
Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Comparison of Distributed Graph Computing Performance
Between Java MASS and Hazelcast

Table of Contents
1. Overview... 2
2. MASS Background...3
3. Hazelcast Background... 4

3.1 Hazelcast Overview...4
3.2 Hazelcast Features... 4

4. Graph Benchmarks Overview.. 5
4.1 Strongly Connected Components (SCC)...5
4.2 Weakly Connected Components (WCC)... 5
4.3 Triangle Counting.. 6
4.4 PageRank... 7
4.5 Label Propagation..7

5. Benchmark Implementations..8
5.1 Strongly Connected Components Implementations.. 8

5.1.1 MASS Implementation.. 8
5.1.2 Hazelcast Implementation.. 11

5.2 Weakly Connected Components Implementations..12
5.2.1 MASS Implementation.. 12
5.2.2 Hazelcast Implementation..14

5.3 Triangle Counting Implementations.. 15
5.3.1 MASS Implementation.. 15
5.3.2 Hazelcast Implementation..15

5.4 PageRank Implementations... 17
5.4.1 MASS Implementation.. 17
5.4.2 Hazelcast Implementation..17

5.5 Label Propagation Implementations..18
5.5.1 MASS Implementation.. 18
5.5.2 Hazelcast Implementation..19

6. Benchmark results..19
6.1 Strongly Connected Components Results... 20
6.2 Weakly Connected Components Results... 21
6.3 Triangle Counting Results... 22
6.4 PageRank Results.. 22
6.5 Label Propagation Results... 23

7. Programmability.. 24

1

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

8. Conclusion...26
Appendix A: Strongly Connected Components Execution Results... 27

MASS SCC Results... 27
Hazelcast SCC Using IMap.getAll() Results.. 28

Appendix B: Weakly Connected Components Execution Results...30
MASS WCC Results... 30
Hazelcast WCC Using IMap.getAll() Results...31

Appendix C: Triangle Counting Execution Results.. 32
MASS Triangle Counting Results... 32
Hazelcast Triangle Counting Results...34

Appendix D: PageRank Execution Results..35
MASS PageRank V2 Results.. 35
Hazelcast PageRank Results..37

Appendix E: Label Propagation Execution Results..38
MASS Label Propagation V2 Results... 38
Hazelcast Label Propagation Results.. 39

Appendix F: Full Strongly Connected Components Execution Diagrams... 42
Appendix G: Full Weakly Connected Components Execution Diagrams.. 43
Appendix H: Full Triangle Counting Execution Diagrams..44
Appendix I: Full PageRank Execution Diagrams... 45
Appendix J: Full Label Propagation Execution Diagrams.. 46
Appendix K: Running Benchmarks... 47

1. Overview

Agent-based modeling (ABM) deals with observing the interactions between a large number of agents
representing some real-world entity. A focal point of multi-agent simulations is data/pattern discovery,
and with a population size potentially ranging in the millions, a single computer isn’t capable of handling
all responsibilities. As well, a computer handling all of the work may be slow to find meaningful insights,
so being able to paralyze the model to have concurrent execution using multiple computers can decrease
the time needed to get results. For this reason, the Distributed System Laboratory (DSL) at the CSS
division in UWB has developed a Java parallel-computing library named MASS (Multi-Agent Spatial
Simulation).

MASS can be applied not only to conventional ABM simulations but also to graph computing, serving as
a storage and retrieval system. Graph databases play a major role in modern computing and storage, being
applied in many applications such as social networks, recommendation systems, and fraud detection.
They represent the relationships between data (nodes/vertices) using edges that connect two nodes. The
DSL is currently developing a distributed, agent-based, graph database system with MASS, and would

2

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

like to evaluate MASS’s graph computing performance and programmability against commonly used
distributed computation platforms. One such system is Hazelcast.

My project focuses on comparing Java MASS’s and Hazelcast’s graph computing performance using
frequently used graph algorithms. Specifically, my capstone was spent implementing and benchmarking
the Strongly Connected Components (SCC), Weakly Connected Components (WCC), Triangle Counting,
PageRank, and Label Propagation algorithms. For WCC, I had worked with Aria Naderi to improve the
scalability of the previous implementation and MASS’s PageRank as well as Label Propagation
implementations were completed by Robert Zimmerman.

In terms of benchmarking, I used six different graphs with eight different cluster sizes, evaluating MASS
and Hazelcast performances in terms of speed and scalability. As well, to assess their structure and
maintainability, programmability metrics recorded were the lines of code (LOC), boilerplate %,
cyclomatic complexity, and lack of cohesion in methods (LCOM4).

2. MASS Background
MASS distributes a multi-agent simulation among multiple machine nodes in-memory. Its composition is
built mainly on two components: Places and Agents. A user’s application is distributed among
Places, a matrix/graph where each element is a Place object. A Place object is capable of storing
and exchanging information amongst each other, and is the host location where agents reside. Performing
computations on the Places are done using Agents, execution instances that are able to traverse the
matrix. MASS spawns the same number of threads as that of CPU cores per machine node. Whereas
places are mapped to threads, agents are mapped to processes, therefore allowing agents to communicate
with each other via IPC and spawn child agents to provide parallel processing.

MASS developers have extended MASS to also be used as a graph database by creating the data
structures GraphPlaces, VertexPlace, and GraphAgent, which extend from the Places,
Place, and Agent classes. Vertices are distributed among the cluster through a round-robin approach as
GraphPlaces stores a list of VertexPlace objects and represents a graph in an adjacency list
format, where each VertexPlace object has a list of outgoing neighbors. As well, GraphAgent
objects can override the map() function, which specifies how many agents to instantiate at each vertex.
Users can create custom classes that extend these three classes for their applications.

MASS applications generally have 3-4 classes: An agent class that extends GraphAgent, a vertex class
that extends VertexPlace, an ArgsToAgents class that specifies arguments/instance variables an
agent will have, and a class with a main() method that runs the simulation. The program starts by
creating a GraphPlaces object and an Agents object to instantiate a set of agents on the
GraphPlaces. From there, a sequence of onArrival() and migrateTo() function calls can be
made to each agent using agents.callAll() until all agents have finished their tasks and terminated
or until some other condition ends the simulation.

3

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

3. Hazelcast Background

3.1 Hazelcast Overview

Hazelcast is an in-memory distributed computation and storage platform. It can serve as a distributed
second level cache for applications, loading data on disk into memory and providing in-memory speeds to
users. It stores data as key-value pairs in “shared” RAM spread across a cluster of machines. By default,
Hazelcast offers 271 partitions, where a single partition is a memory segment holding a portion of the
whole data. Partitions are evenly distributed amongst the cluster, and each partition has a backup copy
residing on a different machine to provide fault tolerance. What partition holds a piece of data is
determined by hashing the data and modding it to the total partition count. As well, repartitioning of data
is automatically done when a machine leaves or joins the cluster.

Machines in the same subnet can form a cluster either through TCP/IP or Multicast discovery. By starting
up a cluster instance with the same name, machines are able to discover each other automatically.
However, after a cluster is formed, all communication between cluster members is done using TCP/IP.

3.2 Hazelcast Features

All Hazelcast data structures are thread safe, but only the IMap data structure (at least of what I used) is
partitioned amongst cluster machines. An IMap is used to represent a graph, where the key is the vertex
id and the value is a Vertex object that contains a map of the outgoing neighbors to the vertex.

Hazelcast provides a suite of distributed computing tools, allowing users to run tasks in parallel on
different machines. Leveraging the combined processing power of the cluster, machines are able to send
data over a network as long as the data can be serialized.

Hazelcast features I used in my implementations include:

●​ Predicates API: Used to query data from an IMap. The query is sent to each member in the
cluster and it looks at its local partitions to send any entries that match the query.

●​ Entry Processor: Used for bulking processing on IMap entries. Given a set of keys (or the whole
graph), it executes a read and update operation on the partition where the data resides, eliminating
costly network hops.

●​ IExecutorService: Asynchronously executes tasks that don’t require modifying IMap entries. The
user creates a custom class that implements the Callable interface to return a value when the
task completes (or Runnable when a return value is not necessary), and passes it into an
IExecutorService object along with a specific Member or key to execute/submit the task
to.

●​ Aggregators: Executing in parallel across all cluster members, it computes the value of a function
over all the entries of an IMap. The process consists of three phases: accumulation where each
partition runs the accumulate() function on its local entries; combination where each

4

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

partitions results in the accumulation phase are combined; and aggregation, where the combined
result can be further processed before returned.

4. Graph Benchmarks Overview

4.1 Strongly Connected Components (SCC)

Given a directed graph, the strongly connected components algorithm seeks to find all the maximal
subgraphs in which there is a directed path from any vertex to another. In other words, the goal is to find
all of the connected subgraphs that exist within the whole graph.

Figure 1: Three strongly connected components in an 8-node graph

The most common approach to this problem is implementing Tarjan’s Serial SCC algorithm. It works by
finding what vertices share the same low link value: the smallest vertex id reachable from it when
performing DFS. Tarjan’s algorithm works well on small graphs, but is slow on larger graphs due to the
backtracking and stack maintenance steps. As well, its single threaded nature doesn’t make it suitable for
a distributed environment. For this reason, I used the divide-and-conquer strong components (DCSC)
algorithm proposed by Sandia National Laboratories and Texas A&M University. DCSC does not rely on
a stack to find SCC’s but instead recursively partitions the graph in a way of isolating SCC’s within a
single subgraph. It works by picking a random pivot vertex and finding its set of predecessors and
successor vertices. The intersection of the two sets is the SCC the pivot is located in. From there, the
graph can be partitioned into three subgraphs: the set of predecessors not in the SCC, the set of successors
not in the SCC, and the remainder vertices. All three subgraphs guarantee not to have overlapping vertices
in an SCC, and therefore can be explored concurrently.

A variation of DCSC was used in both the MASS and Hazelcast implementations of SCC.

4.2 Weakly Connected Components (WCC)

Given a directed graph, the weakly connected components algorithm seeks to find all the maximal
subgraphs in which there is an undirected path from any vertex to another. The premise to solving this

5

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

problem is to convert the directed graph into an undirected graph and solve the Connected Components
algorithm.

Figure 2: One weakly connected component in an 8-node graph

MASS and Hazelcast adopt different approaches to this problem. MASS uses a low-link concept to
represent the smallest vertex id that a vertex can reach. After processing the graph, vertices with the same
low-link value are in the same weakly connected component. Hazelcast on the other hand has each vertex
examine its outgoing neighbors and makes use of an union-find data structure to combine sets with
overlapping vertices.

4.3 Triangle Counting

The triangle counting algorithm seeks to find the number of 3-node cycles that exist in a graph.

Image source: geeksforgeeks

MASS and Hazelcast have different approaches to this problem. MASS follows a three step phase in
which agents traverse along their neighbors followed by their second-degree neighbors (neighbor of
neighbor). In the last phase, it will attempt to return back to its original vertex. A successful completion of
the three phases results in a triangle. Hazelcast on the other hand follows a more iterative approach. Each

6

https://www.geeksforgeeks.org/number-of-triangles-in-a-undirected-graph/

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

vertex will examine all of its neighbors and its second-degree neighbors. If there is an edge from the
vertex to the second-degree neighbor, the triangle counter is incremented.

4.4 PageRank

PageRank was developed by Google co-founders Larry Page and Sergey Brin to rank web pages in search
engine results. Given a directed graph, where nodes represent web pages and edges represent hyperlinks
between them, the algorithm assigns a numerical score to each page representing its relative importance.
Utilizing the random surfing model which simulates a user randomly following some path of hyperlinks
across the internet, the algorithm estimates the likelihood that a random surfer lands on a given page.

 ​ Image source: Medium

Pages linked to by other important pages receive higher scores because they are more likely to be visited
in a random walk. Therefore, the probability score of a page is determined not just by the number of
incoming links but also the quality of those links. The quality of a link is based on the rank of the linking
page and the number of its outgoing links.

Both MASS and Hazelcast follow the same algorithm. Running for a fixed number of iterations, each
iteration has two phases. The first phase consists of each vertex evenly distributing its rank to their
outgoing neighbors. The second phase has each vertex compute its new rank based on the distributions it
received from its incoming neighbors. MASS has four variations of a PageRank implementation worth
exploring while Hazelcast has one implementation that somewhat follows the MapReduce programming
model.

4.5 Label Propagation

Given an undirected graph, the Label Propagation algorithm finds communities in a graph by having
vertices iteratively exchange and adopt labels, with an end result of grouping vertices with a shared label
id. As neo4j describes the process: “the intuition behind the algorithm is that a single label can quickly
become dominant in a densely connected group of nodes, but will have trouble crossing a sparsely
connected region.” As labels propagate, communities form as nodes quickly agree upon a shared label.

7

https://medium.com/@sahirnambiar/a-simplified-implementation-of-pagerank-b8b5d282dc42

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Image source: ResearchGate

The algorithm runs iteratively similar to PageRank, ending after a fixed number of iterations or until
convergence where communities have been finalized. Each iteration likewise has two phases, where the
first sees vertices sending their labels to neighbors while the second phase has them choosing the label
with the highest frequency.

Also similar to PageRank, there are four MASS variations of Label Propagation while Hazelcast has one
implementation that also operates akin to the MapReduce model.

5. Benchmark Implementations

5.1 Strongly Connected Components Implementations

To find an SCC of a pivot vertex using the DCSC algorithm, it requires finding the intersection between
the set of predecessor vertices and successor vertices. The predecessors are the set of vertices that can
reach the pivot while the successors are the set of vertices that the pivot can reach. The successors can be
found doing a simple traversal along the outgoing edges starting at the pivot, but the predecessors require
traversing along transposed/backward edges. These transposed edges need to be created before the
process of finding the SCC’s can begin.

5.1.1 MASS Implementation

The MASS implementation of SCC starts with spawning an agent at each vertex. Before the agents can
start traversing the graph, transposed edges are created in the preprocessGraph() function. In this
function, each agent spawns a child agent to migrate to the outgoing neighbors. Then each child agent will
tell the neighbor vertex it’s on to add a transposed edge by calling addNeighbor(), where the
neighbor id is the originalPlaceId the child agent came from + the number of vertices in the graph,
and the weight is -1. The child agents will then terminate and we are back to having one agent per vertex.

After transposed edges are added, a pivot vertex is chosen and sent to all agents. If the agent is not at the
pivot vertex, it terminates. Otherwise, the agent will spawn a child agent (which is more like a sibling
agent). So before starting the search for an SCC at the pivot vertex, the simulation only has two agents
which are on the same vertex: one to traverse along the forward edges and the other to traverse along the
transposed edges.

8

https://www.researchgate.net/figure/An-example-of-the-Label-Propagation-Algorithm_fig2_340627329

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

During the simulation, each agent performs a BFS traversal. On each call to onArrival(), the agent
will pick the first unvisited neighbor as the nextPlaceId and spawn child agents at the remaining
neighbors. To prevent sibling agents from going along paths another sibling/parent has already done, a
guard rail is placed to check if a relative agent has already visited the place the current agent is on. If so,
then the agent is done traversing. When an agent finishes its traversal (either through a failure to get past
the guard rail or no more unvisited vertices to reach), it returns back to its originalPlaceId and
reports its visited set as either predecessors or successors. After all agents have completed, the SCC can
be computed, returned, and another iteration for an SCC can be found with a new pivot vertex. This
process repeats until all vertices have been processed.

Figure 3: MASS SCC onArrival() function

private Object onArrival() {

 nextPlaceId = -1;
 MyVertex place = (MyVertex) getPlace();
 int placeId = place.getIndex()[0];
 Object[] placeNeighbors = place.getNeighbors();
 Object[] neighborWeights = place.getWeights();

 if (doneTraversing && placeId == originalPlaceId) {
 place.onAgentReturn(visited, traversingBackwardEdges);
 kill();
 return null;
 }

 if (place.inComponent) {
 nextPlaceId = originalPlaceId;
 doneTraversing = true;
 return null;
 }

 if (place.visitedAgents.containsKey(originalPlaceId)) {
 int intVal = traversingBackwardEdges ? -1 : 1;
 if (place.visitedAgents.get(originalPlaceId).contains(intVal)) {
 nextPlaceId = originalPlaceId;
 doneTraversing = true;
 return null;
 }
 else {
 place.visitedAgents.get(originalPlaceId).add(intVal);
 }
 }
 else {
 int intVal = traversingBackwardEdges ? -1 : 1;
 IntSet newSet = new IntOpenHashSet();
 newSet.add(intVal);

9

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

 place.visitedAgents.put(originalPlaceId, newSet);
 }

 visited.add(placeId);
 ObjectList<ArgsToAgents> childAgentsToSpawn = new ObjectArrayList<>();
 for (int i = 0; i < placeNeighbors.length; i++) {
 int neighborId = (int) placeNeighbors[i];
 int weight = (int) neighborWeights[i];

 if ((traversingBackwardEdges && weight > 0) || (!traversingBackwardEdges && weight < 0)) {
 continue;
 }
 neighborId = weight < 0 ? neighborId - transposedOffset : neighborId;

 if (!visited.contains(neighborId)) {
 if (nextPlaceId == -1) {
 nextPlaceId = neighborId;
 }
 else {
 // (int transposedOffset, int originalPlaceId, int nextPlaceId
 // boolean doneTraversing, boolean traversingBackwardEdges,
 // IntSet visited)
 childAgentsToSpawn.add(new ArgsToAgents(
 transposedOffset, originalPlaceId, neighborId,
 doneTraversing, traversingBackwardEdges,
 new IntOpenHashSet(visited)
));
 }
 }
 }

 if (!childAgentsToSpawn.isEmpty()) {
 ArgsToAgents[] args = childAgentsToSpawn.toArray(new ArgsToAgents[0]);
 spawn(args.length, args);
 }

 if (nextPlaceId == -1) {
 doneTraversing = true;
 nextPlaceId = originalPlaceId;
 }

 return null;
}

10

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

5.1.2 Hazelcast Implementation

The Hazelcast implementation of SCC takes more liberty to split the graph into subgraphs when an SCC
is found. Each vertex maintains a tag variable, which represents what subgraph the vertex is on.

Transposed edges are added with a custom aggregator class. In accumulate(), each entry key loops
through its neighbors adding an entry to a local map, where the map key is the neighbor id and the value
is a list that includes the entry key. The results of each local partition map then gets merged in
combine(), forming a global map where the value is the list of incoming neighbors for each key. This
map then gets sent to every vertex using an EntryProcessor, where the vertex will record the
incoming neighbors value from its matching key. Finding SCC’s can now be had.

The program starts by picking a pivot vertex and submitting an IExecutorService task using the
SCCTask class to find the SCC of that pivot. The task calls findSCC() where the set of predecessors
and successors are found concurrently by calling traverseGraph(). This function submits a separate
IExecutorService task that uses the GraphTraversalTask class to traverse along either the
forward or transposed edges according to the boolean value passed in. After both tasks have finished, the
intersection can be found and added.

Now with three separate subgraphs, their tag variables are updated to reflect the subgraph they belong
to. This is done using an EntryProcessor, submitting to each set of keys the appropriate newTag
value to update to. Following this, three new pivot vertices are chosen and explored concurrently. This
process repeats until all vertices have been processed.

There are two implementations of Hazelcast SCC. One uses the IMap.get() function to retrieve
neighbors during graph traversals while the other uses IMap.getAll().

Figure 4: Hazelcast SCC findSCC() function

private Map<String,I> findSCC(I vertexId, String tagType, int iteration) {
 try {
 if (vertexId == null) { return null; }

 // current subgraph
 String tag = tagType + iteration;
 iteration++;

 Future<Set<I>> predecessorsFuture = traverseGraph(vertexId, true); // backward edges
 Future<Set<I>> successorsFuture = traverseGraph(vertexId, false); // forward edges

 Set<I> predecessors = predecessorsFuture.get();
 Set<I> successors = successorsFuture.get();

 // found an scc at the intersection.
 Set<I> scc = new HashSet<>(predecessors);

11

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

 scc.retainAll(successors);
 // Theres a chance the only intersection is the pivot vertex itself. Must be greater than 1.
 if (scc.size() > 1) { addToSCC(scc); }

 predecessors.removeAll(scc);
 successors.removeAll(scc);

 // discard all vertices that formed the scc
 updateTags(scc, "n");
 // update remaining vertices to separate subgraphs
 updateTags(predecessors, ("p" + iteration));
 updateTags(successors, ("s" + iteration));

 // find the vertices in the subgraph that were neither a successor or predecessor
 Set<I> remainderVertices = getKeysByTag(tag);
 updateTags(remainderVertices, ("r" + iteration));

 // get next pivots for each of the three subgraphs
 Map<String,I> nextPivots = new HashMap<>();
 if (!predecessors.isEmpty()) { nextPivots.put("p", getRandomKeyFromSet(predecessors)); }
 if (!successors.isEmpty()) { nextPivots.put("s", getRandomKeyFromSet(successors)); }
 if (!remainderVertices.isEmpty()) {
 nextPivots.put("r", getRandomKeyFromSet(remainderVertices));
 }

 return nextPivots.isEmpty() ? null : nextPivots;
 }
 catch (Exception e) {
 e.printStackTrace();
 return null;
 }
}

5.2 Weakly Connected Components Implementations

5.2.1 MASS Implementation

The MASS implementation of WCC starts by spawning an agent at each vertex to collect the set of
vertices in the graph. From this set, a pivot vertex is chosen and sent to each agent. If the agent is not at
the pivot vertex, it terminates, leaving only one agent before starting the simulation. On each call to
onArrival(), each agent will check if its originalPlaceId is less than or equal to the place’s
componentId (low-link value). If it is, the place’s componentId is updated to the agent’s
originalPlaceId, and the place’s neighbors are examined to see if it needs to be visited. Looping
through the list of neighbors, if the neighbor id is less than the agent's originalPlaceId and the
agent hasn’t visited the vertex yet, a child agent is spawned to go to that neighbor. Following this, the
current agent just terminates.

12

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

After all agents have completed, the program checks the componentId of each vertex, grouping
vertices with the same componentId. This process repeats with a new pivot vertex until all vertices
have been processed.

Figure 5: MASS WCC onArrival() function

public Object onArrival() {
 MyVertex place = (MyVertex) getPlace();
 int placeId = place.getIndex()[0];

 if (place.visitedAgents.contains(originalPlaceId)) {
 kill();
 return null;
 }

 visited.add(placeId);
 place.visitedAgents.add(originalPlaceId);

 if (place.componentID >= originalPlaceId) {

 place.componentID = originalPlaceId;
 Object[] placeNeighbors = place.getNeighbors();
 ObjectList<ArgsToAgents> nextVertices = new ObjectArrayList<>();

 for (Object neighbor : placeNeighbors) {
 int candidate = (int) neighbor;
 if (candidate >= place.componentID && !visited.contains(candidate)) {
 // (int originalPlaceId, int nextPlaceId, IntSet visited)
 nextVertices.add(new ArgsToAgents(
 originalPlaceId, candidate, new IntOpenHashSet(visited)
));
 }
 }

 if (!nextVertices.isEmpty()) {
 ArgsToAgents[] args = nextVertices.toArray(new ArgsToAgents[0]);
 spawn(args.length, args);
 }
 }

 kill();

 return null;
}

13

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

5.2.2 Hazelcast Implementation

The Hazelcast implementation of WCC makes use of a disjoint set/union-find. A disjoint set is a data
structure that stores a set of sets in which no two sets have overlapping elements. It works by assigning a
parent to each element which originally, is itself. A call to unionize two elements (put them in the same
set) means having them share the same parent. The merge() function combines the sets of an input
disjoint set and a call to getComponents() combines elements with the same parent into a set and
returns a list of sets.

The program starts by converting the directed graph into an undirected one and uses Hazelcast
aggregation (WCCAggregator) to find the weakly connected components. Each partition will have a
DisjointSet object and in the accumulate() function, each entry will loop through its set of
neighbors, calling union() to give them the same parent. Then the combine() function is called
where each partition's disjoint set is merged using the merge() function. The final step has the
DisjointSet object now containing the parents for every vertex in the graph call
getComponents(), which returns the finalized list of weakly connected components in the graph.

There are two implementations of Hazelcast WCC. One uses the IMap.get() function to retrieve
neighbors during graph traversals while the other uses IMap.getAll().

Figure 6: Hazelcast WCC WCCAggregator class

private static final class WCCAggregator<I extends Comparable<I>, V>
 implements Aggregator<Map.Entry<I, Vertex<I, V>>, List<Set<I>>>, HazelcastInstanceAware {

 private transient DistributedSharedGraph<I, V> dsg;
 private final String graphName;
 private DisjointSet<I> disjointSet = new DisjointSet<>();

 public WCCAggregator(final String graphName) {
 this.dsg = null;
 this.graphName = graphName;
 }

 @Override
 public void setHazelcastInstance(final HazelcastInstance instance) {
 this.dsg = new DistributedSharedGraph<>(instance, graphName);
 }

 @Override
 public void accumulate(final Map.Entry<I, Vertex<I, V>> entry) {
 final Vertex<I, V> vertex = entry.getValue();
 final I vertexId = vertex.getVertexId();
 final Set<I> neighbors = vertex.getNeighbors().keySet();

 Map<I, Vertex<I,V>> neighborsMap = this.dsg.graph.getAll(neighbors);

14

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

 disjointSet.makeSet(vertexId);
 for (Vertex<I,V> neighborVertex : neighborsMap.values()) {
 disjointSet.makeSet(neighborVertex.getVertexId());
 disjointSet.union(vertexId, neighborVertex.getVertexId());
 }
 }

 @Override
 public void combine(final Aggregator aggregator) {
 // combine results from each partition
 final WCCAggregator<I,V> other = getClass().cast(aggregator);
 this.disjointSet.merge(other.disjointSet);
 }

 @Override
 public List<Set<I>> aggregate() {
 List<Set<I>> components = disjointSet.getComponents();
 components.removeIf(component -> component.size() == 1);
 return components;
 }
}

5.3 Triangle Counting Implementations

5.3.1 MASS Implementation
This implementation of Triangle Counting starts by spawning an agent at each vertex. The simulation
only has three steps. In the first step, each agent spawns child agents to migrate to the neighbors. To
prevent duplicate triangles from being counted, an agent will only traverse/spawn child agents to
neighbors with a lower id. The second step has the agents repeating step 1 (now being the second-degree
neighbors the agents are migrating to). In the final step, each agent will try to return back to its original
vertex. If it's not able to, then it terminates. The number of remaining alive agents is the total number of
triangles that exist in the graph.

Triangle Counting uses the functions propagateDown() and migrateSource() for agent
migration, which is internal to MASS. For more information, I recommend you read Vishnu Mohan,
Anirduh Potturi, and Munehiro Fukuda’s paper on its implementations: Automated Agent Migration over
Distributed Data Structures

5.3.2 Hazelcast Implementation
The Hazelcast Triangle Counting implementation uses a custom TriangleCountingAggregator
class to return an integer of the total number of triangles in the graph. In the accumulate() function,
each entry loops through its neighbors and second-degree neighbors. If there is an edge from the vertex to
the second-degree neighbor, the triangle counter is incremented. To prevent duplicate triangles from being

15

http://faculty.washington.edu/mfukuda/papers/icaart23.pdf
http://faculty.washington.edu/mfukuda/papers/icaart23.pdf

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

reported, only triangles following this order are recorded: neighbor id > second-degree neighbor id >
entry vertex id. In the combine() phase, the number of triangles at each partition is combined, and in
the aggregate() phase is when the total number of triangles is returned.

Figure 7: Hazelcast Triangle Counting TriangleCountingAggregator class

private static final class TriangleCountingAggregator<I extends Comparable<I>, V>
 implements Aggregator<Map.Entry<I, Vertex<I, V>>, Integer>, HazelcastInstanceAware {

 private transient DistributedSharedGraph<I, V> dsg;
 private final String graphName;
 private Integer triangles;

 public TriangleCountingAggregator(final String graphName) {
 this.dsg = null;
 this.graphName = graphName;
 this.triangles = 0;
 }

 @Override
 public void setHazelcastInstance(final HazelcastInstance instance) {
 this.dsg = new DistributedSharedGraph<>(instance, graphName);
 }

 @Override
 public void accumulate(final Map.Entry<I, Vertex<I, V>> entry) {
 // each partition runs this for each entry and combines the results (trianglesCount)
 final Vertex<I, V> vertex = entry.getValue();
 final I vertexId = vertex.getVertexId();
 final Set<I> vertexNeighbors = vertex.getNeighbors().keySet();

 // id order: neighborId > sdNeighborId > vertexId
 for (I neighborId : vertexNeighbors) {
 if (neighborId.equals(vertexId)) { continue; }
 if (neighborId.compareTo(vertexId) < 0) { continue; }

 Vertex<I,V> neighborVertex = this.dsg.graph.get(neighborId);
 Set<I> sdNeighbors = neighborVertex.getNeighbors().keySet();

 // check if entry vertex has an edge to the second degree neighbors
 for (I sdNeighborId : sdNeighbors) {
 if (sdNeighborId.equals(vertexId) || sdNeighborId.equals(neighborId)) { continue; }
 if (sdNeighborId.compareTo(neighborId) > 0 || sdNeighborId.compareTo(vertexId) < 0) {
 continue;
 }

 // only consider the triangle if the entry vertex has the highest id
 // prevents duplicate triangles being reported

16

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

 if (vertexNeighbors.contains(sdNeighborId)) {
 // System.out.println(
 // "Found triangle: [" + neighborId + ", " + sdNeighborId + ", " + vertexId + "]"
 //);
 this.triangles++;
 }
 }
 }
 }

 @Override
 public void combine(final Aggregator aggregator) {
 // combine results from each partition
 final TriangleCountingAggregator<I,V> other = getClass().cast(aggregator);
 this.triangles += other.triangles;
 }

 @Override
 public Integer aggregate() {
 return triangles;
 }
}

5.4 PageRank Implementations

5.4.1 MASS Implementation

There are four implementations of PageRank that were completed in MASS:
●​ V1 - AgentMigration: Spawns an agent and each vertex and spawns child agents to evenly

distribute ranks to neighbors.
●​ V2 - ExchangeAll: Transposes the graph and uses messaging to send ranks between

VertexPlace’s.
●​ V3 - PlacesBased: Each VertexPlace returns a map of its local distributions that ends up

getting merged amongst each other before being sent out.
●​ V4 - PseudoAgent: Same implementation as V3 but agent based.

For more information, I recommend you read Robert Zimmerman's report by visiting the DSL website.

5.4.2 Hazelcast Implementation

The Hazelcast implementation runs similarly to versions 3 and 4 of MASS PageRank. Running for a fixed
number of iterations, each iteration consists of a 2-step phase for distributing ranks and updating current
rank labels. Phase 1 runs the DistributeRanksAggregator class to return a map, where the key is
the vertex id and the value is a floating point representing the sum of distributions sent by incoming
neighbors. In phase 2, the map is passed into an UpdateRanksProcessor object which has each

17

https://depts.washington.edu/dslab/MASS/index.html

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

entry apply this formula to recompute its new rank: 0.15 + (D * 0.85), where D is the collected
distributions received.

Figure 8: Hazelcast PageRank computePageRanks() function

public List<MyPair<I,Double>> computePageRanks() {

 for (int i = 0; i < this.numIterations; i++) {
 Map<I, Double> globalDistributions = this.graph.aggregate(
 new DistributeRanksAggregator<>(this.graphName, this.numIterations)
);

 EntryProcessor<I, Vertex<I,V>, Object> updateRanks = new UpdateRanksProcessor<>(
 globalDistributions
);
 this.graph.executeOnEntries(updateRanks);
 }

 Map<I, MyPair<I,Double>> results = this.graph.executeOnEntries(
 new CollectRanksProcessor()
);

 List<MyPair<I,Double>> ranks = new ArrayList<>();
 for (MyPair<I,Double> rank : results.values()) {
 ranks.add(rank);
 }

 ranks.sort(Comparator.<MyPair<I, Double>, Double>comparing(MyPair::getValue).reversed());
 return ranks;
}

5.5 Label Propagation Implementations

MASS and Hazelcast’s implementations of Label Propagation are similar to their PageRank counterparts.

5.5.1 MASS Implementation

There are four implementations of Label Propagation that were completed in MASS:
●​ V1 - AgentMigration: Spawns an agent and each vertex and spawns child agents to send its label

to neighbors.
●​ V2 - ExchangeAll: Transposes graph and sends labels between VertexPlace’s directly.
●​ V3 - PlacesBased: Each VertexPlace returns a map of the label it's sending to its neighbors,

which ends up getting merged amongst each other before being sent out.
●​ V4 - PseudoAgent: Same implementation as V3 but agent based.

Again, more information can be found on Robert Zimmerman's report.

18

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

5.5.2 Hazelcast Implementation

The Hazelcast implementation runs similarly to versions 3 and 4 of MASS Label Propagation. Running
for a fixed number of iterations, each iteration consists of a 2-step phase for sending labels and updating
the current label. Phase 1 runs the PropagateLabelsAggregator class to return a map, where the
key is the vertex id and the value is a map of label id to the number of neighbors who sent it. In phase 2,
the map is passed into an UpdateLabelsProcessor object which has each entry choose the label
with the highest frequency for its new label. Tie breakers are broken by choosing the smallest label id.

Figure 9: Hazelcast Label Propagation executeLabelPropagation() function

public Map<I, List<I>> executeLabelPropagation() {

 for (int i = 0; i < this.numIterations; i++) {
 Map<I, Map<I,Integer>> globalLabelPropagations = this.graph.aggregate(
 new PropagateLabelsAggregator<>(this.graphName, this.numIterations)
);

 EntryProcessor<I, Vertex<I,V>, Object> updateLabels = new UpdateLabelsProcessor<>(
 globalLabelPropagations
);
 this.graph.executeOnEntries(updateLabels);
 }

 Map<I, I> results = this.graph.executeOnEntries(
 new CollectLabelsProcessor()
);

 Map<I, List<I>> labels = new HashMap<>();
 for (Map.Entry<I,I> entry : results.entrySet()) {
 I label = entry.getValue();
 I vertexId = entry.getKey();

 labels.computeIfAbsent(label, l -> new ArrayList<>()).add(vertexId);
 }

 return labels;
}

6. Benchmark results
Benchmark results were completed using the UWB hermes1-24 machines. Each benchmark was
evaluated using six different graphs (1k, 3k, 5k, 10k, 20k, and 40k vertices) with eight different cluster
sizes (1, 2, 4, 8, 12, 16, 20, 24). Each combination of graph and cluster size was ran three times and the
average of the three runs were recorded. See Appendixes A-E to view the full execution results and
Appendixes F-J to view the line chart comparisons.

19

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

6.1 Strongly Connected Components Results

MASS’s implementation of SCC generally outperformed Hazelcast’s. As viewed on figure 10, all three
implementations are comparable on one machine, but as the cluster size increased, Hazelcast V1’s
runtime spiked while V2 and MASS’s stayed somewhat steady.

Figure 10: Strongly Connected Components on 40k graph

The reason for these differences I believe lie in how the graphs are traversed. Strongly Connected
Components require traversing as many edges that can be reached. MASS utilizes an agent-based
parallel-BFS, eliminating the need to backtrack to unvisited paths. And because agents operate within
their own processes, vertices can be processed concurrently. Increasing the cluster size increases the
number of processes available for agents, ultimately minimizing context switching to provide fast
traversals. This may explain why MASS isn’t affected much by communication overhead until you get to
24 machines. In Hazelcast’s case, even though an asynchronous task is being submitted to handle the
graph traversal, it is still a single threaded operation. V1 uses IMap’s get() when traversing the graph,
which makes one network call per neighbor. This is why when increasing the cluster size, the number of
calls over the network increases, to which Hazelcast V1 gets heavily penalized. Conversely, Hazelcast V2
uses getAll() when traversing the graph, which groups a vertex’s set of neighbors by the partition that
owns it, making a network call per partition. This eliminates repeated network calls to the same machines,
which results in a faster execution time. However, V2 still did not perform better than MASS.

20

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Another reason for MASS’s good performance also lies in how many agents are being spawned. My
earlier point may have alluded to an optimization of spawning an agent at each vertex to speed up SCC
detection, but doing so would degrade performance due to such a high number of agents existing at one
time. One thing to note about MASS’s SCC implementation is that on the 40k graph, it fails when running
on 2 and 4 machines. This may be due to there not being enough memory to accommodate the MASS
agent workload + communication overhead. As opposed to running it on one machine, there is enough
memory to run MASS on the 40k graph since there is no communication overhead. And on 8+ machines,
there is now enough memory to also accommodate the storage needed for communication overhead.

6.2 Weakly Connected Components Results
MASS’s implementation of WCC generally outperformed Hazelcast on most combinations of graph size
to cluster size. For larger graphs (10k+) on smaller cluster sizes, MASS would gradually perform worse
than Hazelcast. As the cluster size increased, MASS would be comparable if not better, as can be viewed
on figure 11.

Figure 11: Weakly Connected Components on 40k graph

Similar to my conclusion for MASS SCC, MASS WCC utilizing parallel-BFS traversal explains why
performance gets better (up until 24 machines). In Hazelcast’s case, it uses aggregators to first run at each
partition before combining the results. When the cluster size increases, the number of partitions each
machine manages decreases, allowing for faster processing of the partitions it does own. And because
Hazelcast Aggregation is read-only and runs on the data itself, there is minimal communication overhead.

21

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

As well, Hazelcast V2 using getAll() provides better performance as it does batch-retrieval of
neighbors.

6.3 Triangle Counting Results
Hazelcast Triangle Counting generally outperformed MASS. As viewed on figure 11, they closely
matched on larger cluster sizes but Hazelcast had the edge on smaller cluster sizes.

Figure 12: Triangle Counting on 20k graph

Similar to Hazelcast WCC, Hazelcast Triangle Counting uses aggregators, so increasing the cluster size
resulted in better performance. MASS however faced memory issues in its Triangle Counting benchmark.
Because so many agents are being created (36 million on the 20k graph), there is too much overhead for
the smaller cluster sizes to manage, even crashing on the 2, 4, and 8 cluster sizes, with it also unable to
run on the 40k graph. However, as the cluster size increases to 12+ machines, MASS performs as well if
not better than Hazelcast.

6.4 PageRank Results

Hazelcast’s implementation of PageRank generally outperformed MASS. Although MASS V2 performs
the worst on one machine, it becomes the version most competitive with Hazelcast. As the trend we’ve
been seeing, increasing the cluster size closes the gap significantly.

22

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Figure 13: PageRank on 40k graph

Hazelcast’s ability to run computation on the machine where data resides allowed it to perform as well as
it did. DistributeRanksAggregator does not make any calls over the network when calculating
the ranks to distribute, resulting in low network overhead.

6.5 Label Propagation Results
Similar to the PageRank results, Hazelcast for the most part outperforms MASS, with MASS V2 being
the most competitive version. Hazelcast’s data locality operations using
PropagateLabelsAggregator and UpdateLabelsProcessor allowed it to achieve faster
execution results due to the label propagation logic of the computation not making network calls.
However, increasing the cluster size led to MASS V2 outperforming Hazelcast on larger graphs.

23

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Figure 14: Label Propagation on 40k graph

7. Programmability
Tables 1-5 show the programmability metrics captured between the MASS and Hazelcast benchmarks.
The number of files, number of methods, LOC, lines of logic, and cyclomatic complexity were found
using Lizard, LCOM4 was found using ck, and boilerplate % was found using this formula found online:
(1 - (lines of logic / LOC)) * 100

Table 1: MASS vs Hazelcast Strongly Connected Components Programmability Metrics

Measurement (MASS) Value

Number of files 4

Number of methods 23

Total Lines of Code (LOC) 626

Lines of Logic 498

Boilerplate % 20%

Measurement (Hazelcast) Value

Number of files 3

Number of methods 55

Total Lines of Code (LOC) 1167

Lines of Logic 584

Boilerplate % 49

24

https://github.com/terryyin/lizard
https://github.com/mauricioaniche/ck

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Cyclomatic Complexity 3.9

Lack of Cohesion in Methods
(LCOM4)

0.51

Cyclomatic Complexity 2.3

Lack of Cohesion in Methods
(LCOM4)

0.37

Table 2: MASS vs Hazelcast Weakly Connected Components Programmability Metrics

Measurement (MASS) Value

Number of files 4

Number of methods 20

Total Lines of Code (LOC) 634

Lines of Logic 381

Boilerplate % 39

Cyclomatic Complexity 3.5

Lack of Cohesion in Methods
(LCOM4)

0.52

Measurement (Hazelcast) Value

Number of files 3

Number of methods 45

Total Lines of Code (LOC) 934

Lines of Logic 468

Boilerplate % 49

Cyclomatic Complexity 2.4

Lack of Cohesion in Methods
(LCOM4)

0.39

Table 3: MASS vs Hazelcast Triangle Counting Programmability Metrics

Measurement (MASS) Value

Number of files 3

Number of methods 12

Total Lines of Code (LOC) 653

Lines of Logic 211

Boilerplate % 67

Cyclomatic Complexity 2.7

Lack of Cohesion in Methods
(LCOM4)

0.65

Measurement (Hazelcast) Value

Number of files 3

Number of methods 30

Total Lines of Code (LOC) 708

Lines of Logic 327

Boilerplate % 53

Cyclomatic Complexity 2.5

Lack of Cohesion in Methods
(LCOM4)

0.49

Table 4: MASS vs Hazelcast PageRank Programmability Metrics

25

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Refer to Robert Zimman’s report for the
MASS PageRank Metrics

Measurement (Hazelcast) Value

Number of files 4

Number of methods 42

Total Lines of Code (LOC) 856

Lines of Logic 435

Boilerplate % 49

Cyclomatic Complexity 2.4

Lack of Cohesion in Methods
(LCOM4)

0.37

Table 5: MASS vs Hazelcast Label Propagation Programmability Metrics

Refer to Robert Zimman’s report for the
MASS Label Propagation Metrics

Measurement (Hazelcast) Value

Number of files 3

Number of methods 37

Total Lines of Code (LOC) 860

Lines of Logic 433

Boilerplate % 49

Cyclomatic Complexity 2.4

Lack of Cohesion in Methods
(LCOM4)

0.38

8. Conclusion
In this capstone, I implemented and benchmarked the Strongly Connected Components, Weakly
Connected Components, Triangle Counting, PageRank, and Label Propagation algorithms. From these
benchmarks, it can be concluded that MASS’s use of agents to perform tasks in parallel provides
significant speeds to servicing user requests, especially when traversing a graph. However, data locality
sensitive operations present a weakness to MASS in comparison to Hazelcast. As well, due to large agent

26

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

overhead, MASS is at a slight disadvantage when there is limited memory from smaller cluster sizes
attempting to accommodate larger graphs. Future work to reduce agent memory overhead can be
achieved, as well as re-testing some benchmarks on different partitioning strategies that considers graph
shapes.

Appendix A: Strongly Connected Components Execution Results

MASS SCC Results
num-members num-vertices total-agents-generated load

time(ms)
runtime (sec)

1 1000 367926 164 6.391

2 1000 367926 126 7.882

4 1000 367926 161 6.370

8 1000 367926 305 6.529

12 1000 367926 342 14.679

16 1000 367926 603 8.429

20 1000 367926 1378 9.814

24 1000 367926 2372 31.079

1 3000 1157222 274 18.410

2 3000 1157222 239 20.679

4 3000 1157222 235 18.155

8 3000 1157222 386 16.125

12 3000 1157222 441 34.037

16 3000 1157222 664 16.111

20 3000 1157222 1516 20.650

24 3000 1157222 2767 62.471

1 5000 1941566 352 32.711

2 5000 1941566 326 30.870

4 5000 1941566 309 27.232

8 5000 1941566 439 22.565

12 5000 1941566 477 52.344

16 5000 1941566 744 22.971

20 5000 1941566 1702 33.540

24 5000 1941566 2651 77.886

1 10000 3899966 616 61.159

2 10000 3899966 423 60.681

4 10000 3899966 380 47.760

27

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

8 10000 3899966 544 41.703

12 10000 3899966 617 76.454

16 10000 3899966 894 41.478

20 10000 3899966 1970 52.710

24 10000 3899966 3102 133.243

1 20000 7825526 1104 122.660

2 20000 7825526 713 118.970

4 20000 7825526 593 98.179

8 20000 7825526 780 76.721

12 20000 7825526 784 119.219

16 20000 7825526 1046 71.258

20 20000 7825526 2142 96.708

24 20000 7825526 3510 217.066

1 40000 15737702 1995 234.301

2 40000 NA NA NA

4 40000 NA NA NA

8 40000 15737702 1338 192.977

12 40000 15737702 968 159.211

16 40000 15737702 1512 170.845

20 40000 15737702 2695 167.496

24 40000 15737702 4200 416.598

Hazelcast SCC Using IMap.getAll() Results

num-members num-vertices num-edges load time(sec) runtime (sec)

1 1000 93480 0.467 10.154

2 1000 93480 0.719 10.653

4 1000 93480 0.579 10.176

8 1000 93480 0.526 11.086

12 1000 93480 0.578 10.947

16 1000 93480 0.560 11.743

20 1000 93480 0.604 11.405

24 1000 93480 0.805 12.497

1 3000 293804 0.779 29.862

2 3000 293804 0.838 29.536

4 3000 293804 0.712 28.476

28

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

8 3000 293804 0.778 30.408

12 3000 293804 0.863 35.241

16 3000 293804 0.690 34.734

20 3000 293804 0.874 33.343

24 3000 293804 0.986 33.140

1 5000 492890 0.945 47.832

2 5000 492890 1.021 49.993

4 5000 492890 0.894 48.134

8 5000 492890 0.766 50.834

12 5000 492890 0.905 73.129

16 5000 492890 0.815 57.140

20 5000 492890 1.067 52.221

24 5000 492890 1.279 54.766

1 10000 989990 1.308 94.184

2 10000 989990 1.284 98.449

4 10000 989990 1.157 95.092

8 10000 989990 1.049 102.434

12 10000 989990 1.214 115.449

16 10000 989990 1.208 105.711

20 10000 989990 1.408 100.695

24 10000 989990 1.491 101.606

1 20000 1986380 2.053 194.788

2 20000 1986380 1.916 187.717

4 20000 1986380 1.606 188.413

8 20000 1986380 1.393 197.246

12 20000 1986380 1.821 288.561

16 20000 1986380 1.610 225.209

20 20000 1986380 1.871 225.902

24 20000 1986380 1.850 202.941

1 40000 3994424 2.949 382.949

2 40000 3994424 2.790 381.891

4 40000 3994424 2.473 363.753

8 40000 3994424 2.151 400.683

12 40000 3994424 2.472 580.422

16 40000 3994424 2.416 426.136

20 40000 3994424 2.787 418.809

24 40000 3994424 2.913 432.377

29

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix B: Weakly Connected Components Execution Results

MASS WCC Results
num-members num-vertices total-agents-generated load

time(ms)
runtime (sec)

1 1000 92481 165 1.725

2 1000 92481 152 1.799

4 1000 92481 161 1.556

8 1000 92481 315 1.776

12 1000 92481 332 2.018

16 1000 92481 575 2.419

20 1000 92481 1242 4.602

24 1000 92481 2345 20.897

1 3000 290805 298 7.464

2 3000 290805 216 4.796

4 3000 290805 274 3.219

8 3000 290805 366 2.853

12 3000 290805 440 2.998

16 3000 290805 732 3.325

20 3000 290805 1606 5.957

24 3000 290805 2402 22.528

1 5000 487891 366 17.349

2 5000 487891 286 8.469

4 5000 487891 313 4.852

8 5000 487891 485 3.812

12 5000 487891 568 3.896

16 5000 487891 760 4.155

20 5000 487891 1542 6.826

24 5000 487891 2619 23.319

1 10000 979991 611 57.912

2 10000 979991 431 22.870

4 10000 979991 383 9.441

8 10000 979991 551 6.271

12 10000 979991 607 5.214

16 10000 979991 898 5.549

20 10000 979991 1792 9.511

24 10000 979991 3168 30.984

30

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

1 20000 1966381 1088 206.237

2 20000 1966381 743 68.935

4 20000 1966381 544 24.438

8 20000 1966381 840 11.588

12 20000 1966381 648 8.259

16 20000 1966381 1177 8.258

20 20000 1966381 2305 13.467

24 20000 1966381 3642 42.204

1 40000 3954425 2192 821.771

2 40000 3954425 1382 264.688

4 40000 3954425 919 74.470

8 40000 3954425 1323 28.296

12 40000 3954425 873 17.974

16 40000 3954425 1475 14.164

20 40000 3954425 2655 20.301

24 40000 3954425 4415 55.658

Hazelcast WCC Using IMap.getAll() Results
num-members num-vertices num-edges load time(sec) runtime (sec)

1 1000 93480 0.491 4.474

2 1000 93480 0.628 3.768

4 1000 93480 0.556 2.790

8 1000 93480 0.522 2.627

12 1000 93480 0.602 2.347

16 1000 93480 0.626 2.375

20 1000 93480 0.692 2.834

24 1000 93480 0.729 3.567

1 3000 293804 0.757 12.404

2 3000 293804 0.718 9.379

4 3000 293804 0.850 6.084

8 3000 293804 0.667 5.437

12 3000 293804 0.781 5.611

16 3000 293804 0.711 4.563

20 3000 293804 0.854 6.592

24 3000 293804 1.052 7.582

1 5000 492890 0.945 18.924

31

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

2 5000 492890 0.923 14.012

4 5000 492890 0.834 9.864

8 5000 492890 0.772 7.202

12 5000 492890 0.913 8.029

16 5000 492890 0.858 7.232

20 5000 492890 1.052 8.909

24 5000 492890 1.047 11.129

1 10000 989990 1.201 36.198

2 10000 989990 1.188 26.520

4 10000 989990 1.180 16.922

8 10000 989990 1.073 12.635

12 10000 989990 1.196 13.206

16 10000 989990 1.135 11.178

20 10000 989990 1.225 14.811

24 10000 989990 1.449 17.760

1 20000 1986380 1.715 70.348

2 20000 1986380 1.793 49.044

4 20000 1986380 1.589 31.446

8 20000 1986380 1.503 21.302

12 20000 1986380 1.621 24.466

16 20000 1986380 1.642 20.389

20 20000 1986380 1.876 25.624

24 20000 1986380 1.972 31.843

1 40000 3994424 2.860 141.879

2 40000 3994424 2.514 99.773

4 40000 3994424 2.405 57.478

8 40000 3994424 2.099 38.687

12 40000 3994424 2.452 41.924

16 40000 3994424 2.357 38.488

20 40000 3994424 2.612 46.545

24 40000 3994424 2.775 55.098

Appendix C: Triangle Counting Execution Results

MASS Triangle Counting Results
num-members num-vertices total-agents-generated load

time(ms)
runtime (sec)

32

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

1 1000 1778723 139 17.048

2 1000 1778723 163 12.535

4 1000 1778723 163 7.069

8 1000 1778723 298 5.694

12 1000 1778723 329 5.330

16 1000 1778723 589 6.018

20 1000 1778723 1290 9.342

23 1000 1778723 2243 12.681

1 3000 5508612 248 80.441

2 3000 5508612 223 48.683

4 3000 5508612 235 22.791

8 3000 5508612 394 14.141

12 3000 5508612 381 10.376

16 3000 5508612 661 11.559

20 3000 5508612 1520 17.197

23 3000 5508612 2367 24.562

1 5000 9192458 333 199.839

2 5000 9192458 283 117.020

4 5000 9192458 303 47.903

8 5000 9192458 448 23.150

12 5000 9192458 461 16.557

16 5000 9192458 770 15.382

20 5000 9192458 1568 24.372

23 5000 9192458 2760 30.521

1 10000 18357946 549 619.898

2 10000 NA NA NA

4 10000 NA NA NA

8 10000 18357946 494 55.166

12 10000 18357946 559 33.888

16 10000 18357946 858 28.802

20 10000 18357946 1855 40.723

23 10000 18357946 3247 51.215

1 20000 36665733 1150 2264.793

2 20000 NA NA NA

4 20000 NA NA NA

8 20000 NA NA NA

12 20000 36665733 686 91.412

33

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

16 20000 36665733 939 63.706

20 20000 36665733 2147 80.698

23 20000 36665733 3561 98.790

Hazelcast Triangle Counting Results
num-members num-vertices num-edges load time(sec) runtime (sec)

1 1000 93480 1.020 10.095

2 1000 93480 1.034 14.715

4 1000 93480 0.893 7.520

8 1000 93480 0.726 5.319

12 1000 93480 0.984 5.477

16 1000 93480 1.150 6.008

20 1000 93480 1.052 4.995

24 1000 93480 0.842 4.379

1 3000 293804 1.574 28.335

2 3000 293804 1.640 41.173

4 3000 293804 1.326 20.507

8 3000 293804 1.029 12.984

12 3000 293804 1.519 12.381

16 3000 293804 1.468 13.154

20 3000 293804 1.410 11.130

24 3000 293804 1.460 10.093

1 5000 492890 2.117 46.101

2 5000 492890 2.075 64.993

4 5000 492890 1.521 31.553

8 5000 492890 1.360 20.043

12 5000 492890 1.639 18.407

16 5000 492890 1.952 18.692

20 5000 492890 1.612 16.472

24 5000 492890 1.769 14.277

1 10000 989990 2.596 84.124

2 10000 989990 2.592 128.125

4 10000 989990 2.057 63.171

8 10000 989990 1.882 38.063

12 10000 989990 2.196 33.831

16 10000 989990 2.399 33.462

34

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

20 10000 989990 2.120 28.141

24 10000 989990 2.168 24.337

1 20000 1986380 4.202 173.062

2 20000 1986380 3.817 249.160

4 20000 1986380 3.032 121.809

8 20000 1986380 2.723 75.091

12 20000 1986380 2.858 64.370

16 20000 1986380 3.306 61.314

20 20000 1986380 2.780 51.202

24 20000 1986380 2.456 44.558

1 40000 3994424 6.440 341.477

2 40000 3994424 6.222 492.082

4 40000 3994424 4.912 241.605

8 40000 3994424 4.149 146.076

12 40000 3994424 4.232 126.036

16 40000 3994424 4.910 116.628

20 40000 3994424 4.095 97.466

24 40000 3994424 3.668 86.392

Appendix D: PageRank Execution Results

MASS PageRank V2 Results
num-members num-vertices load time (ms) runtime (ms)

1 1000 157 2313

2 1000 146 1840

4 1000 165 1487

8 1000 303 1500

12 1000 371 1576

16 1000 512 2192

20 1000 656 2306

24 1000 959 3308

1 3000 309 7260

2 3000 274 5617

4 3000 1964 3242

8 3000 427 2603

12 3000 450 2475

35

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

16 3000 608 3172

20 3000 759 3446

24 3000 1069 4254

1 5000 391 14406

2 5000 338 9308

4 5000 402 5650

8 5000 481 3702

12 5000 2198 3003

16 5000 702 3979

20 5000 2526 3649

24 5000 1168 5178

1 10000 585 33573

2 10000 475 22491

4 10000 490 10919

8 10000 649 6723

12 10000 651 5047

16 10000 866 5355

20 10000 990 5269

24 10000 1326 6788

1 20000 1033 140450

2 20000 722 77113

4 20000 600 25358

8 20000 756 12501

12 20000 784 10176

16 20000 900 9513

20 20000 1131 8664

24 20000 1465 9859

1 40000 1800 524454

2 40000 1251 244161

4 40000 897 76922

8 40000 897 29697

12 40000 932 19235

16 40000 1138 17268

20 40000 1249 14936

24 40000 1726 16509

36

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Hazelcast PageRank Results
num-members num-vertices num-edges load

time(ms)
runtime (ms)

1 1000 93480 444 350

2 1000 93480 664 429

4 1000 93480 528 480

8 1000 93480 583 518

12 1000 93480 614 591

16 1000 93480 513 710

20 1000 93480 689 771

24 1000 93480 693 830

1 3000 293804 824 694

2 3000 293804 818 872

4 3000 293804 703 849

8 3000 293804 659 932

12 3000 293804 714 1077

16 3000 293804 741 1103

20 3000 293804 944 1466

24 3000 293804 1168 1378

1 5000 492890 974 954

2 5000 492890 1058 1152

4 5000 492890 873 1186

8 5000 492890 834 1228

12 5000 492890 890 1392

16 5000 492890 911 1305

20 5000 492890 1093 1502

24 5000 492890 1257 1814

1 10000 989990 1391 1550

2 10000 989990 1300 1860

4 10000 989990 1082 2006

8 10000 989990 1049 2190

12 10000 989990 1206 2379

16 10000 989990 1144 2395

20 10000 989990 1455 2709

24 10000 989990 1808 2977

1 20000 1986380 1799 2519

2 20000 1986380 1727 2701

37

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

4 20000 1986380 1544 3346

8 20000 1986380 1496 3628

12 20000 1986380 1706 4211

16 20000 1986380 1614 4400

20 20000 1986380 2066 5445

24 20000 1986380 2352 5544

1 40000 3994424 2861 4890

2 40000 3994424 2767 4903

4 40000 3994424 2417 5593

8 40000 3994424 2094 5759

12 40000 3994424 2416 7082

16 40000 3994424 2401 8091

20 40000 3994424 2825 9400

24 40000 3994424 3077 10917

Appendix E: Label Propagation Execution Results

MASS Label Propagation V2 Results
num_members num_vertices load_time_ms runtime_ms

1 1000 177 2139

2 1000 149 1759

4 1000 184 1458

8 1000 321 1450

12 1000 338 1544

16 1000 538 2136

20 1000 691 2300

24 1000 1004 3473

1 3000 323 7030

2 3000 261 5162

4 3000 336 3082

8 3000 393 2477

12 3000 467 2348

16 3000 596 3012

20 3000 736 3209

24 3000 1154 5226

1 5000 383 13757

38

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

2 5000 359 8984

4 5000 410 5163

8 5000 530 3366

12 5000 511 3029

16 5000 747 4116

20 5000 871 3793

24 5000 1260 6714

1 10000 587 42252

2 10000 454 21216

4 10000 482 10028

8 10000 652 6426

12 10000 681 4852

16 10000 4067 4994

20 10000 948 4488

24 10000 1458 7233

1 20000 1026 122944

2 20000 710 66513

4 20000 591 24602

8 20000 799 11845

12 20000 820 9165

16 20000 893 9571

20 20000 1078 8281

24 20000 1686 12366

1 40000 1795 519370

2 40000 1244 240209

4 40000 924 78938

8 40000 913 27742

12 40000 2558 17724

16 40000 1151 5449

20 40000 1321 14165

24 40000 1923 19542

Hazelcast Label Propagation Results
num-members num-vertices num-edges load

time(ms)
runtime (ms)

1 1000 93480 513 383

2 1000 93480 481 635

39

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

4 1000 93480 546 839

8 1000 93480 572 926

12 1000 93480 555 1063

16 1000 93480 554 1123

20 1000 93480 716 1442

24 1000 93480 854 1415

1 3000 293804 792 777

2 3000 293804 819 1340

4 3000 293804 722 1661

8 3000 293804 702 1856

12 3000 293804 804 2438

16 3000 293804 684 2724

20 3000 293804 922 3163

24 3000 293804 1156 3598

1 5000 492890 879 1167

2 5000 492890 880 1908

4 5000 492890 770 2522

8 5000 492890 735 2822

12 5000 492890 820 3664

16 5000 492890 730 4576

20 5000 492890 1110 5299

24 5000 492890 1139 6144

1 10000 989990 1128 1913

2 10000 989990 1191 3473

4 10000 989990 992 4230

8 10000 989990 1040 5657

12 10000 989990 1086 7231

16 10000 989990 1061 8964

20 10000 989990 1283 10690

24 10000 989990 1614 12747

1 20000 1986380 1817 3659

2 20000 1986380 1867 6048

4 20000 1986380 1556 8569

8 20000 1986380 1382 11754

12 20000 1986380 1569 15832

16 20000 1986380 1537 19273

20 20000 1986380 1983 24715

40

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

24 20000 1986380 2143 27660

1 40000 3994424 2796 7802

2 40000 3994424 2536 12460

4 40000 3994424 2503 17046

8 40000 3994424 2121 26040

12 40000 3994424 2493 34250

16 40000 3994424 2431 44211

20 40000 3994424 2905 53387

24 40000 3994424 3221 63392

41

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix F: Full Strongly Connected Components Execution Diagrams

42

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix G: Full Weakly Connected Components Execution Diagrams

43

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix H: Full Triangle Counting Execution Diagrams

44

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix I: Full PageRank Execution Diagrams

45

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix J: Full Label Propagation Execution Diagrams

46

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

Appendix K: Running Benchmarks
All benchmarks can be found in the develop or noel30/benchmarks branch of the mass_java_appl
repository.

For each benchmark:

●​ Build the jar file using the make command.
●​ For MASS: Configure the nodes.xml file to specify what machines you want to run it on and

what port to listen in on.
●​ For Hazelcast: In the run.sh file, specify what machines you want the cluster to have.

MASS SCC

1.​ Location:
Graphs/StronglyConnectedComponents/2025_StronglyConnectedComponents_MASS

2.​ Execution: ./run.sh <graph_dsl_file> [boolean_to_print_SCCs]

Hazelcast SCC

1.​ Location: Graphs/Hazelcast_benchmarks/StronglyConnectedComponents
2.​ Execution: ./run.sh <graph_dsl_file> <cluster size> [boolean to

print components] [boolean to print all components] [component
threshold size]

MASS WCC

1.​ Location: Graphs/WeaklyConnectedComponents
2.​ Execution: ./run.sh <graph_dsl_file> [boolean_to_print_WCCs]

Hazelcast WCC

1.​ Location: Graphs/Hazelcast_benchmarks/WeaklyConnectedComponents
2.​ Execution: ./run.sh <graph_dsl_file> <cluster size> [boolean to

print components] [boolean to print all components] [component
threshold size]

MASS Triangle Counting
1.​ Location: Graphs/2025_TriangleCounting
2.​ Execution: ./run.sh <graph_dsl_file> [boolean_to_print_SCCs]

Hazelcast Triangle Counting

1.​ Location: Graphs/Hazelcast_benchmarks/TriangleCounting
2.​ Use the run.sh file to execute the program: ./run.sh <graph_dsl_file> <cluster

size>

MASS PageRank

47

https://bitbucket.org/mass_application_developers/mass_java_appl/src/develop/

Noel Beraki​ ​ ​ ​ ​ ​ CSS 497: Summer 2025 Final Report

1.​ Location/Execution: Refer to Robert Zimmerman’s report

Hazlecast PageRank

1.​ Location: Graphs/Hazelcast_benchmarks/PageRank
2.​ Execution: ./run.sh <dsl graph file> <cluster size> <number of

iterations> [boolean to print ranks] [print top x ranks]

MASS Label Propagation

1.​ Location/Execution: Refer to Robert Zimmerman’s report

Hazlecast Label Propagation

1.​ Location: Graphs/Hazelcast_benchmarks/LabelPropagation
2.​ Execution: ./run.sh <dsl graph file> <cluster size> <number of

iterations> [boolean to print communities]

48

	Comparison of Distributed Graph Computing Performance Between Java MASS and Hazelcast
	1. Overview
	2. MASS Background
	3. Hazelcast Background
	3.1 Hazelcast Overview
	3.2 Hazelcast Features

	4. Graph Benchmarks Overview
	4.1 Strongly Connected Components (SCC)
	4.2 Weakly Connected Components (WCC)
	4.3 Triangle Counting
	4.4 PageRank
	4.5 Label Propagation

	5. Benchmark Implementations
	5.1 Strongly Connected Components Implementations
	5.1.1 MASS Implementation
	5.1.2 Hazelcast Implementation

	5.2 Weakly Connected Components Implementations
	5.2.1 MASS Implementation
	5.2.2 Hazelcast Implementation

	5.3 Triangle Counting Implementations
	5.3.1 MASS Implementation
	5.3.2 Hazelcast Implementation

	5.4 PageRank Implementations
	5.4.1 MASS Implementation
	5.4.2 Hazelcast Implementation

	5.5 Label Propagation Implementations
	5.5.1 MASS Implementation
	5.5.2 Hazelcast Implementation

	6. Benchmark results
	6.1 Strongly Connected Components Results
	6.2 Weakly Connected Components Results
	6.3 Triangle Counting Results
	6.4 PageRank Results
	6.5 Label Propagation Results

	7. Programmability
	8. Conclusion
	Appendix A: Strongly Connected Components Execution Results
	MASS SCC Results
	Hazelcast SCC Using IMap.getAll() Results

	Appendix B: Weakly Connected Components Execution Results
	MASS WCC Results
	Hazelcast WCC Using IMap.getAll() Results

	Appendix C: Triangle Counting Execution Results
	MASS Triangle Counting Results
	Hazelcast Triangle Counting Results

	Appendix D: PageRank Execution Results
	MASS PageRank V2 Results
	Hazelcast PageRank Results

	Appendix E: Label Propagation Execution Results
	MASS Label Propagation V2 Results
	Hazelcast Label Propagation Results

	Appendix F: Full Strongly Connected Components Execution Diagrams
	Appendix G: Full Weakly Connected Components Execution Diagrams
	Appendix H: Full Triangle Counting Execution Diagrams
	Appendix I: Full PageRank Execution Diagrams
	Appendix J: Full Label Propagation Execution Diagrams
	Appendix K: Running Benchmarks

