
Capstone Term Paper

University of Washington Bothell

Evaluating Repast Simphony for
Agent Based Geometric and
Combinatoric Simulations

Maxwell Wenger

mdwenger@uw.edu

Supervised By
Dr. Munehiro Fukuda

December 17, 2020

mailto:mdwenger@uw.edu

Abstract

The purpose of my research project is to
compare the performance and programma-
bility of different tools that may be used
for geometric and combinatoric simulations.
Repast Simphony1 is one of many products
and paradigms we will be evaluating. The
others products we are evaluating are as fol-
lows:

• MASS2, an agent-based spacial simula-
tion suite developed by our team at the
Distributed Computing Laboratory at
the University of Washington Bothell.

• JClik3, a multithreading tool kit for
Java. The evaluation for JCilk has been
completed by Jonathan Acoltzi.

• IBM Aglets4, which is a mobile agents
platform for Java.

The performance of all of these tools will be
evaluated on multiple axises. Statistics will
be gathered about how each tool performs
based on number of computing nodes, and
the size of the simulation. The programma-
bility will be evaluated on the amount of
code, ratio of code to “boilerplate” code, and
how fitting the paradigm was for the algo-
rithm.

1https://repast.github.io/
2https://depts.washington.edu/dslab/MASS/
3http://supertech.csail.mit.edu/jCilkImp.

html
4The original site is no longer online, but a mirror

is being hosted at http://alumni.media.mit.edu/

~stefanm/ibm/AgletsHomePage/index_new4.html

Although not all of platforms have been
benchmarked and evaluated, an analysis can
be done of Repast Simphony on perfor-
mance and programmability. This paper will
analyze Repast Simphony and discuss my
progress on my capstone over the last quar-
ter.

Contents

1 Quarter Progress Summary 1
1.1 Challenges Faced 2

2 Algorithmic Approach 3
2.1 Closest Pair of Points 3
2.2 Triangle Counter 3

3 Results 4
3.1 Performance 4

3.1.1 Closest Pair of Points . 4
3.1.2 Triangle Counter . . . 5
3.1.3 Performance Comparison 5

3.2 Programmability 5
3.3 Repast Simphony 5
3.4 Closest Pair of Points 6
3.5 Triangle Counter 7
3.6 Comparison 7

4 Conclusion 7

5 Future Work 7

1 Quarter Progress Sum-

mary

This quarter I completed the benchmark-
ing programs for Repast Simphony, and have

1

https://repast.github.io/
https://depts.washington.edu/dslab/MASS/
http://supertech.csail.mit.edu/jCilkImp.html
http://supertech.csail.mit.edu/jCilkImp.html
http://alumni.media.mit.edu/~stefanm/ibm/AgletsHomePage/index_new4.html
http://alumni.media.mit.edu/~stefanm/ibm/AgletsHomePage/index_new4.html

completed an analysis of the performance and
programmability of those programs. I also
broke away from the capstone project a bit
this quarter and made some contributions to
the Repast Simphony project and documen-
tation myself.

1.1 Challenges Faced

I am very grateful for the experience of work-
ing on a research team. I have never worked
on a team where I wasn’t a part of or at
least had a full understanding of what ev-
eryone was doing. This was an amazing ex-
perience in team work and dealing with in-
formation asymmetry in a team-environment.
With that, there were some lessons I was able
to take away from this experience.

I spent most of the quarter settling into the
research team and understanding the project
we were working on, and dealing with the
Repast Simphony tool set. My biggest barrier
to success this quarter was one of organiza-
tion and communication. Being completely
remote for this project limited easy commu-
nication to only a few sessions a week, where
my exposure to the overall goals of the re-
search project were limited, which lead me
down a few dead-ends in my project.

The following is an itemized list of tasks
I worked on that did not contribute to the
research project:

• Reusable divide-and-concur classes to be
used in closest pair of points. This was
not used as I was under the impression
we were using the same algorithm for
each product, but instead we were to

develop an algorithm that fit with the
paradigm of the project.

• Point generator for closest pair of points.
This was not used because we have a
standard set of points that we are to use
to benchmark our data on.

• Graph generator that generates graphs
based on number of vertices and a per-
centage of how connected the graph will
be. This was not used as we already have
a class that generate the graph for us.

• Batch functionality to run batch Repast
Simphony simulations. I thought we
were to run Repast Simphony as a dis-
tributed simulation across many com-
pute nodes, and the only way to do
that in repast was with batch simu-
lations. After going down the rabbit
hole hadoop, repast simphony, and batch
simulations, I was corrected in my under-
standing and realized that we are evalu-
ating Repast Simphony on a single com-
pute node and its multithreaded perfor-
mance.

• Data collected on my personal machine.
This was not nearly as large of a time
sync as the others, but I collected all of
my data on my personal machine rather
than the same machine that we have
been using for the other performance
evaluations.

Even though there were many completed
tasks that ultimately did not contribute to

2

the overall project, I still am personally bet-
ter off because of them, as some of the great-
est learning moments of this capstone project
happened while working on those tasks. Mov-
ing forward, I need to take the following steps
to ensure that I am making the best use of
my time and contributing as much as I can
be to the group:

• Understand the data we want to collect.
I will do this by building the axis of the
graphs and data we want to produce be-
fore starting the project, so I can ver-
ify that the way we are evaluating each
project is how I think we are evaluating
each project. This would have remedied
the issue where I thought we were evalu-
ating Repast Simphony on its multi-node
performance.

• Design the test plan before designing
the benchmark. I need to know what
data we are feeding into each bench-
mark so I can write to that specifica-
tion. This would have remedied the issue
where I wrote my own test-case genera-
tion classes.

• Verify my general approach to the im-
plementation early. By communicating
and validating my approach early on, it
would give me the opportunity to ad-
just the adjust my approach before mak-
ing too much progress. This would have
remedied the issue where I was trying to
write a divide and concur algorithm for
repast simphony.

I believe by taking those steps, I can better

set myself up for success and contribute more
meaningfully to the research team as a whole.

2 Algorithmic Approach

2.1 Closest Pair of Points

The closest pair of points problem is when
you have a 2D plane of points, and you must
determine the two points that have the small-
est distance of all possible pair of points.

This problem is usually solved with a di-
vide and concur algorithm, where the plane is
recursively split in half until only two points
remain per partition, then the board searches
on either side of the partition in a range that
is equal to or smaller than the smallest point
found. This approach is possible in conven-
tional programming, but breaks many rules
in agent based modeling. Notably, the entire
plane and all of the points must be known by
a single entity.

In agent based modeling, you must choose
a solution that can be carried about by in-
dependent and autonomous agents. The ap-
proach I took was to have the agents spawn in
a near-radial pattern around each point, and
the first moment another point’s agent made
contact with another point, we knew we have
found the closest point. This algorithm was
previously used to evaluate MASS[1].

2.2 Triangle Counter

The triangle counting problem is when you
have a graph, and you wish to count all of the
triangles that exist in the graph. A triangle

3

is defined as an instance where a vertex is
exactly 3 hops from itself.

This problem was made quite well for an
agent based approach, as each agent could
be assigned a vertex, and the agent can per-
forms a BFS starting at its assigned vertex,
looking for a path back to its vertex at three
hops. The challenge with this algorithm is a
triangle must only be counted once. Taking
the näıve approach, each triangle would be
counted three times, as each agent on a tri-
angle would BFS and find itself. The fix for
this is to assign priorities to each vertex, and
an agent is only allowed to travel to a ver-
tex that has a lower priority than its home
vertex. This ensures every triangle is only
counted once.

3 Results

The results section is broken up into two
parts: performance and programmability.
Each of those sections will discuss the differ-
ent results from each criteria it was evaluated
on for both the CPP and Triangle Counter
programs.

3.1 Performance

When running these tests, I was extremely
surprised at the result. I was convinced that
adding CPUs would always increase perfor-
mance. What I found that there are some
types of programs benefit more from having
more cores than other programs do.

Number of CPUs

2

4

6

8

N
um

be
r o

f p
oi

nt
s

10000

20000

30000

R
untim

e (m
s)

5000

10000

15000

CPP Runtime

5000

10000

15000

Figure 1: 3D Plot of the performance of CPP
based on 1 to 8 available cores and 128, 256,
and 3000 points in the simulation.

3.1.1 Closest Pair of Points

The results from the CPP performance eval-
uation, as seen in Figure 1, were not surpris-
ing to me. Although I did expect a stronger
correlation between number of cores and run-
time, there was still a somewhat significant
correlation. It seems that Repast Simphony
does make use of the extra cores available for
these geometric simulations. The unique fea-
ture of this simulation is that the number of
agents in the simulation scale exponentially
for each simulation tick, as the agents spawn
in an increasingly larger circle each tick. So
this simulation ended up with many agents in
the simulation. It seems that the real multi-
threaded performance benefits happen when
there are many agents to keep track of.

4

3.1.2 Triangle Counter

The results from the triangle counter perfor-
mance evaluation as seen in Figure 2, on the
other hand, were very surprising to me. I
expected to see at least some correlation be-
tween performance and available cores. My
suspension is that this is because this simu-
lation had a lot of ticks, and very few agents
to keep track of. This simulation only had n
agents, and many of them didn’t have any
work to do. Yet, the simulation ran for
hundreds, and sometimes thousands of ticks.
It seems that multithreaded performance is
more of a benefit when you have many agents,
but it seems to have very little impact on
simulations that have few agents, but a lot
of ticks. This would make sense as each tick
would be a fixed and sunk cost, that can’t be
done asynchronously, whereas agents can be
parallelized.

3.1.3 Performance Comparison

As discussed, CPP has many agents with
heavier workloads and few ticks, while trian-
gle counter has many ticks, but few agents
with light workloads. Because of this, we
seemed to see a greater benefit of perfor-
mance by increasing the cores in CPP than
we did with triangle counter.

3.2 Programmability

Evaluating programmability is difficult to do
because of how subjective it can be. In an at-
tempt to add some quantitative data to the
evaluation, the ratio between the number of

lines of “boilerplate” code and program logic
code will be calculated and compared. Boil-
erplate code is considered code that is only
required for the provisioning or management
of the tooling itself. Whereas program logic
is the code that does the computation we are
trying to do.

The Repast Simphony library will also be
evaluated overall for how easy it is to work in
their environment.

3.3 Repast Simphony

Repast Simphony is not just a tool, but an
entire environment you must build your sim-
ulation into. To write and run repast sim-
phony, you must do it through eclipse with
the Repast Simphony installed. There are
no other supported editors, so it would not
be very comfortable to work in with larger
projects unless eclipse is you editor of choice.
Even using tools like Vim would be difficult
to use as you need the repast plugin to run
the project.

To configure simulation parameters, enter
parameters, or even run the simulation, you
must do it through the repast simphony con-
trol panel. This ties you very heavily to their
environment in eclipse.

Outside of the tooling limitations, the de-
veloper experience is actually quite good.
They have their own DSL called relogo that
makes creating simple simulations quite easy,
although all of the work I have done has been
in repast Java (using Java rather than rel-
ogo). Creating agents is very simple as it is
a plain Java class, with a few annotations.
Most of my frustration when writing repast

5

Number of CPUs

2

4

6

8

N
um

be
r o

f v
er

tic
es

1000

1500

2000

2500
3000

R
untim

e (m
s)

2e+06

4e+06

6e+06

Triangle Counter Runtime

●

●

●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

(a) Including 3000 vertices datapoints.

Number of CPUs

2

4

6

8

N
um

be
r o

f v
er

tic
es

600

650

700

750

800

R
untim

e (m
s)

60000

80000

100000

120000

Triangle Counter Runtime

●
●●

●

●
●
●

●
●●

●
●
●
●

●

●

●

●●
●

●
●

●●

●

●

●

●

●
●

●
●●

●
●

●
●●
●●
●

●
●●●

●

●●
●●●●●●●

●

●●●●●●●●●

●

●●
●

●

●

●
●●
●

●
●●●●
●●
●
●●

●

●
●
●●●
●●●●

●●●●
●●●●●●

●
●●●
●
●
●●●●

●●●●●●●●●●

60000

80000

100000

120000

(b) Exclusing 3000 vertices datapointgs.

Figure 2: 3D Plot of the performance of Triangle Counter based on 1 to 8 available cores
and varying points in the simulation.

simphony was in creating the contexts, which
is where most of the Repast Simphony tool-
ing gets used. Type mismatches and incor-
rect configuration were the most common er-
ror I encountered. The challenge with this
is that you never got these errors until run-
time, and they never produced meaningful er-
ror messages. Rather you would get an error
of something internal failing in Repast Sim-
phony, and be required to look in the Repast
Simphony source code to debug.

With Repast Java, it mostly stayed out of
your way. With the Java annotations, there
was very little boilerplate that you had to
deal with in the code itself other than the con-
text. Most of the interaction with repast re-
volves around the configuration of your sim-
ulations.

The documentation was alright. They

would walk you through an example program,
and they provided many example programs.
What could use some improvement is the
Repast Simphony reference5. It was a mix
between Java docs and a guide, which was
difficult because I couldn’t use it for either.
Because it was a guide, it was naturally in-
complete, and limited its discussion to a nar-
row scope.

Overall it was very usable once you knew
what you were doing.

3.4 Closest Pair of Points

The closest pair of points program ended up
with 17 directories and 126 files total. Of

5https://repast.github.io/docs/

RepastReference/RepastReference.html

6

https://repast.github.io/docs/RepastReference/RepastReference.html
https://repast.github.io/docs/RepastReference/RepastReference.html

which, only 7 files were source files. This
divides out to only 5.6% of the project be-
ing source files. The amount of code is much
more lean though. With 462 lines of code to-
tal, only 27 lines of that is boilerplate, with
the remaining 94% of the lines of code being
program logic. Although, there are also 394
lines of XML that configures the simulation.
This XML is editable by the user via a text
editor, but it is intended to be edited by the
Repast Simphony Control Panel. Therefore,
I do not count the XML as source code, but
it is still present in the project.

3.5 Triangle Counter

The triangle project was very similar to the
closest pair of points project in size. The tri-
angle counter project has 17 directories and
123 files, of which only 11 of those files are
program logic (8.9% program logic by num-
ber of files). This project had a total of 375
lines of Java code, with only 19 of those being
boilerplate, leaving 94.9% of the Java code
as program logic. This project had 370 lines
of configuration code across 13 configuration
files.

3.6 Comparison

Both closest pair of points and triangle
counter have very similar project sizes, both
in file size and number of files. They also had
a very comparable amount of configuration.

The results of the quantitative analysis
of the programmability of repast simphony
echos my observations in the qualitative sec-
tion. Although the projects are massive in

size, both having only around 5% of the files
being program logic, well over 90% of the
code you write is program logic. Repast sim-
phony is massive, but they hide most of it
from you when you are writing your simu-
lation. The weight of repast comes from the
configuration and setup of the simulation, not
writing the simulation logic itself.

4 Conclusion

Repast Simphony has its place in agent-based
modeling systems. It takes advantage of
multithreaded performance when you have
agents that are computationally heavy, but
starts to loose the performance benefits as the
simulation tick count increases. It is really
quick and easy to get a repast simulation run-
ning with the ReLogo DSL. If you need more
functionality than ReLogo provides, Repast
Java is really easy to pickup because of the
low-overhead of boilerplate, even though it
might take some time to debug and config-
ure the simulation perfectly. I was very im-
pressed by Repast and I see myself using it
for light workloads when I want a graphical
representation of the simulation and don’t re-
quire large simulations.

5 Future Work

The first priority is to complete the bench-
mark programs for our mobile agents plat-
form: IBM aglets. I plan to benchmark aglets
with the same CPP and TC programs dis-
cussed in this paper.

7

I want to further explore my suspension of
the delay in incrementing ticks, and the pro-
cessing of the agent.

I would also like to explore and compare
the performance of triangle counter between a
high-performance single threaded CPU, and
a low-performance single threaded CPU for
high-tick-count simulations. I suspect that
these types of simulations benefit more from
faster single core performance than they do
from multi-node computing.

References

[1] S. Gokulramkumar, “Agent Based Paral-
lelization of Computational Geometry Al-
gorithms,” p. 14.

8

	Quarter Progress Summary
	Challenges Faced

	Algorithmic Approach
	Closest Pair of Points
	Triangle Counter

	Results
	Performance
	Closest Pair of Points
	Triangle Counter
	Performance Comparison

	Programmability
	Repast Simphony
	Closest Pair of Points
	Triangle Counter
	Comparison

	Conclusion
	Future Work

