
Michael	O’Keefe	
CSS	499	–	Professor	Fukuda,	MASS	
	

Winter	2016	Report	–	Parallel	I/O	
	

Table	of	Contents	

Preface	...	1	

Current	Design	...	2	
Place	Fields	Added	for	Parallel	I/O	..	2	
FileAttributes	–	Private	Class	within	Place	..	4	
Open	Method	...	5	

Opening	Text	Files	...	7	
Opening	Netcdf	Files	...	7	

Read	Method	...	7	
Reading	Text	Files	..	10	
Reading	Netcdf	Files	..	10	

Write	Method	..	10	
Close	Method	...	10	

Closing	Text	Files	...	10	
Closing	Netcdf	Files	..	11	

Unit	Testing	...	11	

Next	Steps	...	12	
Open	Method	...	12	
Read	Method	...	12	
Write	Method	..	12	
File	Partitioning	and	Distribution	Tool	..	12	
File	Collecting	and	Merging	Tool	...	12	
Test	on	UWCA	..	12	

	

Preface	
	
During	Winter	Quarter	2016,	it	was	my	task	to	implement	parallel	input	and	output	within	the	
MASS	Library.	The	main	reason	for	parallel	I/O	in	the	MASS	Library	is	to	increase	the	Netcdf	file	
read	performance	within	the	University	of	Washington	Climate	Analysis	(UWCA)	application,	
while	simultaneously	enhancing	the	I/O	capabilities	of	the	MASS	Library,	which	could	be	benefit	
many	MASS	applications.	If	interested,	you	may	read	more	about	our	motivation,	specification,	
and	initial	design	for	parallel	I/O	in	the	MASS	Library	in	my	term	report	for	Autumn	Quarter	
2015	-	http://depts.washington.edu/dslab/MASS/reports/MichaelOKeefe_au15.pdf.	It	is	worth	
noting	that	the	initial	design	for	the	project	has	changed	a	lot	over	the	course	of	the	quarter.		

	
Before	learning	about	the	current	implementation	of	the	MASS	Library’s	parallel	I/O,	it	is	
important	to	know	what	Netcdf	files	are	since	they	are	the	main	reason	for	parallelization.	
Netcdf	stands	for	Network	Common	Data	Form,	and	they	were	created	by	Unidata,	which	is	a	
component	of	the	University	for	Atmospheric	Research	(UCAR).	The	Unidata	website	describes	
Netcdf	as,	“a	set	of	software	libraries	and	self-describing,	machine-independent	data	formats	
that	support	the	creation,	access,	and	sharing	of	array-oriented	scientific	data.”	In	the	simplest	
of	terms	a	Netcdf	file	consists	of	three	parts:	dimensions,	variables,	and	attributes.	The	
dimensions	of	a	Netcdf	file	have	a	name	and	a	length.	For	example,	UWCA	has	three-
dimensions:	time,	longitude,	and	latitude.	The	variables	of	a	Netcdf	file	have	a	name,	a	type,	
and	a	shape.	For	example,	there	is	a	variable	in	UWCA	called	“tasmax”	that	is	of	type	float	and	
has	a	three-dimensional	shape	over	all	three	dimensions	(that	means	there	is	a	tasmax	float	
record	for	every	unique	instance	of	time,	longitude,	and	latitude).	Imagine	each	variable	as	a	
mutli-dimensional	array	of	data.	Finally,	the	attributes	for	a	Netcdf	file	hold	metadata	about	
files	and	data.	For	example,	UWCA	has	a	one-dimensional	variable	called	longitude	and	one	of	
its	attributes	is	its	“units”,	which	is	“degrees	west”.	Knowing	these	basic	aspects	of	a	Netcdf	file	
should	be	adequate	for	the	rest	of	this	report,	but	if	you	wish	to	learn	more	about	Netcdf	files,	
you	may	visit	the	following	website	-	http://www.unidata.ucar.edu/software/netcdf/docs/.	

Current	Design	
	
In	order	to	implement	parallel	I/O	within	the	MASS	Library,	each	place	must	be	able	to	open,	
read,	write,	and	close	the	same	file	in	parallel.	To	make	these	tasks	possible,	all	of	the	current	
implementation	has	been	done	within	the	Place.java	class	(within	the	MASS	Library).	Currently,	
parallel	I/O	is	being	designed	for	Netcdf	and	Text	files,	but	the	code	is	open	to	the	addition	of	
more	file	types.		
	
Place	Fields	Added	for	Parallel	I/O	
Picture	1:	Place	Fields	Added	for	Parallel	I/O,	shows	the	fields	that	were	added	to	Place.java	for	
parallel	I/O.		

	
	
	
	
	
	
	
	
	
	
	
	
	

Picture	1:	Place	Fields	Added	for	Parallel	I/O	

	
	
The	protected	static	field,	fileTable,	is	a	hash	table	that	stores	an	integer	file	descriptor	as	a	key	
and	corresponding	file	attributes	as	a	value.	When	any	file	is	opened,	it	is	given	a	unique	integer	
as	a	file	descriptor,	its	file	attributes	are	set,	and	the	newly	opened	file	is	added	to	the	fileTable.	
Please	note	that	the	file	name	of	the	opened	file	is	not	the	key	for	a	file	in	the	fileTable	since	
that	would	not	allow	the	same	file	to	be	opened	more	than	once	if	the	user	wants	to	do	so	(this	
was	a	feature	specified	by	Doctor	Fukuda).	I	will	go	into	more	detail	about	what	the	file	
attributes	are	later	on,	but	for	now	just	know	that	they	are	a	private	class	used	for	storing	all	
attributes	of	a	file	that	are	needed	for	Parallel	I/O.	A	hash	table	data	structure	was	used	for	the	
fileTable	because	it	allows	for	O(1)	time	retrievals	when	reading,	writing,	and	closing	files	that	
have	been	opened.	The	fileTable	is	static	because	each	file	that	has	been	opened	will	be	read	
and	written	by	all	Place	objects,	thus	each	needs	access	to	the	fileTable.	

	
The	private	static	final	field,	OpenOperations,	is	an	array	of	length	2	that	specifies	what	
operation	is	to	be	done	to	a	file	that	has	been	opened.	This	field	is	specifically	for	text	files,	
which	use	a	FileChannel	object	to	read	or	write	the	file	to	a	buffer	depending	on	the	operation	
type.	When	a	FileChannel	is	first	opened,	it	must	be	specified	what	it	is	being	opened	for.	Thus,	
we	can	specify	a	read	operation	by	declaring	OpenOperations[0]	or	a	write	operation	by	
declaring	OpenOperations[1]	in	the	FileChannel’s	constructor.	
	
The	private	field,	data,	is	a	byte	array	that	stores	data	that	has	been	read	an	individual	Place	
object	(for	a	read	operation),	or	that	stores	data	that	is	to	be	written	by	an	individual	place	
object	(for	a	write	operation).		

	
The	private	static	field,	count,	is	used	to	give	each	file	in	the	fileTable	their	own	unique	file	
descriptor	(a	unique	key).	A	file’s	descriptor	will	be	equal	to	the	number	of	files	that	have	been	
added	to	the	fileTable	before	itself.	For	example,	the	file	descriptor	of	the	first	file	added	to	the	
fileTable	will	have	a	file	descriptor	equal	to	0,	and	the	next	file	will	have	a	file	descriptor	equal	
to	1.	Each	file	descriptor	will	follow	this	pattern,	even	when	a	file	is	closed	and	removed	from	
the	fileTable,	the	count	never	decrements.		
	

FileAttributes	–	Private	Class	within	Place	
FileAttributes	is	a	private	class	within	Place.java	that	is	used	for	storing	a	file’s	attributes	(a	file’s	
information	that	is	needed	while	preforming	parallel	I/O).	Picture	2:	FileAttributes	Fields,	show	
the	private	fields	that	are	stored	in	the	FileAttributes	class.	The	use	for	most	fields	are	self	
explanatory	from	the	commenting	alone.	The	fields	that	may	be	confusing	are	numberOfPlaces,	
remainingReads,	and	remainingWrites.	Each	of	these	three	fields	store	integer	values	and	are	
initialized	to	the	total	number	of	place	objects	being	used.	After	each	Place	performs	a	read	or	
write	operation,	the	remainingReads	and	remainingWrites	are	decremented	accordingly.	
	
Picture	2:	FileAttributes	Fields	

	 	
	
The	methods	within	the	FileAttributes	class	just	consist	of	getters	and	setters	for	each	field,	as	
well	as	some	test	and	set	methods	that	are	used	to	avoid	race	conditions	while	changing	field	
values	such	as	remainingReads.	Race	conditions	must	be	taken	into	account	when	running	any	
program	using	multiple	threads.	This	is	especially	important	to	avoid	while	reading	a	file	(since	
that	is	when	multiple	threads	are	used).	Picture	3:	Test	and	Decrement	Reads,	shows	an	
example	of	how	test	and	set	is	used.	
	
Picture	3:	Test	and	Decrement	Reads	

	

	
Open	Method	
Picture	4:	Open	Signature,	shows	the	current	signature	for	the	open	method.	The	method	takes	
the	given	filePath,	determines	the	file’s	name	and	whether	the	file’s	type	is	supported	
(currently	only	Netcdf	and	Text	files	are	supported).	If	the	given	file	is	not	supported,	then	-1	is	
returned,	and	the	file	is	not	opened.	If	the	file	type	is	supported	and	the	file	is	not	already	in	the	
fileTable	then	the	file	is	opened	accordingly	based	on	the	type	of	file,	its	file	attributes	are	set,	
the	file	and	its	attributes	are	stored	in	the	fileTable	and	the	unique	file	descriptor	is	returned.	If	
the	file	has	already	been	opened,	then	nothing	happens	and	the	unique	file	descriptor	is	
returned	(all	Place	objects	will	try	to	open	the	file,	but	it	only	needs	to	be	opened	once).	As	
mentioned	previously,	the	same	file	can	be	opened	and	stored	in	the	fileTable	more	than	once,	
but	only	if	the	user	calls	the	open	method	on	the	same	filePath	more	than	once.	The	method	is	
synchronized	to	ensure	that	only	one	Place	opens	the	the	file	and	and	puts	the	file	into	the	
fileTable.	The	parameter	filePath	should	include	the	path	to	the	file	that	is	to	be	opened.	The	
parameter	ioType	should	either	be	a	0	for	a	read,	and	or	a	1	for	a	write	(determines	how	the	file	
is	opened).	Look	at	Picture	5:	Open	Process,	to	see	the	process	described	visually.	The	open	
method	is	complete	and	works	for	both	Netcdf	and	Text	files.	
	
Picture	4:	Open	Signature	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
Picture	5:	Open	Process	

	
		 	 	 	
Please	note	that	I	currently	have	the	read	and	write	method	as	a	part	of	the	open	method,	
which	does	not	make	sense	because	open	is	synchronized	and	read	shouldn’t	be.	This	mistake	
was	due	to	miscommunication	and	will	be	fixed	as	soon	as	possible.	The	above	design	is	correct	
and	it	is	how	the	open	method	will	be	implemented.		

	
The	one	thing	I	want	to	add	to	the	open	method	is	determining	and	storing	the	structure	of	a	
Netcdf	file	in	its	file	attributes	when	it	is	first	opened	(I	currently	have	been	doing	that	in	the	
read	method,	which	is	redundant	to	do	for	each	Place).	
	
Opening	Text	Files	
If	the	Text	file	is	being	opened	for	a	read	operation	then	a	new	FileChannel	for	reading	is	
connected	to	the	Text	file.	If	the	Text	file	is	being	opened	for	a	write	operation	then	a	new	
FileChannel	for	writing	is	connected	to	the	Text	file.	The	FileChannel	is	able	to	either	read	from	
or	write	to	the	Text	file	in	later	I/O	operations.		
	
Opening	Netcdf	Files	
If	the	Netcdf	file	is	being	opened	for	a	read	operation	then	the	file	is	opened	in	memory	using	
the	method	NetcdfFile.openInMemory(<filePath>).	If	the	Netcdf	file	is	being	opened	for	a	
write	operation,	then	the	Netcdf	file	is	opened	on	the	disk	using	the	usual	open	method.		
	
I	performed	a	few	performance	tests	to	compare	speed	of	reading	a	Netcdf	file	in	memory	vs	in	
disk.	Tests	were	performed	on	Netcdf	file	sizes	varying	from	500MB	to	2GB.	Reading	from	in	
memory	is	consistently	20%	faster	than	reading	from	disk	during	the	first	read,	and	reading	
from	in	memory	is	consistently	40%	faster	than	reading	from	disk	during	all	previous	reads.	
Picture	6:	Netcdf	Read	In	Memory	VS	Disk,	shows	one	of	the	test	results	(time	is	measured	in	
milliseconds).	Please	note	that	Netcdf	files	larger	than	2GB	cannot	be	opened	in	memory.		
	
Picture	6:	Netcdf	Read	in	Memory	VS	Disk	

	
	
Read	Method	
The	signature	of	the	read	method	can	be	found	in	Picture	6:	Read	Signature.	The	read	method	
checks	if	the	fileTable	contains	the	given	fileDescriptor.	If	it	does,	each	Place	reads	and	stores	a	
predefined	length	of	the	file;	otherwise,	false	is	returned	and	nothing	is	read	if	the	file	does	not	

exist	in	the	fileTable.	The	data	read	by	a	Place	is	stored	in	the	Place’s	data	field	(recall	the	byte	
array	data).	The	length	that	each	Place	reads	is	determined	by	the	size	of	the	file	divided	by	the	
number	of	Places	(thus	each	Place	reads	and	stores	the	same	amount	of	data).	The	last	Place	to	
read	is	responsible	for	reading	the	rest	of	the	file,	which	could	be	longer	than	the	specified	
length	if	the	size	of	the	file	and	the	number	of	Places	did	not	divide	evenly	(in	case	there	is	a	
remainder).	Picture	7:	Read	Process,	shows	the	process	visually.	Currently	read	works	only	for	
Text	files	and	not	Netcdf	files.	I	am	having	issues	using	Netcdf	functions	that	allow	the	user	to	
determine	the	structure	of	any	Netcdf	file.	For	more	information	visit	-	
http://www.unidata.ucar.edu/software/netcdf/docs/reading_unknown.html.	
	
	
Picture	7:	Read	Signature	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Picture	7:	Read	Process	

	
	

Note	that	Doctor	Fukuda	has	asked	me	to	implement	a	way	for	each	Place	to	have	a	specific	
portion	of	the	file	to	read	from.	For	example,	if	there	5	Places	performing	the	read	method,	
then	Place1	would	read	the	1st	portion	of	the	file,	Place2	would	read	the	2nd	portion	of	the	file,	
and	so	on.	The	current	implementation	allows	which	ever	Place	executes	read	first	to	read	the	
1st	portion	and	the	next	Place	to	execute	read	reads	the	2nd	portion.	Expect	this	to	be	a	feature	
of	read	before	the	end	of	March	2016.		
	
Reading	Text	Files	
The	first	Place	uses	the	FileChannel	to	read	the	entire	Text	file	into	a	buffer	(the	buffer	is	apart	
of	the	Text	file’s	file	attributes	so	every	Place	has	access	to	the	buffer).	Then	each	Place	reads	a	
set	portion	of	the	file	from	the	buffer	and	stores	it.	The	last	place	reads	what	ever	has	not	been	
read	from	the	buffer.		
	
Reading	Netcdf	Files	
Each	Place	reads	a	set	portion	of	the	file	from	the	buffer	and	stores	it.	The	last	place	reads	what	
ever	has	not	been	read	from	the	buffer.	
	
Write	Method	
The	basic	design	feature	of	the	write	method	will	be	to	have	each	Place	write	to	the	buffer,	and	
then	have	the	last	Place	write	to	the	disk.	Each	Place	will	also	have	a	specific	portion	of	the	file	
to	write	(just	like	the	new	feature	for	the	read	method).	
	
The	write	method	itself	has	not	been	implemented	because	I	still	have	questions	myself	about	
how	we	want	the	user	to	be	able	to	specify	what	he	or	she	wants	to	write.	I	will	be	working	
with	Doctor	Fukuda	as	soon	as	possible	in	order	to	design	the	method	so	that	I	can	begin	
implementation.		
	
Close	Method	
Picture	8:	Close	Signature,	shows	the	signature	for	the	close	method.	The	close	method	takes	
the	given	fd	(file	descriptor)	and	properly	closes	the	corresponding	file	(depending	on	the	type	
of	file)	and	removes	the	file	from	the	fileTable.	If	the	fd	was	in	the	fileTable	and	the	file	was	
closed	properly,	then	true	is	returned;	otherwise,	false.	
	
Picture	8:	Close	Signature	

	
	
Closing	Text	Files	
Close	the	FileChannel	associated	to	the	Text	file.	
	

Closing	Netcdf	Files	
Close	the	NetcdfFile	associated	to	the	Netcdf	file.	

Unit	Testing	
	
PlaceTest.java	has	been	created	in	order	to	test	the	methods	that	have	been	implemented	for	
parallel	I/O	within	Place.java.	PlaceTest.java	can	be	found	in	the	test	folder	of	mass_core.	The	
unit	test	methods	created	in	PlaceTest.java	test	each	parallel	I/O	method	in	isolation.	That	
means	that	no	other	components	of	the	MASS	Library	are	involved	in	the	testing	process.	The	
unit	tests	are	also	run	when	the	MASS	Library	is	built,	which	gives	code	assurance	when	new	
changes	are	made.	Picture	9:	Text	File	Read	Unit	Test,	is	an	example	of	a	unit	test	that	has	been	
created	and	tests	the	opening,	reading,	and	closing	of	a	Text	file	using	multiple	Places.	
	
Picture	9:	Open	and	Read	Unit	Test	

	
	

Next	Steps	
	
UWCA	needs	to	have	its	Netcdf	file	read	performance	increased	before	the	end	of	April	for	its	
paper	resubmission,	so	my	goal	is	to	finish	these	next	steps	before	then.	Luckily,	I	am	taking	
Spring	Quarter	off	so	that	I	can	take	an	internship	over	summer	and	graduate	after	Fall	Quarter	
2016.	That	means	I	can	devote	a	lot	of	time	to	ensure	that	these	next	steps	are	finalized	before	
the	end	of	April.		
	
Open	Method		
For	Netcdf	files,	determine	the	file	structure	when	the	Netcdf	file	is	first	opened	and	store	the	
structure	within	the	file’s	attributes.		
	
Read	Method	
Implement	a	way	for	each	Place	to	have	a	specific	portion	of	the	file	to	read	from.	For	example,	
if	there	are	5	Places	performing	the	read	method,	then	Place1	would	read	the	1st	portion	of	the	
file,	Place2	would	read	the	2nd	portion	of	the	file,	and	so	on.		
	
Write	Method	
Work	with	Doctor	Fukuda	and	define	the	method’s	signature	and	design.	Specifically	determine	
how	the	user	should	specify	what	he	or	she	wants	to	write.	
	
File	Partitioning	and	Distribution	Tool	
Work	with	Doctor	Fukuda	to	design	and	implement	a	tool	that	will	split	a	file	depending	on	how	
many	computing	nodes	that	are	being	used	and	distributes	each	file	piece	to	the	designated	
node	in	the	local	/tmp	directory.	
	
File	Collecting	and	Merging	Tool	
Work	with	Doctor	Fukuda	to	design	and	implement	a	tool	that	will	collect	the	file	pieces	from	
each	computing	node	after	the	I/O	operations	have	been	preformed,	and	merges	pieces	back	
to	one	file.		
	
Test	on	UWCA	
Work	with	Jason	Woodring	to	include	MASS	Parallel	I/O	functionality	within	UWCA,	and	test	the	
Netcdf	file	reading	performance.	
	 	

