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Benchmarking Graph Computing Performance Between 
Java MASS and Hazelcast 

1. Overview 

Agent-based modeling (ABM) deals with observing the interactions between a large number of agents 
representing some real-world entity. A focal point of multi-agent simulations is data/pattern discovery, 
and with a population size potentially ranging in the millions, a single computer can’t handle the whole 
simulation. As well, a computer handling all of the work may be slow to find meaningful insights so 
being able to paralyze the model to have concurrent execution using multiple computers can decrease 
execution time. For this reason, the Distributed System Laboratory (DSL) at the CSS division in UWB 
has developed a Java parallel-computing library named MASS (Multi-Agent Spatial Simulation).  
 
MASS can be applied not only to conventional ABM simulations but also to graph computing, serving as 
a storage and retrieval system. Graph databases play a major role in modern computing and storage, being 
applied in many applications such as social networks, recommendation systems, and fraud detection. 
They represent the relationships between data (nodes/vertices) using edges that connect two pieces of 
data. The DSL is currently developing a distributed, agent-based, graph database system with MASS, and 
would like to evaluate MASSs graph computing performance and programmability to commonly-used 
distributed graph computation platforms. One such system is Hazelcast. 
 
My project focuses on comparing Java MASSs and Hazelcast’s graph computing performance using 
graph algorithms frequently used in graph databases. Specifically, I spent the first quarter of my capstone 
implementing and benchmarking the Strongly Connected Components and Weakly Connected 
Components algorithms in both Hazelcast and MASS, and the Triangle Counting algorithm in Hazelcast 
(as the MASS version already existed). I used six different graphs with eight different cluster sizes to 
benchmark the algorithms, evaluating MASS vs Hazelcast performance in terms of speed and scalability. 
As well, the programmability metrics assessed were the lines of code (LOC), boilerplate %, cyclomatic 
complexity, and lack of cohesion in methods (LCOM4). 

2. MASS Background 
MASS distributes a multi-agent simulation among multiple machine nodes in-memory. Its composition is 
built mainly on two components: Places and Agents. A user’s application is distributed among 
Places, a matrix/graph where each element is a Place object. A Place object is capable of storing 
and exchanging information amongst each other, and is the host location where agents reside. Performing 
computations on the Places are done using Agents, execution instances that are able to traverse the 
matrix. Agents can also communicate with each other and spawn child agents, allowing for parallel 
computation of data. 
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MASS developers have extended MASS to also be used as a graph database by creating the data 
structures GraphPlaces, VertexPlace, and GraphAgent, which extend from the Places, 
Place, and Agent classes respectively. GraphPlaces stores a list of VertexPlace objects and 
represents graphs in an adjacency list format, where each VertexPlace object has a list of outgoing 
neighbors. As well, GraphAgent objects can override the map() function, which specifies how many 
agents to instantiate at each vertex. Users can create custom classes that extend these three classes. 
 
MASS applications generally have 3-4 classes: An agent class that extends GraphAgent, a vertex class 
that extends VertexPlace, an ArgsToAgents class that specifies arguments/instance variables an 
agent will have, and a class with a main() method that runs the simulation. The program starts by 
creating a GraphPlaces object and an Agents object to instantiate a set of agents on the 
GraphPlaces. From there, a sequence of onArrival() and migrateTo() function calls can be 
made to each agent using agents.callAll() until all agents have finished their tasks and 
terminated.  

3. Hazelcast Background 

3.1 Hazelcast Overview 

Hazelcast is an in-memory distributed computation and storage platform. It can serve as a distributed 
second level cache for applications, loading data on disk into memory and providing in-memory speeds to 
users. It stores data as key-value pairs in “shared” RAM spread across a cluster of machines. By default, 
Hazelcast offers 271 partitions, where a single partition is a memory segment holding a portion of the 
whole data. Partitions are evenly distributed amongst the cluster, and each partition has a backup copy 
residing on a different machine to provide fault tolerance. What partition holds a piece of data is 
determined by hashing the data and modding it to the total partition count. As well, repartitioning of data 
is automatically done when a machine leaves or joins the cluster. 
 
Machines in the same subnet can form a cluster either through TCP/IP or Multicast discovery. By starting 
up a cluster instance with the same name, machines are able to discover each other automatically. 
However, after a cluster is formed, all communication between cluster members is done using TCP/IP. 

3.2 Hazelcast Features 

All Hazelcast data structures are thread safe, but only the IMap data structure (at least of what I used) is 
partitioned amongst cluster machines. An IMap is used to represent a graph, where the key is the vertex 
id and the value is a Vertex object that contains a map of the outgoing neighbors to the vertex. 
 
Hazelcast provides a suite of distributed computing tools, allowing users to run tasks in parallel on 
different machines. Leveraging the combined processing power of the cluster, machines are able to send 
data over a network as long as the data can be serialized. 

 
2 



Noel Beraki                CSS 497: Spring 2025 term report      
 

       
 

Hazelcast features I used in my implementations include: 
● Predicates API: Used to query data from an IMap. The query is sent to each member in the 

cluster and it looks at its local partitions to send any entries that match the query.  
● Entry Processor: Used for bulking processing on IMap entries. Given a set of keys (or the whole 

graph), it executes a read and update operation on the partition where the data resides, eliminating 
costly network hops. 

● IExecutorService: Asynchronously executes tasks that don’t require modifying IMap entries. The 
user creates a custom class that implements the Callable interface to return a value when the 
task completes. 

● Aggregators: Executing in parallel across all cluster members, it computes the value of a function 
over all the entries of an IMap. The process consists of three phases: accumulation where each 
partition runs the accumulate() function to its entries; combination where the results of each 
partition in the accumulation phase are combined; and aggregation, where the combined result 
can be further processed before returned.  

4. Graph Benchmarks Overview 

4.1 Strongly Connected Components 

Given a directed graph, the strongly connected components algorithm seeks to find all the maximal 
subgraphs in which there is a directed path from any vertex to another. In other words, the goal is to find 
all of the connected subgraphs that exist within the whole graph.  

 
Figure 1: Three strongly connected components in an 8-node graph 
 
The most common approach to this problem is implementing Tarjan’s Serial SCC algorithm. It works by 
finding what vertices share the same low link value: the smallest vertex id reachable from it when 
performing DFS. Initially, the low-link value of each vertex is its own id. Then as you traverse the graph, 
you maintain a visited set and a stack of valid vertices from which to update the low-link values of when 
it comes time to. Vertices are added to the stack as they are first explored. As you traverse the graph, 
when you reach a vertex that has already been visited and is currently on the stack, you start backtracking, 
updating the low-link values and exploring further paths. When all paths for a vertex have been explored 
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and the vertex's low-link value is equal to its own id, you can start popping from the stack. You pop from 
the stack until you’ve reached the vertex you're currently on, which makes up an SCC. This process 
continues until all vertices have been visited and the stack is empty. 
 
Tarjan’s algorithm works well on small graphs, but is slow on larger graphs due to the backtracking and 
stack maintenance steps. As well, its single threaded nature doesn’t make it suitable for a distributed 
environment. For this reason, I used the divide-and-conquer strong components (DCSC) algorithm 
proposed by Sandia National Laboratories and Texas A&M University. DCSC does not rely on a stack to 
find SCCs but instead recursively partitions the graph in a way of isolating SCCs within a single 
subgraph. It works by picking a random pivot vertex and finding its set of predecessors and successor 
vertices. The intersection of the two sets is the SCC the pivot is located in. From there, the graph can be 
partitioned into three subgraphs: the set of predecessors not in the SCC, the set of successors not in the 
SCC, and the remainder vertices. All three subgraphs guarantee not to have overlapping vertices in an 
SCC, and therefore can be explored concurrently.  
 
A variation of DCSC was used in both the MASS and Hazelcast implementations of SCC. 

4.2 Weakly Connected Components 

Given a directed graph, the weakly connected components algorithm seeks to find all the maximal 
subgraphs in which there is an undirected path from any vertex to another. The premise to solving this 
problem is to convert the directed graph into an undirected graph and solve the Connected Components 
algorithm. For each edge in a directed graph, adding an edge going in the opposite direction can be used 
to convert it into an undirected graph.  

 
Figure 2: One weakly connected component in an 8-node graph 
 
MASS and Hazelcast adopt different approaches to this problem. MASS uses a low-link concept to 
represent the smallest vertex id that a vertex can reach. After processing the graph, vertices with the same 
low-link value are in the same weakly connected component. Hazelcast on the other hand has each vertex 
examine its outgoing neighbors and makes use of an union-find data structure to combine sets with 
overlapping vertices.  
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4.3 Triangle Counting 

The triangle counting algorithm seeks to find the number of 3-node cycles that exist in a graph. A 3-node 
cycle is defined as a set of vertices where each vertex is connected to the other two while ignoring edge 
direction.  
 

Image source: geeksforgeeks 
 
MASS and Hazelcast have different approaches to this problem. MASS follows a three step phase in 
which agents traverse along their neighbors followed by their second-degree neighbors (neighbor of 
neighbor). In the last phase, it will attempt to return back to its original vertex. A successful completion of 
the three phases results in a triangle. Hazelcast on the other hand follows a more iterative approach. Each 
vertex will examine all of its neighbors and its second-degree neighbors. If there is an edge from the 
vertex to the second-degree neighbor, the triangle counter is incremented.  

5. Benchmark Implementations 

5.1 Strongly Connected Components Implementations 

To find an SCC of a pivot vertex using the DCSC algorithm, it requires finding the intersection between 
the set of predecessor vertices and successor vertices. The predecessors are the set of vertices that can 
reach the pivot while the successors are the set of vertices that the pivot can reach. The successors can be 
found doing a simple traversal along the outgoing edges starting at the pivot, but the predecessors require 
traversing along transposed/backward edges. Given a forward edge from vertex v to u, a transposed edge 
is a forward edge from vertex u to v. These transposed edges need to be created before the process of 
finding the SCCs can begin.  

5.1.1 MASS Implementation 

The MASS implementation of SCC starts with spawning an agent at each vertex. Before the agents can 
start traversing the graph, transposed edges are created in the preprocessGraph() function (which 
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is only called once). In preprocessGraph(), each agent spawns a child agent to migrate to the 
outgoing neighbors. Then each child agent will tell the neighbor vertex it’s on to add a “transposed” edge 
by calling addNeighbor(), where the neighbor id is the originalPlaceId the child agent came 
from + the number of vertices in the graph and the weight is -1. The child agents will then terminate and 
we are back to having one agent per vertex.  
 
After transposed edges are added, a pivot vertex is chosen and sent to all agents. If the agent is not at the 
pivot vertex, it terminates. Otherwise, the agent will spawn a child agent (which is more like a sibling 
agent). So before starting the search for an SCC at the pivot vertex, the simulation only has two agents 
which are on the same vertex: one to traverse along the forward edges and the other to traverse along the 
transposed edges.  
 
During the simulation, each agent performs a BFS traversal. On each call to onArrival(), the agent 
will pick the first unvisited neighbor as the nextPlaceId and spawn child agents at the remaining 
neighbors. To prevent sibling agents from going along paths another sibling/parent has already done, a 
guard rail is placed to check if a relative agent has already visited the place the current agent is on. If so, 
then the agent is done traversing. When an agent finishes its traversal (either through a failure to get past 
the guard rail or no more unvisited vertices to reach), it returns back to its originalPlaceId and 
reports its visited set as either predecessors or successors. After all agents have completed, the SCC can 
be computed, returned, and another iteration for an SCC can be found with a new pivot vertex. This 
process repeats until all vertices have been processed.   
 
Figure 3: MASS SCC onArrival() function 

private Object onArrival() { 
 
        nextPlaceId = -1; 
        MyVertex place = (MyVertex) getPlace(); 
        int placeId = place.getIndex()[0]; 
        Object[] placeNeighbors = place.getNeighbors(); 
        Object[] neighborWeights = place.getWeights(); 
 
        if (doneTraversing && placeId == originalPlaceId) { 
            place.onAgentReturn(visited, traversingBackwardEdges); 
            kill(); 
            return null;  
        } 
 
        if (place.inComponent) { 
            nextPlaceId = originalPlaceId; 
            doneTraversing = true; 
            return null; 
        } 
 
        if (place.visitedAgents.containsKey(originalPlaceId)) { 
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            int intVal = traversingBackwardEdges ? -1 : 1; 
            if (place.visitedAgents.get(originalPlaceId).contains(intVal)) { 
                nextPlaceId = originalPlaceId; 
                doneTraversing = true; 
                return null; 
            } 
            else { 
                place.visitedAgents.get(originalPlaceId).add(intVal); 
            } 
        } 
        else { 
            int intVal = traversingBackwardEdges ? -1 : 1; 
            IntSet newSet = new IntOpenHashSet(); 
            newSet.add(intVal); 
            place.visitedAgents.put(originalPlaceId, newSet); 
        } 
 
        visited.add(placeId); 
        ObjectList<ArgsToAgents> childAgentsToSpawn = new ObjectArrayList<>(); 
        for (int i = 0; i < placeNeighbors.length; i++) { 
            int neighborId = (int) placeNeighbors[i]; 
            int weight = (int) neighborWeights[i]; 
 
            if ((traversingBackwardEdges && weight > 0) || (!traversingBackwardEdges && weight < 0)) { 
                continue; 
            } 
            neighborId = weight < 0 ? neighborId - transposedOffset : neighborId; 
 
            if (!visited.contains(neighborId)) { 
                if (nextPlaceId == -1) {  
                    nextPlaceId = neighborId;  
                }  
                else { 
                    // (int transposedOffset, int originalPlaceId, int nextPlaceId  
                    //  boolean doneTraversing, boolean traversingBackwardEdges,  
                    //  IntSet visited) 
                    childAgentsToSpawn.add(new ArgsToAgents( 
                        transposedOffset, originalPlaceId, neighborId,  
                        doneTraversing, traversingBackwardEdges,  
                        new IntOpenHashSet(visited) 
                    )); 
                } 
            } 
        } 
 
        if (!childAgentsToSpawn.isEmpty()) { 
            ArgsToAgents[] args = childAgentsToSpawn.toArray(new ArgsToAgents[0]); 
            spawn(args.length, args); 
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        } 
 
        if (nextPlaceId == -1) { 
            doneTraversing = true; 
            nextPlaceId = originalPlaceId; 
        } 
 
        return null; 
} 
 

 

5.1.2 Hazelcast Implementation 

The Hazelcast implementation of SCC takes more liberty to split the graph into subgraphs when an SCC 
is found. Each vertex maintains a tag variable, which represents what subgraph the vertex is on. As well, 
transposed edges are represented by having a separate IMap to store those edges. 
 
The program starts by picking a pivot vertex and submitting an IExecutorService task using the 
SCCTask class to find the SCC of that pivot. The task calls findSCC() where the set of predecessors 
and successors are found concurrently by calling traverseGraph(). This function submits a separate 
IExecutorService task that uses the GraphTraversalTask class to traverse along either the 
forward or transposed edges according to the boolean value passed in. After both tasks have finished, the 
intersection can be found and added.  
 
Now with three separate subgraphs, their tag variables are updated to reflect the subgraph they belong 
to. This is done using an EntryProcessor, submitting to each set of keys the appropriate newTag 
value to update to. Following this, three new pivot vertices are chosen and explored concurrently. This 
process repeats until all vertices have been processed. 
 
Figure 4: Hazelcast SCC findSCC() function 

private Map<String,I> findSCC(I vertexId, String tagType, int iteration) { 
        try { 
            if (vertexId == null) { return null; } 
 
            // current subgraph 
            String tag = tagType + iteration; 
            iteration++; 
 
            Future<Set<I>> predecessorsFuture = traverseGraph(vertexId, true); // backward edges 
            Future<Set<I>> successorsFuture = traverseGraph(vertexId, false);     // forward edges 
             
            Set<I> predecessors = predecessorsFuture.get(); 
            Set<I> successors = successorsFuture.get(); 
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            // found an scc at the intersection.  
            Set<I> scc = new HashSet<>(predecessors); 
            scc.retainAll(successors); 
            // Theres a chance the only intersection is the pivot vertex itself. Must be greater than 1. 
            if (scc.size() > 1) { addToSCC(scc); } 
 
            predecessors.removeAll(scc); 
            successors.removeAll(scc); 
 
            // discard all vertices that formed the scc 
            updateTags(scc, "n"); 
            // update remaining vertices to separate subgraphs 
            updateTags(predecessors, ("p" + iteration)); 
            updateTags(successors, ("s" + iteration)); 
 
            // find the vertices in the subgraph that were neither a successor or predecessor 
            Set<I> remainderVertices = getKeysByTag(tag); 
            updateTags(remainderVertices, ("r" + iteration)); 
 
            // get next pivots for each of the three subgraphs 
            Map<String,I> nextPivots = new HashMap<>(); 
            if (!predecessors.isEmpty()) { nextPivots.put("p", getRandomKeyFromSet(predecessors)); } 
            if (!successors.isEmpty()) { nextPivots.put("s", getRandomKeyFromSet(successors)); } 
            if (!remainderVertices.isEmpty()) {  
                 nextPivots.put("r", getRandomKeyFromSet(remainderVertices));  
            } 
 
            return nextPivots.isEmpty() ? null : nextPivots; 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
            return null; 
        } 
} 

5.2 Weakly Connected Components Implementations 

5.2.1 MASS Implementation 

The MASS implementation of WCC starts by spawning an agent at each vertex to collect the set of 
vertices in the graph. From this set, a pivot vertex is chosen and sent to each agent. If the agent is not at 
the pivot vertex, it terminates. Before starting the simulation, there is only one agent. On each call to 
onArrival(), each agent will check if its originalPlaceId is less than or equal to the place’s 
componentId (low-link value). If it is, the place’s componentId is updated to the agent’s 
originalPlaceId, and the place’s neighbors are examined to see if it needs to be visited. Looping 
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through the list of neighbors, if the neighbor id is less than the agent's originalPlaceId and the 
agent hasn’t visited the vertex yet, a child agent is spawned to go to that neighbor. Following this, the 
current agent just terminates.  
 
After all agents have completed, the program checks the componentId of each vertex, grouping 
vertices with the same componentId. This process repeats with a new pivot vertex until all vertices 
have been processed.   
 
Figure 5: MASS WCC onArrival() function 

public Object onArrival() { 
        MyVertex place = (MyVertex) getPlace(); 
        int placeId = place.getIndex()[0]; 
 
        if (place.visitedAgents.contains(originalPlaceId)) {  
            kill(); 
            return null; 
        } 
 
        visited.add(placeId); 
        place.visitedAgents.add(originalPlaceId); 
 
        if (place.componentID >= originalPlaceId) { 
 
            place.componentID = originalPlaceId; 
            Object[] placeNeighbors = place.getNeighbors(); 
            ObjectList<ArgsToAgents> nextVertices = new ObjectArrayList<>(); 
 
            for (Object neighbor : placeNeighbors) { 
                int candidate = (int) neighbor; 
                if (candidate >= place.componentID && !visited.contains(candidate)) { 
                    // (int originalPlaceId, int nextPlaceId, IntSet visited) 
                    nextVertices.add(new ArgsToAgents( 
                        originalPlaceId, candidate, new IntOpenHashSet(visited) 
                    )); 
                } 
            } 
 
            if (!nextVertices.isEmpty()) { 
                ArgsToAgents[] args = nextVertices.toArray(new ArgsToAgents[0]); 
                spawn(args.length, args); 
            } 
        } 
         
        kill();  
 
        return null; 
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} 

5.2.2 Hazelcast Implementation 

The Hazelcast implementation of WCC makes use of a disjoint set/union-find. A disjoint set is a data 
structure that stores a set of sets in which no two sets have overlapping elements. It works by assigning a 
parent to each element (originally, each element is its own parent). A call to unionize two elements (put 
them in the same set) means having them share the same parent. The merge() function combines the 
sets of an input disjoint set and a call to getComponents() combines elements with the same parent 
into a set and returns a list of sets.  
 
The program starts by converting the directed graph into an undirected one and uses Hazelcast 
aggregation (WCCAggregator) to find the weakly connected components. Each partition will have a 
DisjointSet object and in the accumulate() function, each entry will loop through its set of 
neighbors, calling union() to give them the same parent. Then the combine() function is called 
where each partition's disjoint set is merged using the merge() function. The final step has the 
DisjointSet object containing the parents for every vertex in the graph calling 
getComponents() to return the finalized list of weakly connected components in the graph.  
 
Figure 6: Hazelcast WCC WCCAggregator class 

private static final class WCCAggregator<I extends Comparable<I>, V>  
        implements Aggregator<Map.Entry<I, Vertex<I, V>>, List<Set<I>>>, HazelcastInstanceAware { 
         
        private transient DistributedSharedGraph<I, V> dsg; 
        private final String graphName; 
        private DisjointSet<I> disjointSet = new DisjointSet<>(); 
         
        public WCCAggregator(final String graphName) { 
            this.dsg = null; 
            this.graphName = graphName; 
        } 
 
        @Override 
        public void setHazelcastInstance(final HazelcastInstance instance) { 
            this.dsg = new DistributedSharedGraph<>(instance, graphName); 
        } 
 
        @Override 
        public void accumulate(final Map.Entry<I, Vertex<I, V>> entry) { 
            final Vertex<I, V> vertex = entry.getValue(); 
            final I vertexId = vertex.getVertexId(); 
            final Set<I> neighbors = vertex.getNeighbors().keySet(); 
 
            disjointSet.makeSet(vertexId); 
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            for (I neighbor : neighbors) { 
                Vertex<I,V> neighborVertex = this.dsg.graph.get(neighbor); 
                disjointSet.makeSet(neighborVertex.getVertexId()); 
                disjointSet.union(vertexId, neighborVertex.getVertexId()); 
            } 
        }     
         
        @Override 
        public void combine(final Aggregator aggregator) { 
            // combine results from each partition 
            final WCCAggregator<I,V> other = getClass().cast(aggregator); 
            this.disjointSet.merge(other.disjointSet); 
        } 
 
        @Override 
        public List<Set<I>> aggregate() { 
            List<Set<I>> components = disjointSet.getComponents(); 
            components.removeIf(component -> component.size() == 1); 
            return components; 
        } 
} 

5.3 Triangle Counting Implementations 

5.3.1 MASS Implementation 
There are two MASS implementations of the Triangle Counting algorithm, with them differing in graph 
setup. The first version uses a random graph generator to create neighbors for each vertex. The user 
passes in the number of vertices the graph should have, and neighbors of each vertex are dependent on the 
number of machines in the cluster. The second version uses GraphPlaces to read the graph from a 
DSL file and uses a GraphModel object to get a list of vertex ids.  
 
After the graph setup, the two implementations are identical. It starts by spawning an agent at each vertex, 
and then starting the simulation. The simulation only has three steps. In the first step, each agent spawns 
child agents to migrate to the neighbors. To prevent duplicate triangles from being counted, an agent will 
only traverse/spawn child agents to neighbors with a lower id. The second step has the agents repeating 
step 1 (now being the second-degree neighbors the agents are migrating to). In the final step, each agent 
will try to return back to its original vertex. If it's not able to, then it terminates. The number of remaining 
alive agents is the total number of triangles that exist in the graph.  

5.3.2 Hazelcast Implementation 
The Hazelcast Triangle Counting implementation uses aggregation. A custom 
TriangleCountingAggregator class returns an integer representing the total number of triangles 
in the graph. In the accumulate() function, each entry loops through its neighbors and second-degree 
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neighbors. If there is an edge from the vertex to the second-degree neighbor, the triangle counter is 
incremented. To prevent duplicate triangles from being reported, only triangles following this order are 
recorded: neighbor id > second-degree neighbor id > entry vertex id. In the combine() phase, the 
number of triangles at each partition is combined, and in the aggregate() phase is when the total 
number of triangles is returned.  
 
Figure 7: Hazelcast Triangle Counting TriangleCountingAggregator class 

private static final class TriangleCountingAggregator<I extends Comparable<I>, V>  
        implements Aggregator<Map.Entry<I, Vertex<I, V>>, Integer>, HazelcastInstanceAware { 
         
        private transient DistributedSharedGraph<I, V> dsg; 
        private final String graphName; 
        private Integer triangles; 
 
        public TriangleCountingAggregator(final String graphName) { 
            this.dsg = null; 
            this.graphName = graphName; 
            this.triangles = 0; 
        } 
 
        @Override 
        public void setHazelcastInstance(final HazelcastInstance instance) { 
            this.dsg = new DistributedSharedGraph<>(instance, graphName); 
        } 
 
        @Override 
        public void accumulate(final Map.Entry<I, Vertex<I, V>> entry) { 
            // each partition runs this for each entry and combines the results (trianglesCount) 
            final Vertex<I, V> vertex = entry.getValue(); 
            final I vertexId = vertex.getVertexId(); 
            final Set<I> vertexNeighbors = vertex.getNeighbors().keySet(); 
 
            // id order: neighborId > sdNeighborId > vertexId 
            for (I neighborId : vertexNeighbors) { 
                if (neighborId.equals(vertexId)) { continue; } 
                if (neighborId.compareTo(vertexId) < 0) { continue; } 
                 
                Vertex<I,V> neighborVertex = this.dsg.graph.get(neighborId); 
                Set<I> sdNeighbors = neighborVertex.getNeighbors().keySet(); 
 
                // check if entry vertex has an edge to the second degree neighbors 
                for (I sdNeighborId : sdNeighbors) { 
                    if (sdNeighborId.equals(vertexId) || sdNeighborId.equals(neighborId)) { continue; } 
                    if (sdNeighborId.compareTo(neighborId) > 0 || sdNeighborId.compareTo(vertexId) < 0) {  
                         continue;  
                    } 
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                    // only consider the triangle if the entry vertex has the highest id 
                    // prevents duplicate triangles being reported 
                    if (vertexNeighbors.contains(sdNeighborId)) { 
                        // System.out.println( 
                        //     "Found triangle: [" + neighborId + ", " + sdNeighborId + ", " + vertexId + "]" 
                        // ); 
                        this.triangles++; 
                    } 
                } 
            } 
        }     
         
        @Override 
        public void combine(final Aggregator aggregator) { 
            // combine results from each partition 
            final TriangleCountingAggregator<I,V> other = getClass().cast(aggregator); 
            this.triangles += other.triangles; 
        } 
 
        @Override 
        public Integer aggregate() { 
            return triangles; 
        } 
} 

6. Benchmark results 
Benchmark results were completed using the UWB hermes1-24 machines. Each benchmark was 
evaluated using six different graphs (1k, 3k, 5k, 10k, 20k, and 40k vertices) with eight different cluster 
sizes (1, 2, 4, 8, 12, 16, 20, 24). Each combination of graph and cluster size was run three times and the 
average of three runs were recorded. See Appendixes A-C to view the full execution results and 
Appendixes D-F to view the line chart comparisons of the benchmarks.  

6.1 Strongly Connected Components Results 

MASSs implementation of SCC outperformed Hazelcast’s on every combination of graph size to cluster 
size. As viewed on figure 8, MASS and Hazelcast’s performance are somewhat similar on one machine, 
but as you increase the cluster size, the gap intensifies, with MASSs runtime staying somewhat steady 
while Hazelcast’s would see spikes.  
 
Figure 8: Strongly Connected Components on 10k graph 
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The reason for these differences I believe lie in how the graphs are traversed. Strongly Connected 
Components require traversing as many edges that can be reached. MASS utilizes a parallel BFS traversal 
where for every unvisited neighbor, an agent will pick one to traverse along and spawn child agents at the 
remaining. Because agents operate within their own processes, vertices can be processed concurrently, 
eliminating the need to backtrack to unvisited paths. Increasing the cluster size increases the number of 
processes available for agents, ultimately minimizing context switching. This may explain why MASS 
isn’t affected much by communication overhead until you get to 24 machines. In Hazelcast’s case, even 
though an asynchronous task is being submitted to handle the graph traversal, it is still a single threaded 
operation. Increasing the cluster size spreads the data out, ultimately increasing the number of calls over 
the network, to which Hazelcast gets heavily penalized. 
 
Another reason for MASSs good performance also lies in how many agents are being spawned. My 
earlier point may have alluded to an optimization of spawning an agent at each vertex to speed up SCC 
detection, but doing so would degrade performance due to such a high number of agents existing at one 
time. One thing to note about MASSs SCC implementation is that on the 40k graph it fails when running 
on 2 and 4 machines. This may be due to there not being enough memory to accommodate the MASS 
agent workload + communication overhead. As opposed to running it on one machine, there is enough 
memory to run MASS on the 40k graph since there is no communication overhead. And on 8+ machines, 
there is enough memory to also accommodate the storage needed for communication overhead.   

6.2 Weakly Connected Components Results 
MASSs implementation of WCC slightly outperformed Hazelcast’s on most combinations of graph size to 
cluster size. As viewed on figure 9, both platforms are on par with each other, increasing in speed as the 
cluster size grows.  
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Figure 9: Weakly Connected Components on 40k graph 

 
 
Similar to my conclusion for why MASS SCC performs well, MASS WCC also utilizes a parallel BFS 
traversal, which can explain why performance gets better (up until 24 machines). In Hazelcast’s case, it 
uses aggregators to first run at each partition before combining the results. When the cluster size 
increases, the number of partitions each machine manages decreases, allowing for faster processing of the 
partitions it does manage. And because Hazelcast Aggregation is read-only and runs on the data itself, 
there is minimal communication overhead.  

6.3 Triangle Counting Results 
Hazelcast Triangle Counting outperformed MASSs two implementations, with MASSs implementation of 
Triangle Counting using GraphPlaces/GraphModel also outperforming the MASS implementation 
using a random graph generator. As viewed on figure 10, Hazelcast and MASSs use of GraphPlaces 
are closely matched with Hazelcast having a slight edge regardless of cluster size. 
 
Figure 10: Triangle Counting on 1k graph 
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Similar to Hazelcast WCC, Hazelcast Triangle Counting uses aggregators, so increasing the cluster size 
resulted in better performance. For MASS, unlike SCC and WCC, a traversal through the graph is not 
necessary, so fewer agents are generated requiring less computation. This is why spawning an agent at 
each vertex works for triangle counting but not SCC/WCC. However, the Hazelcast implementation 
proved to be more scalable as MASS had a lower ceiling before it crashed/failed. Some observations of 
the two MASS approaches I noticed include: 

● For triangle counting with GraphModel, I get a nullPointerException on 
getGraph() when I run with a cluster size of 16 or more. As well, only graphs 1k, 3k, and 
5k using 1, 2, 4, 8, and 12 machines worked without any errors. Beyond this, the program 
would crash with either a nullPointerException or take too long to finish.  

● For triangle counting without using GraphModel (the random graph generator), only 1k 
worked using 1, 2, 4, and 8 machines. After that, I get an ArrayIndexOutOfBounds 
error. And if I tried a 3k graph or higher, I would get a timeout error.   

7. Programmability 
In terms of programmability, both Java MASS and Hazelcast provided intuitive APIs that made 
implementing graph computing algorithms flexible and straightforward. Hazelcast’s key-value 
representation of graphs is more prevalent than MASSs agents and places, so I had an easier time 
onboarding/understanding Hazelcast than MASS. As well, Hazelcast’s rich suite of distributed computing 
features provided me with a wide range of possible implementations. But MASSs ability to have agents 
not only traverse places but also store information and communicate amongst each other provides a level 
of performance enhancements I don’t think Hazelcast offers. As well, being able to spawn child agents to 
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contribute to traversals is why I believe MASS performed better than Hazelcast in the SCC and WCC 
benchmarks.  
 
Tables 1, 2, and 3 show the programmability metrics captured between MASS and Hazelcast’s 
benchmarks. 
 
Table 1: MASS vs Hazelcast Strongly Connected Components Programmability Metrics 
 

Measurement (MASS) Value 

Number of files 4 

Number of methods 23 

Total Lines of Code (LOC) 624 

Lines of Logic 498 

Boilerplate % 35.54% 

Cyclomatic Complexity 3.9 

Lack of Cohesion in Methods 
(LCOM4) 

1.25 

 
Table 2: MASS vs Hazelcast Weakly Connected Components Programmability Metrics 
 

Measurement (MASS) Value 

Number of files 4 

Number of methods 20 

Total Lines of Code (LOC) 631 

Line of Logic 380 

Boilerplate % 39.47% 

Cyclomatic Complexity 3.5 

Lack of Cohesion in Methods 
(LCOM4) 

1.25 

 
Table 3: MASS (using GraphModel) vs Hazelcast Triangle Counting Programmability Metrics 
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Measurement (Hazelcast) Value 

Number of files 3 

Number of methods 43 

Total Lines of Code (LOC) 1157 

Line of Logic 529 

Boilerplate % 30.81% 

Cyclomatic Complexity 2.6 

Lack of Cohesion in Methods 
(LCOM4) 

2.17 

Measurement (Hazelcast) Value 

Number of files 3 

Number of methods 38 

Total Lines of Code (LOC) 899 

Line of Logic 420 

Boilerplate % 38.1% 

Cyclomatic Complexity 2.6 

Lack of Cohesion in Methods 
(LCOM4) 

2 
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Measurement (MASS) Value 

Number of files 3 

Number of methods 12  

Total Lines of Code (LOC) 564 

Line of Logic 181 

Boilerplate % 36.96% 

Cyclomatic Complexity 3.7 

Lack of Cohesion in Methods 
(LCOM4) 

2.3 

8. Conclusion 
This quarter, I implemented and benchmarked the Strongly Connected Components and Weakly 
Connected Components algorithms in both Hazelcast and MASS, and the Triangle Counting algorithm in 
Hazelcast. MASS outperformed Hazelcast in the SCC and WCC algorithms while Hazelcast not only 
outperformed but scaled better in the Triangle Counting algorithm.  
 
Future work can include improving MASSs GraphModel performance. Since GraphModel is 
attempting to load the whole graph onto one machine, a graph too large (or a large cluster size attempting 
a high usage of message transfers) will result in runtime failures.  

Appendix A: Full Strongly Connected Components Execution Results 

MASS SCC Results 
num-members num-vertices total-agents-generated load-time (sec) runtime (sec) 

1 1000 367926 1.092 6.391 

2 1000 367926 2.601 7.882 

4 1000 367926 5.222 6.37 

8 1000 367926 10.295 6.529 

12 1000 367926 25.006 14.679 

16 1000 367926 24.355 8.429 

20 1000 367926 32.504 9.814 
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Measurement (Hazelcast) Value 

Number of files 3 

Number of methods 30 

Total Lines of Code (LOC) 717 

Line of Logic 325 

Boilerplate % 37.28% 

Cyclomatic Complexity 2.5 

Lack of Cohesion in Methods 
(LCOM4) 

1.75 
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24 1000 367926 48.897 31.079 

1 3000 1157222 1.099 18.41 

2 3000 1157222 2.517 20.679 

4 3000 1157222 5.22 18.155 

8 3000 1157222 10.206 16.125 

12 3000 1157222 23.777 34.037 

16 3000 1157222 25.747 16.111 

20 3000 1157222 30.478 20.65 

24 3000 1157222 46.875 62.471 

1 5000 1941566 1.214 32.711 

2 5000 1941566 2.62 30.87 

4 5000 1941566 5.173 27.232 

8 5000 1941566 10.049 24.565 

12 5000 1941566 23.958 52.344 

16 5000 1941566 22.529 22.971 

20 5000 1941566 30.387 33.54 

24 5000 1941566 46.823 77.886 

1 10000 3899966 1.476 61.159 

2 10000 3899966 2.98 60.681 

4 10000 3899966 5.255 47.76 

8 10000 3899966 10.328 41.672 

12 10000 3899966 24.826 76.454 

16 10000 3899966 23.72 41.478 

20 10000 3899966 30.927 52.704 

24 10000 3899966 49.191 133.243 

1 20000 7825526 1.92 122.66 

2 20000 7825526 3.151 118.97 

4 20000 7825526 5.252 98.179 

8 20000 7825526 10.404 76.721 

12 20000 7825526 26.041 119.219 

16 20000 7825526 23.006 71.258 

20 20000 7825526 31.704 96.708 

24 20000 7825526 48.066 217.065 

1 40000 15737702 2.865 234.301 

2 40000 NA NA NA 

4 40000 NA NA NA 

8 40000 15737702 10.802 192.977 
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12 40000 15737702 16.901 159.211 

16 40000 15737702 23.838 170.845 

20 40000 15737702 33.193 167.496 

24 40000 15737702 53.377 416.598 

Hazelcast SCC Results 
num-members num-vertices num-edges load time (sec) runtime (sec) 

1 1000 93480 0.543 7.914 

2 1000 93480 0.652 16.911 

4 1000 93480 0.635 25.575 

8 1000 93480 0.612 41.917 

12 1000 93480 0.699 66.407 

16 1000 93480 1.163 67.929 

20 1000 93480 0.812 61.841 

24 1000 93480 1.031 55.176 

1 3000 293804 0.958 23.919 

2 3000 293804 0.922 49.59 

4 3000 293804 0.87 77.206 

8 3000 293804 0.824 127.151 

12 3000 293804 0.861 180.68 

16 3000 293804 0.905 163.825 

20 3000 293804 1.041 155.639 

24 3000 293804 1.13 184.951 

1 5000 492890 1.161 38.521 

2 5000 492890 1.128 82.249 

4 5000 492890 1.06 142.589 

8 5000 492890 1.037 211.193 

12 5000 492890 1.186 256.158 

16 5000 492890 1.151 272.53 

20 5000 492890 1.3 288.086 

24 5000 492890 1.398 252.14 

1 10000 989990 1.663 77.599 

2 10000 989990 1.687 165.679 

4 10000 989990 1.528 267.375 

8 10000 989990 1.359 417.562 

12 10000 989990 1.597 484.762 
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16 10000 989990 1.583 529.904 

20 10000 989990 1.85 506.216 

24 10000 989990 2.126 572.812 

1 20000 1986380 2.533 148.734 

2 20000 1986380 2.634 331.664 

4 20000 1986380 2.131 577.592 

8 20000 1986380 2.045 854.984 

12 20000 1986380 2.351 1126.491 

16 20000 1986380 2.586 1070.5 

20 20000 1986380 2.771 1135.935 

24 20000 1986380 4.836 2280.741 

1 40000 3994424 4.057 305.06 

2 40000 3994424 4.402 668.154 

4 40000 3994424 3.958 1048.195 

8 40000 3994424 3.621 1726.983 

12 40000 3994424 6.762 3751.369 

16 40000 3994424 4.175 2536.314 

20 40000 3994424 4.358 2292.878 

24 40000 3994424 4.836 2280.741 

Appendix B: Full Weakly Connected Components Execution Results 

MASS WCC Results 
num-members num-vertices total-agents-generated load-time (sec) runtime (sec) 

1 1000 92481 1.025 1.725 

2 1000 92481 2.53 1.799 

4 1000 92481 4.877 1.556 

8 1000 92481 9.821 1.776 

12 1000 92481 15.587 2.018 

16 1000 92481 31.594 2.419 

20 1000 92481 40.641 4.602 

24 1000 92481 55.086 20.897 

1 3000 290805 1.12 7.464 

2 3000 290805 2.642 4.796 

4 3000 290805 4.979 3.219 

8 3000 290805 9.907 2.853 
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12 3000 290805 15.502 2.998 

16 3000 290805 32.163 3.325 

20 3000 290805 44.668 5.957 

24 3000 290805 56.991 22.528 

1 5000 487891 1.244 17.349 

2 5000 487891 2.665 8.469 

4 5000 487891 5.065 4.852 

8 5000 487891 10.168 3.812 

12 5000 487891 15.756 3.896 

16 5000 487891 32.166 4.155 

20 5000 487891 40.867 6.826 

24 5000 487891 55.292 23.319 

1 10000 979991 1.4 57.924 

2 10000 979991 2.871 21.852 

4 10000 979991 5.247 9.441 

8 10000 979991 10.16 6.271 

12 10000 979991 15.763 5.214 

16 10000 979991 31.962 5.549 

20 10000 979991 41.044 9.511 

24 10000 979991 58.009 30.984 

1 20000 1966381 1.898 206.237 

2 20000 1966381 3.091 68.935 

4 20000 1966381 5.404 24.402 

8 20000 1966381 10.344 11.588 

12 20000 1966381 16.046 8.259 

16 20000 1966381 32.309 8.258 

20 20000 1966381 41.529 13.467 

24 20000 1966381 56.432 42.204 

1 40000 3954425 2.886 821.771 

2 40000 3954425 3.79 264.688 

4 40000 3954425 5.798 74.47 

8 40000 3954425 10.72 28.296 

12 40000 3954425 16.543 17.974 

16 40000 3954425 32.356 14.164 

20 40000 3954425 43.448 20.301 

24 40000 3954425 59.305 55.658 
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Hazelcast WCC Results 
num-members num-vertices num-edges load time (sec) runtime (sec) 

1 1000 93480 1.095 17.017 

2 1000 93480 1.033 26.421 

4 1000 93480 0.847 13.461 

8 1000 93480 0.873 9.354 

12 1000 93480 1.037 9.284 

16 1000 93480 1.188 9.748 

20 1000 93480 1.14 8.186 

24 1000 93480 1.072 7.23 

1 3000 293804 1.527 52.164 

2 3000 293804 1.496 76.198 

4 3000 293804 1.364 39.4 

8 3000 293804 1.169 23.578 

12 3000 293804 1.333 21.942 

16 3000 293804 1.445 65.211 

20 3000 293804 1.274 18.531 

24 3000 293804 1.427 16.477 

1 5000 492890 2.074 84.015 

2 5000 492890 1.764 126.815 

4 5000 492890 1.414 62.825 

8 5000 492890 1.298 39.209 

12 5000 492890 1.513 34.039 

16 5000 492890 1.764 33.298 

20 5000 492890 1.586 28.276 

24 5000 492890 1.545 25.244 

1 10000 989990 2.575 172.581 

2 10000 989990 2.232 252.7 

4 10000 989990 1.905 124.799 

8 10000 989990 1.86 74.847 

12 10000 989990 2.057 64.633 

16 10000 989990 2.21 61.553 

20 10000 989990 2.046 53.437 

24 10000 989990 1.695 43.905 

1 20000 1986380 4.391 344.179 

2 20000 1986380 4.004 485.215 
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4 20000 1986380 2.906 242.39 

8 20000 1986380 2.621 147.382 

12 20000 1986380 3.014 124.564 

16 20000 1986380 2.912 116.918 

20 20000 1986380 2.71 98.284 

24 20000 1986380 2.445 87.432 

1 40000 3994424 6.269 696.875 

2 40000 3994424 6.805 988.923 

4 40000 3994424 5.323 511.219 

8 40000 3994424 4.292 290.735 

12 40000 3994424 3.888 247.65 

16 40000 3994424 4.401 227.437 

20 40000 3994424 4.26 191.692 

24 40000 3994424 4.006 165.389 

Appendix C: Full Triangle Execution Results 

MASS Triangle Counting Results Using GraphModel 
num-members num-vertices total-agents-generated load-time (sec) runtime (sec) 

1 1000 1778723 0.151 16.668 

2 1000 1778723 0.133 13.09 

4 1000 1778723 0.159 7.87 

8 1000 1778723 0.297 6.086 

12 1000 1778723 0.325 5.607 

1 3000 5508612 0.238 79.753 

2 3000 5508612 0.215 50.743 

4 3000 5508612 0.26 24.202 

8 3000 5508612 0.356 15.302 

12 3000 5508612 0.45 12.1 

1 5000 9192458 0.335 203.333 

2 5000 9192458 0.315 122.801 

4 5000 9192458 0.31 49.977 

8 5000 9192458 0.451 26.094 

12 5000 9192458 0.511 19.184 

 
25 



Noel Beraki                CSS 497: Spring 2025 term report      
 

       
 

MASS Triangle Counting Results Using Random Graph 
num-members num-vertices total-agents-generated num-triangles-found load-time (sec) runtime (sec) 

1 1000 2125319 1000000 56.09 55.19 

2 1000 4125319 2000000 52.21 55.594 

4 1000 7273102 3147783 64.82 47.264 

8 1000 11396769 4309409 105.57 39.647 

Hazelcast Triangle Counting Results 
num-members num-vertices num-edges load time (sec) runtime (sec) 

1 1000 93480 1.02 10.094 

2 1000 93480 1.172 14.715 

4 1000 93480 0.893 7.519 

8 1000 93480 0.726 5.319 

12 1000 93480 0.984 5.477 

16 1000 93480 1.15 6.005 

20 1000 93480 1.052 4.995 

24 1000 93480 0.842 4.379 

1 3000 293804 1.574 28.335 

2 3000 293804 1.64 41.173 

4 3000 293804 1.326 20.507 

8 3000 293804 1.029 12.985 

12 3000 293804 1.519 12.381 

16 3000 293804 1.468 13.154 

20 3000 293804 1.41 11.13 

24 3000 293804 1.46 10.093 

1 5000 492890 2.117 46.1 

2 5000 492890 2.075 64.993 

4 5000 492890 1.512 31.554 

8 5000 492890 1.36 20.043 

12 5000 492890 1.639 18.407 

16 5000 492890 1.952 18.692 

20 5000 492890 1.612 16.472 

24 5000 492890 1.769 14.277 

1 10000 989990 2.596 84.295 

2 10000 989990 2.592 128.125 
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4 10000 989990 2.063 63.171 

8 10000 989990 1.882 38.063 

12 10000 989990 2.196 33.831 

16 10000 989990 2.399 33.462 

20 10000 989990 2.12 28.141 

24 10000 989990 2.168 24.337 

1 20000 1986380 4.202 173.062 

2 20000 1986380 3.817 249.16 

4 20000 1986380 3.032 121.809 

8 20000 1986380 2.723 75.061 

12 20000 1986380 2.858 64.37 

16 20000 1986380 3.306 61.314 

20 20000 1986380 2.78 51.202 

24 20000 1986380 2.462 44.564 

1 40000 3994424 6.44 341.477 

2 40000 3994424 6.222 492.082 

4 40000 3994424 4.912 241.605 

8 40000 3994424 4.149 146.076 

12 40000 3994424 4.232 126.036 

16 40000 3994424 4.91 116.628 

20 40000 3994424 4.095 97.466 

24 40000 3994424 3.668 86.392 
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Appendix D: Full Strongly Connected Components Execution Diagrams 
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Appendix E: Full Weakly Connected Components Execution Diagrams 
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Appendix F: Full Triangle Counting Execution Diagrams 
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Appendix G: Running Benchmarks 
All benchmarks can be found in the develop branch of the mass_java_appl repository. 
 
If you don’t have the latest version of mass_java_core, you can download following these steps: 

1. git clone https://<ACCOUNT>@bitbucket.org/mass_library_developers/mass_java_core.git  
2. cd mass_java_core  
3. Run: mvn -DskipTests clean package install 

 
MASS SCC 

1. Location: Graphs/StronglyConnectedComponents/MASS_StronglyConnectedComponents 
2. Build the jar file using the make command. 
3. Configure the nodes.xml file to specify what machines you want to run it on and what port to 

listen in on. 
4. Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> 

[boolean_to_print_SCCs] 
 
Hazelcast SCC 

1. Location: Graphs/Hazelcast_benchmarks/StronglyConnectedComponents 
2. Build the jar file using the make command. 
3. In the run.sh file, specify what machines you want to run the Hazelcast cluster on. 
4. Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> 

<cluster size> [boolean to print components] [boolean to print 
all components] [component threshold size] 

 
MASS WCC 

1. Location: Graphs/StronglyConnectedComponents/MASS_StronglyConnectedComponents 
2. Build the jar file using the make command. 
3. Configure the nodes.xml file to specify what machines you want to run it on and what port to 

listen in on. 
4. Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> 

[boolean_to_print_SCCs] 
 
Hazelcast WCC 

1. Location: Graphs/Hazelcast_benchmarks/WeaklyConnectedComponents 
2. Build the jar file using the make command. 
3. In the run.sh file, specify what machines you want to run the Hazelcast cluster on. 
4. Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> 

<cluster size> [boolean to print components] [boolean to print 
all components] [component threshold size] 

 
Hazelcast Triangle Counting 
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1. Location: Graphs/Hazelcast_benchmarks/Triangle Counting 
2. Build the jar file using the make command. 
3. In the run.sh file, specify what machines you want to run the Hazelcast cluster on. 
4. Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> <cluster 

size> 
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