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Graphs can be used to represent complex relationships between different entities. These are stored 

as edges and nodes in a graph database system. This type of data makes it easier and more flexible 

to query connected data items, and identify insights from those relationships. Two common graph 

database systems are Neo4j and ArangoDB. These systems store graph data differently as Neo4j 

is a native graph database system, and ArangoDB is a multi-model database. Both database system 

rely on storing data in the disk, which can be slow for data retrieval when the data is not in memory. 

A graph database system using the Multi-Agent Spatial Simulation (MASS) library is being 

implemented to pursue CPU and spatial scalability by leveraging distributed memory to store 

graph data. This project aims to provide a benchmarking protocol for performance testing of 

MASS Graph Database system compared to Neo4j and ArangoDB. This will identify the current 



 

strengths and weaknesses of MASS, and provide a standard benchmarking tool for future 

researchers to use. The work includes using data pulled from real-world applications as the 

foundation of a random graph generator that takes user input regarding the topology and size of 

the graph that will be generated, a set of common queries both in Cypher and AQL, a manual for 

testing in Neo4j, and a script for testing in ArangoDB. The graph sizes used in testing are 1K 

nodes, 10K nodes, 20K nodes, and 30K nodes for spatial scalability evaluation via graph traversal. 

CPU scalability of MASS is performed on a cluster of eight computing nodes using a 10K node 

graph.  
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Chapter 1. INTRODUCTION  

1.1 MASS 

The Multi-Agent Spatial Simulation (MASS) library is a parallel programming library using agent-

based modeling to simulate a number of collective behaviors, ex: biological agents, and 

computational geometry algorithms [1]. MASS at its core is comprised of two main components, 

Places and Agents. Places represents a matrix of elements dynamically allocated over a cluster of 

nodes. These elements can exchange information with any other element, i.e. Place. Agents can 

perform computations, and can migrate between different Places, allowing them to interact with 

other Agents and Places.   

When considering big data computing, frameworks such as MapReduce and Spark are some of the 

more common tools being used to process large volumes of data. However, these tools mainly deal 

with data in the form of text. For more complex data structures, such as graphs, where the data 

points are interconnected, a more suitable approach is to use a graph database system. Specifically 

with MASS, agents can be leveraged to support analysis of graphs, as they can be deployed into 

data structures mapped over distributed memory.  

1.2 GRAPH DATABASE SYSTEM 

Database systems were first introduced in the 1960s, with some systems, like IBM’s IMS, 

supporting tree-like structures [27]. These relational database systems were ACID (atomicity, 

consistency, isolation, durability) compliant, and stored data in a tabular format with rows and 

columns. As the size and structure of data evolved, the need for a different storage and querying 

solution paved the way for a new way to organize this data. In the mid 2000s, the first commercial 
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graph database systems were made available to the public. A graph database system is a collection 

of data where vertices, commonly referred to as nodes, hold information related to the entity, and 

edges, commonly referred to as relationships, describe the connection between two nodes. This 

type of database system places an emphasis on the relationships between different entities. 

Medium sized graph datasets usually range from 1 million to 10 million graph entities (nodes and 

relationships), and large graphs usually range from 10 million to 100 million graph entities [8]. 

Two common graph database systems include Neo4j and ArangoDB. 

Neo4j is one of the leaders in graph database systems, and it is a native graph database system. 

This popular graph database system uses Cypher as its query language, and has a storage engine 

that optimizes storing graph data on the disk.  

ArangoDB is another popular graph database system that is a multi-model database solution, 

meaning it stores and queries data in more than one format. This system stores data in the form of 

a document, which is essentially a JSON object. These documents are then organized into 

collections, and can be queried using the ArangoDB Query Language (AQL). For data storage, 

ArangoDB uses a RocksDB storage engine where data is stored in the disk. 

1.3 GRAPH DATABASE SYSTEM USE CASES 

The primary driver behind storing data as graphs is to explore the relationship between different 

entities. These complex relationships are difficult to translate into standard relational databases, 

and the use of a graph database system allows for flexibility and efficiency when querying 

connected data points. There are a number of use cases for storing data in a graph database system. 

The most popular use cases include recommendation engines, social network analysis, and fraud 

detection [15,16,17,18,21,22]. Recommendation engines are used to provide recommendations, an 

example of this is recommending products for purchase based on previous purchasing history or 



 

 

3 

products typically ordered together. Social networks typically have many interconnected entities 

such as friends, interests, and followers. A graph database system provides a way to store and 

query these intertwined relationships. Lastly, fraud detection usually refers to financial 

transactions. Because graph database systems allow for faster querying of connected data points, 

institutions are able to detect fraud through relationship patterns more quickly than if using a 

relational database. 

1.4 GOALS 

The main goal of this project is to create a benchmarking dataset and tools to simplify 

benchmarking the MASS Graph Database system (Graph DB system) against popular graph 

database systems. The motivation behind this is to create tools such that future researchers can 

devote their time to improving the MASS Graph DB system, rather than spending resources on 

investigating methods to conduct performance or execution testing. This work will also standardize 

how future MASS Graph DB system changes will be evaluated, establishing consistency and 

improving accuracy when it comes to performance testing. To further outline the specific goals for 

this project, here are the explicit tasks I will accomplish:  

• Create a tool to randomly generate several graph datasets that can be loaded into MASS 

Graph DB system, Neo4j, and ArangoDB. These datasets are modeled after graphs pulled 

from real world systems based on the use cases mentioned above. The randomization 

ensures fairness in our evaluation. 

• Create common queries for each of the datasets that can be run across each graph database 

system for measuring performance.  

• Identify the strengths and weaknesses of the MASS Graph DB system compared to Neo4j 

and ArangoDB.  
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• Create an efficient process for benchmarking performance of MASS Graph DB system 

compared to Neo4j and ArangoDB for future researchers.  

 

Chapter 2. BACKGROUND 

The growth of big data gave rise to the development of data streaming frameworks such as Hadoop, 

and Spark for analysis of these larger datasets. These frameworks primarily support data in the 

format of text, with the approach of dividing the data into chunks and processing those individual 

chunks. This limits their ability to analyze data in more complex data structures, such as a graph, 

as the division, streaming, and reconstruction of a graph for processing can be challenging.  

Instead, using a graph database system to store and query this kind of data makes both storage and 

graph traversal more efficient. Two popular graph database systems, Neo4j and ArangoDB, store 

data on the disk, with retrieval of data possibly being slow if it is not already available in memory.  

An alternative is to construct the graph on distributed memory, using agents to traverse the graph. 

The use of MASS for this approach not only stores the data in memory, allowing for faster access 

of the data, but also allows query processing to be done in parallel via agents.  

 

2.1 PREVIOUS WORK 

The MASS Graph DB system was originally implemented by Harshit Rajvaidya [2], with 

enhancements being implemented this year by Lilian Cao. MASS Graph DB system stores the 

graph data in Place objects. More specifically, with this year’s enhancements, the data is stored in 

PropertyVertexPlace, which is an extension of Place. The PropertyVertexPlace object has two 

hashmaps that store directed edge information. When querying data, agents are deployed at each 
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node, traverse the graph by checking a hashmap of its neighbors, and return the results of the query. 

Previously, spatial scalability testing of MASS Graph DB system used graphs with 1.9K nodes, 

7K nodes, and 9.5K nodes. Compared to data from real-world applications, these graphs are 

relatively small in size. The queries used for testing were also based on testing the validity of 

results, rather than emulating queries in realistic scenarios. There was also no testing done to 

compare the performance of these queries in MASS against existing graph database systems. As 

the original intention of the MASS Graph DB system implementation was to improve performance 

by using distributed memory to store and traverse the graph, it is important to compare MASS’ 

implementation to disk-based solutions.  

2.2 MOTIVATION 

There has been little work done to provide a standard protocol for evaluating the capabilities of 

the MASS Graph DB system implementation. In this evaluation, we want to compare MASS 

Graph DB system to other commercially available graph database systems to identify the strengths 

and weaknesses of using distributed memory to create and analyze graphs, and to gain insight into 

the spatial and CPU scalability of using MASS Graph DB system. In addition, we want to use data 

from real-world applications for this performance testing, to emulate realistic scenarios when using 

a graph database system. This project’s focus is to help future MASS graph database system 

researchers by establishing a framework for benchmarking their enhancements against Neo4j and 

ArangoDB.  

2.3 DATABASE SYSTEMS 

To evaluate the performance of the MASS graph database system against commercially available 

tools we use the following criteria to select an appropriate database:  



 

 

6 

• Cost: free or relatively low cost (capped at $10 per month which is relatively affordable 

for students) 

• Cloud options: agnostic of provider 

• OS options: agnostic of OS 

• Community: a larger user base/active forum for asking questions and searching for answers 

The above criteria will make it easier for future researchers to continue using these systems for 

benchmarking since the systems will not incur a cost, deployment is flexible, and common 

questions can be found/answered within the community forum. Based on these criteria, we have 

selected Neo4j and ArangoDB as the systems to compare MASS against.  

Neo4j is an open-source graph database system that is one of the leading software systems in the 

graph database space [8,14]. It stores data using a node and relationship format, such that a node 

represents an entity in the graph, and a relationship represents an edge between two entities. It is 

cloud and operating system (OS) agnostic, meaning it can be deployed with any cloud provider 

and on any OS. It has a free edition as it is open-source, and a strong community base since it is 

one of the most popular graph database systems. Neo4j uses Cypher, an open-source query 

language developed by Neo4j. The basis of the language is similar to that of SQL, making it easier 

for developers who are used to querying relational databases to translate their queries into Cypher. 

Cypher is supported by other vendors as well. 

ArangoDB, like Neo4j, is an open-sourced database system that also has a strong community of 

users. In addition to supporting graph storage, ArangoDB is a multi-model database that uses a 

document key-value model to store data [9]. It is cloud and OS agnostic, has a free edition available 

for development, and uses its own query language called ArangoDB Query Language (AQL). AQL 

is a declarative language that is meant to be human-readable. Its structure is similar to using a for-
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loop in most coding languages, making it fairly straightforward to adopt for users who are familiar 

with common software development languages. 

As Neo4j and ArangoDB also store data differently, the former is a native graph database, and the 

latter is a multi-model database, using these two systems for comparison will also show how the 

MASS Graph DB system performs against different data storage solutions. 

2.4 DATASETS  

Graph data is useful for representing complex relationships between connected entities. For this 

project, we wanted to use real-world data to emulate storing and querying data in a realistic 

scenario. When determining what types of datasets to use for this benchmarking project, we 

explored common use cases for graph databases. Some recurring use cases include [15,16,17,18, 

21,22] Recommendation Engine: recommending something based on the graph data, ex: 

recommending products to purchase with other items. Social Network: analyzing social media 

networks, ex: most followed users, or connections based on friendships. Fraud Detection: detecting 

fraudulent activities based on transaction data, ex: identifying all the transactions stemming from 

known fraudulent entities 

Based on these use cases, we are using the Amazon Co-Purchased Products dataset [5] as the data 

for a recommendation engine use case, the Twitch [4] dataset as the data for a social network use 

case, and the Elliptic [7] dataset as the data for the fraud detection use case. These datasets are 

further described in section 4.



Chapter 3. RELATED WORKS 

3.1 GRAPH DATASET BENCHMARKING PROGRAMS 

The importance of having a benchmarking protocol is to standardize performance comparisons 

when evaluating a graph database system. In the domain of graph datasets, there have been several 

projects related to establishing such protocols. The studies described below utilize different 

methods and datasets for their benchmarking programs, such as using heterogenous data, creating 

hybrid graphs, and defining a benchmark protocol. Notably, all of these studies have a focus of 

using graph datasets for benchmarking machine learning and graph algorithms. Because of this, 

these studies do not generate data for performance testing, rather data is loaded and split for 

training purposes. Also, compared to the common graph database use cases [15,16,17,18,21,22] 

described in section 2 (recommendation engine, social network, and fraud detection), these 

projects explore other data domains outside of common real-world applications.  

The Open Graph Benchmark (OGB) project offers a graph benchmarking framework that covers 

a variety of domains, including social network, with the emphasis on evaluation of machine 

learning on graphs [12]. OGB was developed to address the variability in experimental protocol 

when reproducing graph machine learning research. This work has a main focus on creating 

realistic benchmark datasets for machine learning. With a focus on machine learning training and 

testing, random graph generation is not explored in this work.  

In real-world datasets, graph data is useful for representing complex relationships that cannot be 

easily stored in a typical relational database. Analyses of graph data typically employ graph 

learning algorithms, such as graph neural networks. Training these models usually require real-

world datasets for learning and fine tuning [10].  Kumarasinghe, et. al’s worked on creating the 
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largest public heterogenous graph dataset for malicious domain classification [10]. In their 

research, researchers used VirusTotal to collect the malicious domains and extracted hosting 

infrastructure information from a DNS repository to create a heterogenous graph with the intention 

of improving graph neural network (GNN) models. They discovered that larger heterogenous 

datasets performed better for classification tasks, however they did not outperform their 

homogenous dataset counterparts. This heterogenous graph also falls outside of the common 

industry use cases for graph data, with the project’s primary focus on improving data for GNNs. 

The data is also loaded in and split accordingly for GNN training and testing, there is no random 

graph generation component. 

A separate work introduces hybrid graph generation for GNN evaluation [11]. The 

conceptualization of a hybrid graph as a representation of higher-order graphs where nodes are 

connected to groups of nodes, rather than just other nodes. This research defines the groupings and 

provides both datasets and an evaluation framework for hybrid graph creation and GNN testing. 

This work focuses on three graph domains: social network, biology, and e-commerce in the form 

of product reviews. While this research addresses a common industry graph dataset use case, social 

network, this project’s main focus is to provide a benchmark for GNN. Similarly, to the 

heterogenous graph study, this work also does not offer random graph generation. 

3.2 OVERVIEW 

Graph generation in the graph dataset benchmarking programs above have a primary interest in 

machine learning and graph learning algorithms. They do not take into consideration user input 

for graph size, nor random graph generation, which are both important for comprehensive 

execution and performance analysis of a graph database system. These works have a focus on 

evaluating and advancing graph learning algorithms, not an evaluation of graph database 
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performance. The graphs created in these works are not appropriate for comparative analysis of 

the MASS graph database system against commercially available products. The domains for these 

projects also do not necessarily reflect common real-world use cases for graph data. Our approach 

to graph dataset creation accepts user input for the size of the graph. At MASS’ current state, it 

may not be able to handle immensely large datasets, and being able to specify the size of the graph 

is required for performance evaluation. The resulting graph will be randomized while maintaining 

subgraph degree distribution using the network motif algorithm. The randomization of the graph 

is important for fairness in our evaluation to reduce the chances of hardcoding query results to give 

an illusion of performance increase. Lastly, our benchmarking tool creates the following graph 

types described below in Table 1. These graph types correspond to common industry use cases 

and the data used for graph generation is extracted from real-world datasets [4,5,7]. 

 

Table 1: Graph Use Cases and Corresponding Dataset 

Type Graph Use Case Corresponding Real-World Dataset 

Products Recommendation Engine Amazon Co-Purchased Products 

Social Social Network Twitch  

Transaction Fraud Detection Bitcoin Transactions 
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Chapter 4. METHOD 

This section describes the design decisions and implementation details of the benchmarking 

protocols. We will describe the selected datasets and how they relate to the common graph database 

use cases, the implementation of the random graph generator, common queries for the different 

datasets, and the testing strategy for each of the graph database systems, Neo4j, ArangoDB, and 

MASS. 

4.1 DATASETS AND RANDOM GRAPH GENERATOR 

The datasets we chose correspond to a common graph use case described in section 1. These use 

cases include recommendation engine, social network, and fraud detection. For recommendation 

engine, we wanted to use a dataset that could be used to recommend products for purchasing. The 

Amazon Co-Purchased Products dataset [5] contains information regarding the different products, 

and edge information to indicate products that were purchased together. Based on this, we would 

be able to query the data to see co-purchased products to simulate a recommendation scenario. 

Twitch is a social network with a focus on live streaming gameplay. Like most social network 

platforms, there is a concept of following other users. The Twitch Social Network dataset [4] can 

be used for social network analysis, such as identifying the most followed user. For fraud detection, 

we are using the Elliptic dataset [7]. This is an anonymized Bitcoin transaction dataset with entities 

labeled as illicit (fraudulent), licit, and unknown. To mimic a fraud detection scenario, we can 

query this data to identify all transactions made with illicit entities. The size of each dataset is 

described in Table 2.  
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Table 2: The size of each graph dataset. 

Dataset Number of Nodes Number of Edges 

Amazon 548,552 3,387,388 

Twitch 168,114 6,797,557 

Elliptic 203,769 234,355 

 

For performance evaluation, we decided to using random graphs to guarantee fairness in our 

testing. The random graphs use data pulled from the datasets described in section 4.1. The 

randomness comes from the rearrangement of the edges between different nodes. As the 

relationship between edges in a graph are important, we wanted to maintain any subgraph patterns 

that might be of interest for future analysis. Figure 1 shows a code snippet of how the degree 

distribution algorithm will behave in the event that the vertices in the list cannot be used to create 

new edges (line 16-43). 

To generate a random graph while maintaining the original degree distribution we use the 

following logic [6]: 

• For an edge, add each vertex ID to a list. (stored in vertexList in Figure 1) 

• Pick two vertex IDs from the list to form an edge. (lines 3-10 in Figure 1) 

• Check if this edge already exists in our set of edges. If it does, try to form a new edge from 

the vertex list. (line 6 in Figure 1) 
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Figure 1: Code snippet of degree distribution algorithm when edge pairs need reassignment 

 

The random graph generator takes in user input for both the type and size of the graph to generate. 

There are three types of graphs that can be generated, Product, Social, and Transaction as shown 

in Figure 2. Product data is extracted from the Amazon dataset. Social data is extracted from the 

Twitch dataset. Transaction data is extracted from the Elliptic dataset. These are RandomGraph 
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objects that implement a createGraph method that generates 4 csv files. These csv files will be 

used for graph creation in Neo4j, ArangoDB, and MASS. 

 
Figure 2: RandomGraph Objects 

 

Based on user input for both the type and size of the graph, the random graph generator will then 

generate the appropriate csv files, shown in Figure 3. The size of the graph is limited to the size of 

the corresponding real-world dataset described in Table 2. 

 
Figure 3: RandomGraphGenerator takes user input to create the appropriate csv files 

 

4.2 COMMON QUERIES  

For the common queries, we wanted to use queries that simulate realistic scenarios based on the 

type of dataset being queried. In general, we want to test out CRUD (Create, Read, Update, Delete) 
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operations that all databases support, and graph traversal which all graph databases support. In 

addition, we have specific queries for each dataset, such as finding the most followed user using 

social network data. These dataset specific queries are meant to compare how MASS performs in 

a realistic situation when querying graph data. The set of common queries shown in Table 3 

describe the queries we will use for benchmarking MASS.  

Table 3: Common queries per dataset for benchmarking  

Type Query  Reasoning 

General Create new node 

Create new relationship between new 

node and an existing node 

Match on criteria to return new node 

Delete relationship  

Match on criteria to see if deleted 

relationship returns any result 

Delete node 

Match on criteria to see if deleted node is 

returned  

Graph Traversal (Depths 1-3) 

Testing the general 

functionality of the graph 

database:  

• CRUD operations 

(Create, Read, 

Update, Delete) 

• Graph Traversal 

Products Match on products that are purchased 

together  

Most popular products purchased 

together 

Recommend new products for 

people to purchase 

 

Social Network Match on follows of people you follow 

(can do this by connections of 

connections, and second connections) 

Match on the most popular user (most 

follows) 

This is to recommend new 

people for someone to follow  

 

Transactions Match on the illicit nodes 

 

To identify all known 

fraudulent transactions, we 

can use a match query to 

return all the illicit 

transactions 

4.3 MASS BENCHMARKING PROGRAM 

The benchmarking program in MASS will take user input to generate the 4 csv files for graph 

creation. MASS will use the files that contain “MASS” in the name, the other two files will be 

used for Neo4j and ArangoDB testing. MASS is initiated and then the graph is created using the 
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GraphManager. From there, a list of Cypher queries is run using the queryHandler function. Graph 

creation and query execution times are printed to the console. 

4.4 NEO4J MANUAL 

For Neo4j testing, we created a set of instructions for conducting analysis. Originally, we planned 

on using a python script that executes the queries and logs the execution time, however the 

executeQuery call includes overhead outside of the query runtime that greatly inflates the 

execution time. Because of this, we will run the queries directly in the Neo4j user interface. The 

manual includes instructions on set up, how to load data, how to create a graph, and the queries 

written in Cypher for testing. 

4.5 ARANGODB SCRIPT 

ArangoDB uses AQL for querying data. There are two parts to ArangoDB testing. The importing 

of data into collections is done using the arangoimport command. We created a shell script with 

these commands, with the execution time being printed to the console once collection creation is 

complete. We then call arangosh to open the arango shell environment. We use a script, 

arango_test.js, to create the graph using the newly created collections and conduct query testing. 

The queries in the script are the Cypher queries used in MASS and Neo4j testing translated into 

AQL. To execute the script, use the command require("internal").load("arango_test.js"). The 

execution times are printed to the console. 
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Chapter 5. EVALUATION 

We are using social graphs of size 1K nodes, 10K nodes, 20K nodes, and 30K nodes for spatial 

scalability testing. During our initial evaluation, we used a 50K, and 100K node graph for testing 

graph traversal which resulted in an out of memory error within MASS Graph DB system. We 

then adjusted the size of the graphs for testing using 10K node increments that successfully 

returned query results in MASS Graph DB system. This testing includes graph creation, and graph 

traversal of depths 1 – 3 using Neo4j, ArangoDB, and MASS Graph DB system on a single 

computing node. For the graph database systems evaluation, we focused on spatial scalability 

testing using different sized graphs on a single machine to better understand the strengths and 

limitations of using an in-memory data storage solution compared to disk-based systems. Depth 

traversal through levels 1 – 3 is a common graph database query use case and has been used in 

other studies for performance testing of database systems [23]. The computing node has 16 GB of 

memory. For CPU scalability testing, we are using a social graph of size 10K nodes on the Hermes 

cluster, using 8 computing nodes. We chose a 10K graph because it is large enough to showcase 

the benefits and limitations of MASS for both graph creation and query execution during spatial 

scalability testing, and allows us to further explore the effects of CPU scalability. This testing 

includes graph creation, and graph traversal of depth 1 using MASS. 

 

Due to the limitations of MASS Graph DB system, we are mainly using social graphs for testing, 

as the current implementation can only process Create and simple Match queries.  
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5.1 PERFORMANCE ANALYSIS 

5.1.1 Spatial Scalability 

We want to evaluate the spatial scalability of each graph database system, which references how 

each system performs as the size of the data increases. To evaluate this metric, we are capturing 

the time it takes to create a graph via csv importing, and the query execution time when traversing 

the graph from depth 1 to depth 3 [. We are using social graphs of sizes 1K nodes and 257 edges, 

10K nodes and 24K edges, 20K nodes and 92K edges, and 30K nodes and 204K edges. Table 4 

shows the queries used for graph traversal. The queries are written in both Cypher and AQL.  

 

Table 4: Queries used for graph traversal 

Description Cypher AQL 

Graph traversal depth 1 MATCH (a)-->(b) RETURN 

b 
FOR vertex in socialNodes 

    FOR vertices, edges, paths in 1..1 

OUTBOUND vertex GRAPH social 

        RETURN vertices 

Graph traversal depth 2 MATCH (a)-->()-->(b) 

RETURN b 

FOR vertex in socialNodes 

    FOR vertices, edges, paths in 2..2 

OUTBOUND vertex GRAPH social 

        RETURN vertices 

Graph traversal depth 3 MATCH (a)-->() -->()--> (b) 

RETURN b 

FOR vertex in socialNodes 

    FOR vertices, edges, paths in 3..3 

OUTBOUND vertex GRAPH social 

        RETURN vertices 

 

In Figure 4, we show the time it takes for each graph database system to create graphs of different 

sizes. Graph creation for all graph database systems was done via import of csv files. For larger 

graphs, 20K and 30K, MASS Graph DB system outperforms both Neo4j and ArangoDB for graph 

creation. Generally, Neo4j is the slowest for graph creation. 
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Figure 4: Graph creation time across graph database systems 

 

Figures 5, 6, and 7 demonstrate the query execution time for each graph database system when 

traversing depth 1, depth 2, and depth 3 of the various graphs. In Figure 5, we see that as the graph 

size increases, the depth 1 graph traversal in MASS Graph DB system increases, with 144x time 

increase in traversal time between the 1K graph and 30K graph. ArangoDB is the most performant 

for depth 1 traversal. In Figure 6, we see MASS Graph DB system is more performant than 

ArangoDB for depth 2 traversal. In Figure 7, again MASS Graph DB system outperforms 

ArangoDB for depth 3 traversal as ArangoDB runs out of memory. Overall, Neo4j’s performance 

is relatively consistent and is generally the most performant for graph traversal of any depth. This 

is expected, as Neo4j data storage uses index-free adjacency. 
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Figure 5: Depth 1 traversal across graph database systems 
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Figure 6: Depth 2 traversal across graph database systems 
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Figure 7: Depth 3 traversal across graph database systems 

 

5.1.2 CPU Scalability 

MASS’ computing architecture leverages multiple computing nodes to achieve parallelization. To 

evaluate the CPU scalability of MASS Graph DB system, we will be using a 10K node social 

graph for graph creation and graph traversal of depth 1 using 1-8 computing nodes.  

 

Figure 8 shows the graph creation time across 1-8 computing nodes. We see that the time 

substantially increases between one and two computing nodes. The time appears to plateau and 

stabilize around 5-8 computing nodes. This time difference between using 1 and 2 nodes  is due to 

the sequential nature of graph creation in MASS. 
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Figure 8: Graph creation time from 1-8 computing nodes 

 

Figure 9 displays the graph traversal of depth 1 query time when using 1-8 computing nodes. We 

see a spike in the use of two computing nodes, with a downward trend as we continue to add 

computing nodes. This increase in time is due to communication overhead from additional 

computing nodes. 
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Figure 9: Depth 1 graph traversal across 1-8 nodes 

5.2 DISCUSSION 

5.2.1 Spatial Scalability Graph Creation 

In our evaluation of spatial scalability, we identified MASS Graph DB system as the fastest system 

for creating large graphs via csv import. Neo4j was the slowest for graph creation, followed by 

ArangoDB. This is likely due to the way we store node data in each system. For Neo4j, data is 

stored on the disk as a linked list, with each node pointing to its next neighbor. Node and 

relationship data are stored in separate database files [24]. In ArangoDB, data is also stored on the 

disk but as a JSON object referred to as a document [25]. Documents are organized into collections. 

Nodes and edges are stored as separate collections of documents. MASS Graph DB system stores 
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nodes as a PropertyVertexPlace object, with two separate hashmaps to capture directed edge 

information. This data is stored in memory, in contrast with the other two systems which store data 

in the disk. The lengthier execution time for graph creation in Neo4j is related to this linked list 

storage method. 

5.2.2 Spatial Scalability Graph Traversal 

The storage of data using this strategy of linked lists is known as index-free adjacency, where 

instead of a traversing a graph via an index, it uses a pointer instead. Unlike a relational database 

where performance is usually dependent on the size of the tables, performance in Neo4j is 

dependent on the connectedness of the nodes in a traversal. This results in Neo4j having fast and 

consistent query execution times when traversing a graph of any size at any depth level. 

ArangoDB’s graph traversal slows down for larger graph sizes at depths greater than one. Graph 

traversal uses the edge collection, which are documents stored as key-value pairs. MASS Graph 

DB system also sees a slowdown with increased depth traversal, especially for depth 3. MASS’ 

graph system stores its neighbor information in hashmaps as part of the PropertyVertexPlace 

object. Because of the creation the graph nodes in a round robin fashion, the placement of nodes 

and their corresponding hashmaps can cause a slowdown during traversal as the agents need to 

read through the different maps and travel to the appropriate neighbors. This travel is not 

optimized, as there is no logical grouping of node storage based on the edges within the graph.  

Traversal requires the reading of both hashmaps to identify the appropriate agent migration pattern. 

For depths 1 and 2, MASS Graph DB system graph traversal actually decreases in execution time. 

This is due to the storage of data in the cache, with data for depth 3 needing to be accessed from 

memory. A limitation to consider when comparing MASS’ in-memory graph database system to 

Neo4j and ArangoDB’s disk-based database systems, is that while accessing data held in memory 
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is generally faster than disk retrieval, other applications that require memory may also be 

competing for resources with the MASS Graph DB system. This scenario may also result in a 

slowdown for the MASS Graph DB system. 

5.2.3 Graph Traversal Baseline 

Based on our findings regarding graph traversal across all graph database systems, we wanted to 

establish a baseline of graph traversal. For the baseline, we decided to capture graph traversal 

execution times when starting from a random node. By starting from a random node, the data 

should not be available in cache or memory for the disk-based solutions. This helps highlight the 

differences between disk-based (Neo4j and ArangoDB) and memory-based (MASS Graph DB 

system) query times. For graphs with 10K nodes, 20K nodes, and 30K nodes, we traversed the 

graph from depths 1-3 starting from a random vertex, as shown in Figure 10. MASS performs the 

worst for depth 1 and depth 2 traversals. For 20K and 30K graphs, at depth 3 traversal, we see that 

MASS outperforms both Neo4j and ArangoDB. This is likely due to both Neo4j and ArangoDB 

needing to access the disk to return data at depth 3 traversal. The Neo4j and ArangoDB execution 

times for depths 1 and 2 will serve as the performance goal for MASS as more enhancements and 

optimizations are made to the Agents for graph traversal.   

 



 

 

27 

 
Figure 10: Graph traversal depths 1-3 from a starting vertex 

 

5.2.4 CPU Scalability 

Our evaluation of CPU scalability for MASS Graph DB system used a 10K graph and 1-8 

computing nodes on the HERMES cluster. When using additional computing nodes, we 

anticipated an increase in execution times because of the communication overhead between the 

additional computing nodes and main computing node. MASS uses a round robin technique to 

evenly distribute the creation of nodes across the available computing nodes. The increase in 

execution time for graph creation is expected as graph creation is done sequentially. We noticed a 

plateau occurring in execution time around 5-8 computing nodes. This is likely due to the overlap 

between the computing nodes sending messages about which graph nodes to create, while 

simultaneously also creating the appropriate nodes. To confirm this behavior, we should consider 

logging the behavior at each computing node to see if the timestamps overlap between messages 

being sent, and graph node creation. 
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With graph traversal of depth 1 using 1-8 computing nodes, we noticed that adding a second 

computing node introduced a significant spike in the execution time. The communication overhead 

is responsible for this increase. As we continue to add more computing nodes, the traversal time 

decreases. Here we are able to demonstrate that the traversal is being parallelized across the nodes 

via agent migration, as communication overhead remains constant despite adding more nodes. This 

downward trend is a sign that MASS Graph DB system is working as expected and is able to scale 

horizontally to improve performance for large data sources. At this stage, since the single node 

execution is faster than multi-node execution, optimization of communication is key to better 

leveraging MASS’ capabilities for a more performant graph database system. 
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Chapter 6. CONCLUSION 

In this project we were able to identify two commercial graph database systems, Neo4j and 

ArangoDB, to use for performance comparison of MASS Graph DB system. Benchmarking 

datasets were selected for performance testing based on the common industry use cases of 

recommendation engine, social network, and fraud detection. We implemented a random graph 

generator that allows users to select the type and size of the graph to generate. A set of common 

queries for each dataset was created both in Cypher and AQL. Performance testing using different 

sized graphs was done on all three graph database systems to demonstrate spatial scalability, and 

CPU scalability testing was conducted for the MASS Graph DB system using 1-8 computing 

nodes. For MASS testing, a main test program can be used to both generate the graph and run the 

appropriate queries. For Neo4j testing, we created a manual with instructions of set up and Cypher 

queries. For ArangoDB testing, we developed a shell script for graph creation, and a JavaScript 

script for running queries on the database.  

 

Overall, MASS handles graph creation for larger datasets better than the other two applications, 

and outperforms graph traversal compared to ArangoDB for datasets with 20K nodes or more at 

depths greater than one. Graph traversal in Neo4j is faster than the other two applications, due to 

its index free addressing. 

 

For future work and improvements: 

1. Once MASS Graph DB system has implemented more functionality, test the rest of the 

common queries using the different graph types to gauge the topology of datasets MASS 

would be appropriate for. 
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2. ArangoDB can also be set up in a cluster system for CPU scalability comparison. This 

would be interesting to see how this affects larger dataset graph traversal. However, 

parallelization of graph traversal is only available for the enterprise edition. This test would 

be mainly for CPU scalability comparison. 

3. Neo4j queries are currently run manually in the web console because using the Neo4j driver 

to execute queries causes significant overhead. Future researchers should consider looking 

into options for gathering query execution time without using the executeQuery call.  

4. Expand the benchmarking protocol to include ML testing. Many graph applications 

incorporate ML analyses to uncover insights in the data, such as detecting fraudulent 

transactions. This would be interesting to explore now that ML agents have been 

implemented.   

5. Add a UI component to display the graph. Both Neo4j and ArangoDB display the graphs 

when returning results for a query. 
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APPENDIX 

 

You can find the graph datasets in the dslabs google drive Work > Michelle Dea Graph Database 

Benchmarking: 

https://drive.google.com/drive/u/2/folders/1MBTIGkaIMWnkIs21Qb4XrwC888REYCuI  

Code can be found on the dslab bitbucket under the dea_develop branch 

To run the MASS benchmarking program: 

1. Add the data files to QueryGraphDB / src/main/resources 

 

2. When executing the jar file, specify the type and size of graph you want 

https://drive.google.com/drive/u/2/folders/1MBTIGkaIMWnkIs21Qb4XrwC888REYCuI


 

 

34 

a. For an example in mass_java_appl > QueryGraphDB > build_run.sh 

 

3. When generating larger graphs, if you feel it is taking a while, you can add a print 

statement in the graph specific java file to see the edges being created – this part is what 

takes the longest. Ex: You can add these print statements to between line 197 and 198 in 

SocialGraph.java 

System.out.println("social vertexList size = " + vertexList.size()); 

System.out.println("social edgePairs size = " + edgePairs.size()); 

4. Execution times will be printed to console 

 

 Neo4j: 

Once you have downloaded Neo4j Desktop it is time to create your database and import data. 

Open Neo4j Desktop: 
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Create a new project using the New button in the top left > Rename your project and use the Add 

button to add a local DBMS 
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To import data, click on the three dots next to Open > Open Folder > Import 
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Copy your csv files that you want to import into the import folder: 

 

 

Now you will start your database and then open the Neo4j Browser: 

 

 

Once in the browser you can run the following commands to generate your graph: 

LOAD CSV WITH HEADERS FROM 'file:///socialNodes.csv' AS row 

CREATE(s:Social {id:row.numeric_id}) 

set s += row 

 

LOAD CSV WITH HEADERS FROM 'file:///socialEdges.csv' as row 

match (s:Social {id: row.from}) 

match (s2: Social {id: row.to}) 

create (s)-[rel:FOLLOWS]->(s2); 

 

For Cypher queries, see the capstone queries excel sheet in the google drive folder: 
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https://drive.google.com/drive/u/2/folders/1MBTIGkaIMWnkIs21Qb4XrwC888REYCuI  

 

For ArangoDB: 

Download docker, you will be using a docker image: 

 

docker pull arangodb:3.10 

 

docker run \ 

 -e ARANGO_ROOT_PASSWORD=password \ 

 -p 8529:8529 \ 

 -v /arangodb:/var/lib/arangodb3 \ 

 -v /arangodb/logs/:/var/log/arangodb3 \ 

 --restart always \ 

 --name arangodb \ 

 -d arangodb:3.10 \ 

 --log.level warning \ 

 

localhost:8529 

user:root 

password: whatever password you want 

- Note please update the password in the arango scripts once you have decided on your 

password 

 

https://drive.google.com/drive/u/2/folders/1MBTIGkaIMWnkIs21Qb4XrwC888REYCuI
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After you have the csv files, you will need to copy them to your docker container: 

docker cp edges.csv <CONTAINERID>:/edges.csv 

 

Once you have started the container, you can now use the appropriate arango script to import the 

data into collections. The scripts are labeled type_test.sh. Here is an example of how to run the 

shell script: 
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Execution time for loading data is printed to console: 

 

 

Once you have run the shell script, type arangosh into the terminal, this opens arango_shell. Now 

update arango_test.js with the queries and graph name you want to run the queries on. Copy 

arango_test.js into your docker container. 

 



 

 

41 

 

 

To run the JavaScript file from arangosh use: require("internal").load("arango_test.js") 

 

Execution times will be printed to console  
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