WINTER CAPSTONE TERM PAPER
UNIVERSITY OF WASHINGTON BOTHELL

Evaluating Repast Simphony for
Agent Based Geometric and
Combinatoric Simulations

Maxwell Wenger
mdwengerQuuw. edu

Supervised By
Dr. Munehiro FUKUDA

March 22, 2021


mailto:mdwenger@uw.edu

Abstract

The purpose of my research project is to
compare the performance and programma-
bility of different tools that may be used
for geometric and combinatoric simulations.
Repast Simphony! is one of many products
and paradigms we will be evaluating. The
others products we are evaluating are as fol-
lows:

e MASS? an agent-based spacial simula-
tion suite developed by our team at the
Distributed Computing Laboratory at
the University of Washington Bothell.

e JClik®, a multithreading tool kit for
Java. The evaluation for JCilk has been
completed by Jonathan Acoltzi.

e IBM Aglets*, which is a mobile agents
platform for Java.

The performance of all of these tools will be
evaluated on multiple axises. Statistics will
be gathered about how each tool performs
based on number of computing nodes, and
the size of the simulation. The programma-
bility will be evaluated on the amount of
code, ratio of code to “boilerplate” code, and
how fitting the paradigm was for the algo-
rithm.

https://repast.github.io/

2https://depts.washington.edu/dslab/MASS/

3http://supertech.csail.mit.edu/jCilkImp.
html

4The original site is no longer online, but a mirror
is being hosted at http://alumni.media.mit.edu/
~stefanm/ibm/AgletsHomePage/index_new4.html

During the winter quarter, I have com-
pleted my analysis of IBM Aglets. This paper
will outline the work I had to do to complete
this.

Contents

1 Quarter Progress Summary 1
2 Setting up Aglets 1
3 Working with Aglets 2
4 Results 3
5 Conclusion 3

1 Quarter Progress Sum-
mary

This quarter I completed the benchmarking
programs for IBM Aglets, and have com-
pleted an analysis of the performance and
programmability of those programs.

2 Setting up Aglets

IBM Aglets had many challenges to overcome
when setting up Aglets because of its age. My
main source for installing Aglets is the paper
listed in their documentation.’

The first challenge I ran into was of Java
dependencies. Java Aglets expects Java 1.2,

Shttps://phoenixnap.dl.sourceforge.
net/project/aglets/User_s’%20Manual/Marchy,
202009/manual031209.pdf


https://repast.github.io/
https://depts.washington.edu/dslab/MASS/
http://supertech.csail.mit.edu/jCilkImp.html
http://supertech.csail.mit.edu/jCilkImp.html
http://alumni.media.mit.edu/~stefanm/ibm/AgletsHomePage/index_new4.html
http://alumni.media.mit.edu/~stefanm/ibm/AgletsHomePage/index_new4.html
https://phoenixnap.dl.sourceforge.net/project/aglets/User_s%20Manual/March%202009/manual031209.pdf
https://phoenixnap.dl.sourceforge.net/project/aglets/User_s%20Manual/March%202009/manual031209.pdf
https://phoenixnap.dl.sourceforge.net/project/aglets/User_s%20Manual/March%202009/manual031209.pdf

but there was no officially supported Centos 7
package for Java 1.2. After trying a few alter-
native repos, and trying old centos packages
on centos 7, I finally ended up needing to go
through the oracle archives to build java 1.2
from source. Because the hermes machines
are running on nfs, it was fairly simple to do
this fix once and move it to all the other her-
mes machines once it was setup on one.

The next challenge I ran into was that
Aglet’s CLI was not sufficient for use as a
master node to start and manage the Aglets.
Agelts was meant to be managed from their
GUTI built into the program. The hermes ma-
chines are headless, meaning I couldnt simply
remote desktop into the machines. I ended
up setting up X11 forwarding over SSH from
the hermies machine to my desktop so that I
could start the X11 server on hermes, launch
the aglets GUI inside of the X11 server, and
forward that to my X11 client on my desk-
top. This gave me the GUI on my desktop
for me to use. The other hermes machines
did not require this configuration as the CLI
was sufficient for the slave nodes.

3 Working with Aglets

To begin writing programs with aglets, I used
Programming and Deploying Aglets[1]. This
was the best and only resource I found. There
was very little support or references I was able
to find outside of this book and the original
documentation.

Actually creating an aglet and moving it
around was actually quite simple to do. But,
being able to communicate between aglets or

recall aglets was very difficult. It seemed that
once I dispatched an aglet to another ma-
chine, I was unable to receive message replies
or recall the aglet. Even using the examples
in the book verbatim resulted in serialization
issues that I could only attribute to things
broken inside of the aglets library.

My first solution was to attempt to re-
implement the asynchronous messaging li-
brary that was not working in aglets, but
even getting synchronous replies were having
the same issue. This lead me to believe that
the issue lied in the internals of aglets rather
than just the message wrapper.

I then went on to building my own messag-
ing protocol for the aglets to communicate.
As these aglets were living on servers that
had access to the same nfs share, I decided
that I could use this to my advantage and do
file based communication between aglets over
NFS. So, I had each aglet write results to a
file, and the master aglet would monitor this
folder on NFS and read in the results.

This file-based communication was func-
tional, but it had very inconsistent perfor-
mance. Swinging between very performant
and very slow. This would not be a vi-
able way of measuring performance because
of this.

I then implemented a socket-based commu-
nication platform. This relied on a socket
broker that each aglet would report to via
socket communication. The following is an
outline of how this system worked:

1. The broker must be started.

2. The master aglet would generate a
unique ID, and register the number of



workers, aglets, and details about the
run with the socket server, using the ID
to uniquely identify the run.

3. Once the broker recieves this message,
it creates a new run and adds it to the
current run list. It also starts a timer
here.

4. The worker aglets are dispatched, and
as they finish their runs, they send a
socket message to the broker reporting
that they have completed their run and
reports details about their run.

5. Once all aglets report a completed run,
the broker will end the timer, and log the
run to a file.

This socket based communication, al-
though not pure software agent form, was the
most consistant way to implement these pro-
grams and was used to evaluate aglets. It
was also a very nice tool to use during per-
formance evaluation as I added support to
check if a run is complete based on ID, so the
master node was able to know when the cur-
rent run is done. I used this to my advantage
by setting up batch runs where I could loop
through many configurations and automati-
cally gather performance statistics.

4 Results

The most interesting thing I found from this
work was there was not a direct correlation
between more hosts or more aglets to perfor-
mance. The performance statistics formed a

Aglets Triangle Counter: 2000 Points

1.8x101°

-
o
<
-
=)
N
5}

1.4x10%°
=1.2x1010
1x1010
8x10°
6x10°
4x10°

Mean Run-Time (ms)

Number of aglets per host

Figure 1: Mean runtime of triangle counter
on aglets with 2000 points

parabolic curve many times where the most
performant configuration is an optimal num-
ber of hosts and nodes.

Figure 1 shows how adding more and more
hosts or aglets does not necessary make it
faster. Too many aglets increases the over-
head, but not enough does not take full ad-
vantage of parallelazation. Same with hosts.
The best results is a mix of many hosts and
many aglets. In the future, I would like to ex-
plore ways of having intelligent agents deter-
mine the optimal number of hosts and aglets
on their own.

5 Conclusion

Although aglets proved to be extremely chal-
lenging to work with, I took a lot of value and
enjoyed implementing a broker service with a
socket-based API for the aglets to use. In



addition to that, I really enjoyed seeing the
relationship between hosts and nodes during
evaluation, and it has raised many questions
about these types of systems that I want to
explore further.

References

[1] D. Lange and M. Oshima, Programming
and deploying java (TM) mobile agents
with aglets (TM). Boston, MA: Addison
Wesley, 1998.



	Quarter Progress Summary
	Setting up Aglets
	Working with Aglets
	Results
	Conclusion

