Term Report - Independent Study on MASS C++ and HPX
Rishabh Pratap Singh

Term Report for Independent Study (Su25)
submitted in partial fulfillment of the

requirements of the degree of
Master of Science in Computer Science & Software Engineering (or Cybersecurity Engineering)

University of Washington
08/22/2025
Supervisor:

Dr. Munehiro Fukuda

Abstract

This report summarizes a two-pronged independent study performed as preparatory work for a
master's thesis on extending and modernizing MASS C++. The first strand focused on
understanding MASS C++ internals, updating the codebase to work with modern dependencies,
fixing security/usability issues, and making the library benchmarkable. The second strand
involved installing and evaluating HPX to learn how its modern parallel/async features could
inform proposed improvements to MASS C++. This document describes the motivation,
implementation changes (with placeholders for code screenshots), recommended experimental
procedures, and guidance for drafting the results and conclusion sections for the final report.

Table of Contents

1. Introduction

Motivation
3. Implementation
3.1 MASS C++
3.2 HPX
4. Results

5. Conclusion
6. References

1. Introduction

This independent study had two complementary objectives:

1. MASS C++ modernization: obtain a deep working knowledge of MASS C++, make
pragmatic updates so the library builds and runs with modern toolchains, harden
security for remote execution, and verify correctness by running sample programs and
benchmarks.

2. HPX exploration: install HPX and its dependencies, run canonical benchmarks (Fibonacci
and matrix multiplication), and analyse how HPX implements and exposes asynchronous
and distributed execution patterns. Insights from HPX will inform design choices for
thesis work aiming to extend MASS C++ with more modern concurrency and
programmability features.

The outcomes of this term work are intended to:

e Ensure a functional, documented baseline for MASS C++.
e Provide comparative experimental data and implementation patterns from HPX.
e Obtain a concrete roadmap for the thesis effort.

2. Motivation

The motivating reasons for this study are:

e Foundation for the thesis: before proposing design or algorithmic changes at thesis
scale, the codebase must be buildable, testable, and benchmarkable on current
systems.

e Learn modern concurrency patterns: HPX's approach to futures, asynchronous actions,
and parallel algorithms provides concrete implementations and APIs that can inspire
safer, higher-level abstractions for MASS C++.

e Practical improvements: addressing compatibility, security, and usability issues in MASS
C++ will reduce friction for future experiments and collaborators.

e Benchmark-driven validation: empirically validate that the modernized MASS C++ still
meets expected performance and to quantify where HPX features could yield gains.

Key research questions framed by this study:

e What are the main portability/security/usability problems in the current MASS C++
codebase, and how can they be fixed without breaking API compatibility?

e Which HPX features map naturally to use-cases in MASS C++ (asynchronous remote
execution, task graphs, parallel algorithms)?

e How do performance and programmability trade-offs compare between MASS C++ and
HPX for representative workloads?

3. Implementation
3.1 MASS C++

o libssh2 upgrade

o Problem: Existing libssh2 (v1.4.2) was incompatible with the system OpenSSH
version (Open SSL 3.2.2 as seen in Figure 3.1), causing build/runtime failures for
remote launch / SSH interactions (required libcrypto.so.10, which was
unavailable).

o Action: Upgraded libssh2 to v1.11.1(Which adds support for OpenSSL 3 as seen in
Figure 3.2) and updated build scripts / CMake (or autotools) configuration to
locate new headers and libraries. Adjusted any API call sites that changed
between versions.

o Testing: Rebuilt the project; exercised remote-launch code paths and verified
successful SSH handshakes and command execution.

checking for inline... inline
checking non-blocking sockets style... O_NONBLOCK

configure: ERROR: No openssl crypto library found!
No libgcrypt crypto library found!

Figure 3.1.1: Libcrypto required dependency not found

Version 1.10.0 - August 29 2021

Enhancements and bugfixes

adds agent forwarding support

adds OpenSSH Agent support on Windows

adds ECDSA key support using the Mbed TLS backend

adds ECDSA cert authentication

adds diffie-hellman-group14-sha256, diffie-hellman-group16-sha512, diffie-hellman-group18-sha512 key exchanges
adds support for PKIX key reading when using ed25519 with [@]s

adds support for building with %
adds support for using FIPS mode in [8]s

adds debug symbols when building with MSVC
adds support for building on the 3DS

¢ adds support for EWOULDBLOCK on VMS systems

Figure 3.1.2: Libss2 update to support OpenSSL 3

e Use public-key authentication by default

o Problem: The project defaulted to storing user passwords in plain text for remote
connections, which is a security risk.

o Action: Changed the remote-connection workflow to prefer public-key
authentication (as seen in Figure 3.3). Removed or refactored code paths that
saved plain-text passwords; added logic to fallback to password only if explicitly
provided by the user or configured in a secure credential manager.

o Testing: Verified both password-less public-key authentication and explicit
passphrase-based fallbacks. Confirmed no password strings are written to disk in
normal operation.

if (strstr(userauthlist, "publickey") != NULL && 'auth_success) {
int retVal = libssh2_userauth_publickey fromfile(session, username, NULL,
keyfile2, passphrase);

if Loading... - g

cerr << "public-key authentication failed using "
<< keyfile2 << "as private key" << endl;
printErrorMessage(retval);
else
auth_success = true;
cout << "public-key authentication passed" << endl;

+
if (strstr(userauthlist, "password") != NULL && 'auth_success) {
int retvVal = 0;
for (int i = 0; i < 10; i++
retVal = libssh2_userauth_password(session, username, password);
if (retVal == 0) break;
printErrorMessage(retVal);

Figure 3.1.3: Connection attempted using public key before explicit password

o ssh-agent not available for remote connection

o Problem: ssh-agents that are required to store user passwords and passphrases
for repeated remote login were not initialized by default, which prevented
subsequent connections.

o Action: Added a script that checks if the service is going to have access to an ssh-
agent, if yes then no ssh-agent is created otherwise the script creates a ssh-
agent that MASS can use for creating sockets with remote machines without
relying on explicit passwords.

o Testing: Verified no errors were generated due to the lack of ssh-agents and all
socket connections were able to successfully connect to remote machines.

if [-z "$SSH_AUTH_SOCK" 1; then
echo "SSH agent not running. Starting new agent..."

eval "$(ssh-agent -s)"

echo "SSH agent started with PID: $SSH_AGENT_PID"
else

echo "SSH agent is already running."
fi

Figure 3.1.4: Starting an ssh-agent for the service if one doesn’t already exist

e Hostname verification without reverse DNS

o Problem: Reverse DNS lookups were used to identify incoming connections;
unreliable or missing reverse DNS caused failures.

o Action: Modified the connection handshake so the remote side includes its
hostname in the initial message for identity verification. Retain optional reverse-
DNS as a fallback, but do not depend on it. Added input validation to mitigate
spoofing risks (e.g., require the remote-provided hostname to match other
expected values or be validated against a configured mapping).

o Testing: Verified connection establishment in environments lacking reverse DNS.
Documented the handshake protocol change and compatibility implications.

int sd = socket->getServerSocket();

int size=-1;

read(sd, (vc *)&size, f(int));

if (printOutput
convert.str("");
convert << "Server Hostname size is: " << size;
MASS_base: : log(convert.str());

char xserverName = new char[sizel;
if (size > @

read(sd, serverName, size);
if (printOutput) {
convert.str("");
convert << "Server Hostname: " << serverName << " whose size is: " << size;
MASS_base: :log(convert.str());
}

else
if (printOutput) {
convert.str("");
convert << "Failed to get server hostname";
MASS_base: :log(convert.str());
}
exit(-1);

Figure 3.1.5: When receiving a connection, wait for server’s hostname

std::string hostname = getHostName();
int msg_size = strlen(hostname.c_str());
if (printOutput) {
convert.str("");
convert << "Hostname is:

<< hostname << " whose size is: << size;

MASS_base: :log(convert.str());

for (int i = 0; i < rank; i++) {
sockets[i] = socket—>getClientSocket(hosts[i].c_str());

write(sockets[il, (void x)&msg_size, sizeof(int));
write(sockets[il,hostname.c_str(),msg_size);
fsync(sockets[il);

Figure 3.1.6: Server hostname is sent after connection is established

e Sample program updates

o Problem: Example code used outdated APIs or paths and failed to demonstrate
remote execution end-to-end.

o Action: Updated sample programs to compile and exercise both Place and Agent
remote execution paths, with clear steps to reproduce. Added comments and
debug statements that demonstrates how to run the example both locally and
across multiple hosts.

o Testing: Executed the sample across remote nodes and captured output verifying
correct behaviour.

Places xland = new Places(1, "Land", 1, msg, 7, 2, 100, 100);

msg = (char x)("good\0");

land->callAll(Land::init_, msg, 5);

Figure 3.1.7: Place testing across multiple nodes

Agents xnomad = new Agents(2, "Nomad", msg, 7, land, 10000);

nomad->callAll(Nomad::agentInit_, msg, 5);
printf("Nomad has been initiated");

msg = (char %) ("Second attempt\0");
nomad->callAll(Nomad::somethingFun_, msg, 15);

Figure 3.1.8: Agent testing across multiple nodes

3.2 HPX

Summary of actions and artifacts to include

e Dependency installation
o Installed/build prerequisites typically required by HPX:
= Boost (1.88.0)
= hwloc(2.12.1) for topology awareness
= optional memory allocators (tcmalloc/jemalloc) for improved memory
performance.
e HPX build & install
Download HPX source from Github.
Build using CMake utilizing available flags for customization.
Use makefile to do a selective build or complete build.
Some of the important flags provided by hpx installer:
= -DHwloc_ROOT: To specify the root of hwloc installation.
= -DBoost_ROOT: To specify the root of boost installation.
= -DHPX_WITH_MALLOC: Custom or system memory manager.
= -DHPX_WITH_FETCH_ASIO: If Asio needs to be installed.
= -DCMAKE_INSTALL_PREFIX: To define hpx installation directory.
o Detailed steps can be found here: Google Drive.
e Benchmark preparation
o Implemented two canonical benchmarks:
= Fibonacci (recursive async): demonstrates task creation, futures, and
asynchronous recursion.

O O O O

https://drive.google.com/file/d/1zmnSgJMMHxKTALdvBbxaFfvKt9KlKdsV/view?usp=sharing

std::uint64_t fibonacci(std::uint64_t n)
{
if (n < 2)
return n;

hpx::id_type const locality_id = hpx::find_here();

fibonacci_action fi
hpx::async(fib, locality_id, n - 1);
= hpx::async(fib, locality_id, n - 2);

return nl.get() +
n2.get();

Figure 3.2.1: Fibonacci implementation with futures implementation

= Matrix multiplication (parallel algorithm): demonstrates data-parallel
constructs and workload distribution.

rtuniform_int_distribution<element_type> dis(lower, upper);
generator = std::bind(dis, gen);
ranges::generate(A, generator);

riranges::generate(B, generator);

hpx::experimental::for_loop(hpx::execution::par, @, rowsA, [&](auto i
hpx::experimental::for_loop(@, colsB, [&](auto j) {
R[i * colsR + jl = 0;
hpx: :experimental::for_loop(@, rowsB, [&](auto k) {
R[i % colsR + j] += A[i * colsA + k]l * B[k * colsB + jl;
b;
b;

Figure 3.2.2: Matrix multiplication for parallel computing (with excellent programmability)

= Async overhead: Calculate overhead caused by async by waiting for each
async call.

t 1 =0; i < N; i++)

hpx::future<int> f = hpx::async(&null_task);

f.get();

Figure 3.2.3: Async overhead calculated by forcing linear operation

o Each benchmark should have:
= A brief description of what it measures (task granularity, async overhead,
data movement costs).
= The HPX implementation approach (e.g., hpx::async,
hpx::parallel::for_loop, and hpx::actions).
¢ Notable findings during execution:
o Hpx uses hpx::find_here() to find available resources available on the
system/cluster, if fewer found than required HPX fails pre-emptively.
o Hpxis modular by nature, it allows linking specific libraries within HPX according
to requirements, HPX::hpx and HPX::wrap_main are mandatory.
o Similar to agents, hpx has actions() which are asynchronous functions that hop to
available resources for execution.

4. Results

e Successful end-to-end execution of Mass C++, with all of its remote and local
features tested including callAll(), manageAll(), exchangeBoundary(), exchangeAll()
for both Places and Agents. Verifying a successful update of required libraries and
improvements to get Mass C++ upto date.

message deleted

MASS::finish: all MASS threads terminated

barrier waits for ack from hermes5.uwb.edu

barrier received a message from hermes5.uwb.edu...message = 0x7f9978000b60
localAgents[1] = m->getAgentPopulation: -1

message deleted

barrier waits for ack from hermes2.uwb.edu

barrier received a message from hermes2.uwb.edu...message = 0x7f9978000b60
localAgents[2] = m->getAgentPopulation: -1

message deleted

barrier waits for ack from hermes3.uwb.edu

barrier received a message from hermes3.uwb.edu...message = 0x7f9978000b60
localAgents[3] = m—>getAgentPopulation: -1

message deleted

barrier waits for ack from hermes6.uwb.edu

barrier received a message from hermes6.uwb.edu...message = 0x7f9978000b60
localAgents[4] = m—->getAgentPopulation: -1

message deleted

normal shutdown

channel released

session released

~Socket called: clientFd = 3 serverFd

socket disconnected

normal shutdown

channel released

session released

~Socket called: clientFd = 5 serverFd

socket disconnected

normal shutdown

channel released

session released

~Socket called: clientFd = 8 serverFd

socket disconnected

normal shutdown

channel released

session released

~Socket called: clientFd = 11 serverFd = -1

socket disconnected

MASS::finish: done

[rishprsi@hermesl samplesl$ [

Figure 5.1: MASS C++ successful execution

e The following patterns were analyzed from the hpx benchmarks:

o Matrix Multiplication: Close to linear scaling due to very high parallelizable
logic of matrix multiplication.

o Fibonacci: Constant performance with minimal benefit on even number of
nodes, due to critical sections of the logic.

o Parallel for: Good scaling because of simplicity of parallelizing for loops
using hpx::for_each.

o Async overhead: Running non parallel code on multiple nodes to single out
overhead caused by async. Which increases with the increase in number of
nodes.

Benchmark Results Across Multiple Nodes

10 4
i
2 g
o
8 —e— Matrix Multiplication
QE) Fibonacci
i —A— Parallel For
§ 97 —#— Async Overhead
5
(6]
(0]
%
[N}

4 -

Number of Nodes

Figure 4.2: Benchmark figures of simple benchmarks for HPX

5. Conclusion

This independent study accomplished its dual goals of bringing MASS C++ up to modern
standards and gaining practical familiarity with HPX’s programming model. On the MASS C++
side, critical library and security issues were addressed, including upgrading libssh2 for OpenSSL
3 compatibility, removing insecure password handling, enabling ssh-agent support, and
improving hostname verification. These changes collectively ensure that the framework can be
built and deployed reliably in current environments, and that its remote execution model aligns
better with contemporary security practices. The updated sample programs and successful
tests across multiple nodes provide a solid baseline for future extensions.

On the HPX side, installation, configuration, and benchmark execution provided concrete
insights into a modern asynchronous many-task runtime. Benchmarks such as Fibonacci, matrix
multiplication, parallel for loops, and async overhead highlighted both the strengths and
limitations of HPX’s approach. The results demonstrated strong scalability for data-parallel
patterns (matrix multiplication, parallel for) and clarified the costs associated with
asynchronous task management. More importantly, these experiments illustrated how HPX
exposes distributed parallelism in a way that is expressive and programmable, offering lessons
that can inform MASS C++ enhancements.

Together, these efforts position MASS C++ for the next stage of research and development. The
work confirmed that modernization is feasible without breaking core abstractions, while HPX
provided examples of advanced features futures/promises, actions, modular runtime design
that could be selectively adapted. The immediate next steps are to prototype asynchronous
APIs within MASS C++, explore hybrid MPI-threading modes, and evaluate more sophisticated
serialization and transport layers. With these directions, the thesis can move beyond
compatibility fixes to designing new abstractions that improve programmability, performance,
and portability for distributed agent-based and data-parallel models.

6. Appendix
MASS C++ Pull Request

https://bitbucket.org/mass_library_developers/mass_cpp_core/pull-requests/4

HPX Benchmarks

/home/NETID/dslab/hpx_benchmarks

https://bitbucket.org/mass_library_developers/mass_cpp_core/pull-requests/4

