Node)

MASS Hybrid

MPI

MASS HYBRID VS MPI

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10 12 14 16

M
ill

is
e
co

nd
s

Cluster Nodes

MASS Hybrid vs MPI (4 Threads Per Node)

MASS Hybrid

MPI

OBSERVATIONS & ANALYSIS

PERFORMANCE

MASS Simulation implementation shows
promise in parallelizability at scale.

However, it also struggles with memory
usage at scale.

For the tested scenarios, this program
performed significantly slower compared to
the other programs.

PERFORMANCE

MASS Hybrid implementation and MPI
implementation are very comparable in
terms of performance.

This is despite MPI having several (small)
advantages:

• Dynamic partitioning between local threads within a
cluster node

• distrubuted labelg execution minimizing data transfer

PERFORMANCE CONCERNS

All implementations are at risk of load
imbalance, especially as the network motif
size gets larger.

This occurs when the number of subgraphs
generated from a single root is extremely
large.

PROGRAMMABILITY

The MASS Simulation program presented a unique
challenge due to the design principles (entity
“behavior”).

Very little user-level synchronization required.

Zero thread management.

Somewhat limited by the inherent design of MASS.

It proved difficult to control the rate of crawler
spawning (limited library tools).

PROGRAMMABILITY

The MASS Hybrid program is unusual in that it does
not necessarily mirror the intentions of MASS.

Clear separation of program logic from
parallelization logic.

Required some knowledge of how the library works.

Less control over fine-tuning.

Zero user-level thread management and
synchronization.

PROGRAMMABILITY

The MPI program is a fairly simple parallel
implementation of the ESU algorithm.

Extremely customizable. Flexible communication
protocol, but requires some experience.

No threading support, nor any synchronization
support (requires user to implement).

Risk of tight coupling between parallelization code
and algorithm code makes things harder to change.

FUTURE CONSIDERATIONS

Extend all implementations to include
RAND-ESU variation of ESU.

For MPI, exchange status periodically
across the cluster for global dynamic
partitioning.

Compare these programs to an
implementation using Hadoop (currently
under development at UWB).

QUESTIONS?

REFERENCES

B. H. Junker and F. Schreiber, Analysis of Biological Networks, Wiley,

2008.

S. Wernicke, Efficient detection of network motifs, IEEE/ACM Trans.

Comp. Biol. Bioinformatics, vol. 3, no. 4, pp. 347-359, 2012.

Wooyoung Kim, et al., Network Motif Detection: Algorithms, Parallel and

Cloud Computing, and Related Tools, Tsinghua Science and

Technology, vol. 18, no. 5, pp. 469-489, 2013.

T. Chuang and M. Fukuda, A Parallel Multi-Agent Spatial Simulation

Environment for Cluster Systems, IEEE CSE, pp. 143-150, 2013.

LINKS

MASS research project homepage:

http://depts.washington.edu/dslab/MASS/index.html

mpiJava homepage (with links to MPI):

http://www.hpjava.org/mpiJava.html

nauty and Traces homepage (labelg):

http://cs.anu.edu.au/~bdm/nauty/

Sequential program (ESU in Java):

https://github.com/mtkp/network-motif

Parallel program (ESU with MPI):

https://github.com/mtkp/mpi-network-motif

http://depts.washington.edu/dslab/MASS/index.html
http://www.hpjava.org/mpiJava.html
http://cs.anu.edu.au/~bdm/nauty/
https://github.com/mtkp/network-motif
https://github.com/mtkp/mpi-network-motif

