

FLAME Benchmarking for MASS C++:
An Overview of the Current Benchmarks

and Next Steps
University of Washington Bothell

Sarah Panther
CSS 499: Undergraduate Research

November 12, 2019

Sarah Panther CSS 499 - Fall 2019 Term Paper

Table of Contents

Purpose ……………………………………………………………………………………………………. 3

Completed and In-Progress Benchmarks …………………………………………………………….... 3
Game of Life ………………………………………………...……………………………………….. 4

Specification …………………………………………………………………………………….... 4
Edits made ………………………………………………………………………………………... 4
Output …………………………………………………………………………………………….. 4

Social Network s...………………………………………………………………………………….... 6
Specification …………………………………………………………………………………….... 6
Model template ………………………………………………………………………………….. 7
Functions …………………………………………………………………………………………. 7
Initialization program ………………………………………………………………………….... 7
Output …………………………………………………………………………………………….. 8

Tuberculosis ……...…………………………………………………………………………………... 9
Specification …………………………………………………………………………………….... 9
Model template …………………………………………………………………………………... 9
Functions ………………………………………………………………………………………... 11
Initialization program ………………………………………………………………………….. 12
Output ………………………………………………………………………………………….... 12

Self-Organizing Neural Network ………………………………………………………………... 14
Specification …………………………………………………………………………………….. 14
Model template …………………………………………………………………………………. 14
Functions ………………………………………………………………………………………... 15
Initialization program ………………………………………………………………………….. 17
Output ………………………………………………………………………………………….... 17

MatSim ………………………………………………………………………………………………. 18
Specification ……………………………………………………………………………………. . 18
Initialization program ………………………………………………………………………….. 18

Next Steps ……………………………………………………………………………………………….. 19
Goals for Winter Break ……………………………………………………………………………... 19
Plan for Winter Quarter 2020 …………………………………………………………………….... 19

References ……………………………………………………………………………………………….. 19

2

Sarah Panther CSS 499 - Fall 2019 Term Paper

Purpose

The purpose of my undergraduate research project is to qualitatively and quantitatively
compare the three agent-based model (ABM) simulation platforms - MASS C++, RepastHPC,
and FLAME.

This will be accomplished by writing the specifications for seven ABM benchmarks; creating,
editing, and running the benchmarks; evaluating the platform’s performance and runtime;
qualitatively analyzing the ported programs’ code; and co-authoring a journal paper with my
research advisor.

The seven benchmarks are as follows:

● Game of Life
● Tuberculosis
● Social Networks
● Brain Grid
● MatSim
● Bail In/Bail Out
● VDT

This quarter and the previous summer session was focused on writing specifications for the
benchmarks and re-writing the FLAME benchmark programs.

Completed and In-Progress Benchmarks

Currently, the following benchmarks have been completed for FLAME:

● Game of Life
● Tuberculosis
● Social Networks
● Brain Grid

These benchmarks will be unit-tested to check for errors during the end portion of this project.

The benchmark MatSim is currently in progress.

3

Sarah Panther CSS 499 - Fall 2019 Term Paper

Game of Life

This benchmark’s specification may be found at the following Bitbucket address on the “ master ”
branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

The code for this benchmark can be found at the following Bitbucket address on the “ master ”
branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmarks
/FLAME/Game%20of%20Life/

Specification

The specification for this ABM was not student written; the simulation simply follows the rules
of Conway’s Game of Life.

Edits made

This ABM was edited during the summer quarter and not re-written as it was mostly correct.
The changes made were outlined in the term paper for CSS 499: Spring 2019.

There are further changes that could be made to clean up the code (i.e. refactoring the
initialization program, moving the logic of checking to see if the message is from a neighbor to a
filter in the model template, etc.), and can be made during a future quarter.

Output

The output shown in Figure 1 through 3 was demoed during this quarter’s presentation for a
grid of 400 cell agents for 5 iterations:

4

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmarks/FLAME/Game%20of%20Life/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmarks/FLAME/Game%20of%20Life/

Sarah Panther CSS 499 - Fall 2019 Term Paper

Figure 1. Output of the Game of Life benchmark for a grid of 400 agents for 5 iterations in FLAME serial

mode - Iteration 1

Figure 2. Output of the Game of Life benchmark for a grid of 400 agents for 5 iterations in FLAME serial

mode - Iterations 2 and 3

5

Sarah Panther CSS 499 - Fall 2019 Term Paper

Figure 3. Output of the Game of Life benchmark for a grid of 400 agents for 5 iterations in FLAME serial

mode - Iterations 4 and 5

Social Networks

This benchmark’s specification may be found at the following Bitbucket address on the “ master ”
branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

The code for this benchmark can be found at the following Bitbucket address on the
“ SARAH-SOCIAL-NETWORKS-V2 ” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-SOCIAL-N
ETWORKS-V2/Benchmarks/FLAME/Social%20Networks/Version_2/

Specification

The specification for this benchmark was re-written during the summer quarter and was
reviewed Dr. Fukuda.

The purpose of this ABM is to model the degrees of friendship between people in a social
network.

6

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-SOCIAL-NETWORKS-V2/Benchmarks/FLAME/Social%20Networks/Version_2/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-SOCIAL-NETWORKS-V2/Benchmarks/FLAME/Social%20Networks/Version_2/

Sarah Panther CSS 499 - Fall 2019 Term Paper

During initialization, a group of N people with k number of first degree, bi-directional
friendships is deterministically created.

During the simulation, each person checks their first degree friends’ friends and adds anybody
the current person isn’t already friends with to their own list of friends. This expands
everyone’s social network by one degree every iteration.

Once the desired number of iterations have passed, the friends list of each person is printed out
in order of degree of friendship.

Model template

The Social Networks XML model template consists of one type of agent - the Person Agent.

The Person agent consists of the following elements:

● a unique ID

● an array of first degree friends’ ID numbers

● an array of connections (a connection element consists of the friend’s id and degree of
friendship from the current Person)

● the current degree of friendship found and contained in the connections array

The Person agent completes two state functions during one iteration: posting the friends in their
social network onto the FLAME message board and finding the next degree of friendship.

The section “Functions” summarizes these functions.

Functions

post_found_friends () is the first state function in the finite state machine (FSM) Person agent. This
function simply iterates over each connection in the current Person’s connections array and
posts their friends and degree of friendship as a found_friend_message to the messageboard for
all the other Person agents to read.

find_next_degree_friends() is the last state function. This function reads through the board of
found_friend_messages that are filtered to include only messages sent from the current Person’s
first degree friends list. It then adds the friends in the message to this Person’s connections
array if the friend is not already in the array and is also not themselves.

Initialization program

7

Sarah Panther CSS 499 - Fall 2019 Term Paper

The initialization init_state_SocialNet.java creates a k -connected graph by connecting the current
Person to k/2 people to their right (if the list of people were viewed as a circular array) and k/2
people to their left. If k is an odd number, another connection is made with the person across
from this current Person. These connections are this Person’s first degree friends.

The Person agents are then written to the XML file “0.xml”.

Output
The output shown in Figure 4 was demoed during this quarter’s presentation for a group of 10
people with k = 2 first degree friends to find the 3rd degree of connectedness for three iterations
(only two were necessary to find the desired degree) :

Figure 4. Output of the Social Networks benchmark for a 10 people with 2 first degree friends to find the

3rd degree of connectedness for 3 iterations in FLAME serial mode

8

Sarah Panther CSS 499 - Fall 2019 Term Paper

Tuberculosis

This benchmark’s specification may be found at the following Bitbucket address on the “ master ”
branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

The code for this benchmark can be found at the following Bitbucket address on the
“ SARAH-TUBERCULOSIS-VERSION2 ” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-TUBERCUL
OSIS-VERSION2/Benchmarks/FLAME/Tuberculosis/TB_version2/

Specification

The specification for this ABM was written by Brian Tran and I during the summer quarter and
reviewed by Dr. Fukuda. We based the model on the paper Data-Parallel Algorithms for
Agent-Based Model Simulation of Tuberculosis On Graphics Processing Units [1].

In this simulation, a 2-d grid is created that represents human lung tissue. Bacteria and
macrophages are then spawned. Bacteria grow at a predetermined rate, and macrophages eat
and react to the bacteria and other macrophages if they are infected.

Each time step, macrophages are spawned from four entry points on the grid that represent
blood vessels. At a predetermined time step, T-cells enter the simulation via the blood vessel
and react to the macrophages, activating the infected ones and bursting the chronically infected.

Model template

The Tuberculosis XML model template consists of three main types of agents - the Place Agent,
the Macrophage agent, and the TCell agent.

It also has two helper agent types : the DayTracker - an iteration tracker, and the AgentFactory -
an agent spawner that tracks the next available Macrophage and TCell IDs.

The Place agent represents one square of the grid simulation space and contains the state of that
area. It consists of the following elements:

● a unique ID number

● an x coordinate

9

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-TUBERCULOSIS-VERSION2/Benchmarks/FLAME/Tuberculosis/TB_version2/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-TUBERCULOSIS-VERSION2/Benchmarks/FLAME/Tuberculosis/TB_version2/

Sarah Panther CSS 499 - Fall 2019 Term Paper

● a y coordinate

● a bacteria flag - whether or not there is a live bacteria on this Place

● a chemokine level - these levels can be 0, 1, or 2 (the max level)

● a blood vessel flag - whether or not this Place is an entry point

● a macrophage flag - whether a macrophage is present

● a t-cell flag - whether a t-cell is present

● the IDs of the Places neighboring it (in its Moore’s area)

The Macrophage agent represents a human macrophage immune cell and consists of the
following variables:

● a unique ID number (unique to the other macrophages)

● an x coordinate

● a y coordinate

● the current state (i.e. ACTIVE, RESTING, etc.)

● a located-on-bacteria flag - whether or not this macrophage is located on a Place with
bacteria

● the day this macrophage became infected (-1 if it’s not infected)

● the number of intracellular bacteria it contains

● an array of Place ID’s this macrophage is neighboring to which it can move or spread its
bacteria or chemokines if necessary

The TCell agent represents a generic human t-cell and is made up of the following
characteristics:

● a unique ID number (unique to other T-cells)

● an x coordinate

● a y coordinate

● array of neighboring Place IDs - the area to which this T-cell can move to the next time
step

10

Sarah Panther CSS 499 - Fall 2019 Term Paper

Functions

The Place agent has the following six state functions:

● write_place() : writes its state as a placeStart message

● decay_chemokine_and_grow_bacteria() : changes its internal state as time progresses

○ chemokine levels decrease

○ bacteria is grown if necessary by checking the time step and neighboring Place’s
placeStart messages

○ its chemokine level is posted using a placeDecayAndGrow message

● cell_recruitment() : TCells and macrophages are spawned at the appropriate time steps if
this Place is an entry point

● approve_macrophage_movement() :

○ if there are no macrophages on this Place, it iterates through macroMoveReq
messages addressed to it

○ approves one request and denies the rest by posting a grantMacroMove message
for each request

● approve_t_cell_movement() :

○ if there are no t-cells on this Place, it iterates through the tCellMoveReq messages
addressed to it.

○ approves one request and denies the rest by posting an tCellState message for
each request

● react_to_macro_and_tcell() : updates its current state based on any new t-cell or
macrophage presence

○ chemokine level may be maxed to 2

○ bacteria may be cleared (by being eaten by the resident macrophage)

The Macrophage agent has the following three state functions:

● macrophage_request_move() :

11

Sarah Panther CSS 499 - Fall 2019 Term Paper

○ looks through the add_placeDecayAndGrow messages from its neighboring
Places to find the Place with the highest chemokine level or, if there are no
chemokines in the neighboring Places, a random neighboring Place

○ requests the Place by posting a macroMoveReq message

● macrophage_move() : reads the grantMacroMove message addressed to it and either
updates its x and y coordinates to the new Place it has moved to and re-calculates its
neighbors or does nothing

● macrophage_react() :

○ checks if its on the same Place as a t-cell by seeing if there is a tCellState message
addressed to the same Place it’s currently on

○ it then updates its state and intracellular bacteria as needed. If the macrophage
dies, it returns 1 for this function, removing it from the simulation.

The TCell agent has the following two state functions:

● t_cell_request_move() :

○ looks at the neighboring Place’s chemokine levels by reading through their
placeDecayAndGrow messages

○ either requests to move to the Place with the highest level or, if all of the levels
are 0, requests a random Place from its neighbors to move to by sending a
tCellMoveReq message

● t_cell_move() : reads the tCellState message addressed to it and updates its location or
does nothing

Initialization program

The initialization program init_state.py creates an N by N size grid of Places and spawns 100
macrophages on random spaces. It then creates four bacteria in the center of the grid and four
entry points, one in the center of each quadrant.

Finally, it writes the spawned agents and Places to the file “0.xml”.

Output

12

Sarah Panther CSS 499 - Fall 2019 Term Paper

The output was visualized using an adapted version of WOut.java. In this visualization, the
resting macrophages are a bright green, the t-cells are bright blue, and the bacteria are black.
The chemokine levels are shown as red for the max level (level = 2) and yellow for level = 1.

As macrophages transition from resting to the possible states of infected, activated and
chronically infected, their colors change to yellow, light blue, and dark purple, respectively.

Figure 5 shows the end state of visualization that was demoed at the end of summer quarter.

Figure 5. Output visualization of Tuberculosis using TBOut.java for a grid of 40 by 40 for 100 iterations

13

Sarah Panther CSS 499 - Fall 2019 Term Paper

Self-Organizing Neural Network

This benchmark’s specification may be found at the following Bitbucket address on the “ master ”
branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_
Specifications/

The code for this benchmark can be found at the following Bitbucket address on the
“ SARAH-BRAIN-GRID-V2 ” branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-BRAIN-GRI
D-V2/Benchmarks/FLAME/Brain%20Grid/Brain_Grid_V2/

Specification

This specification was written by Dr. Fukuda during the summer quarter.

In this simulation, N neurons are spawned upon a 2-d grid. Each neuron first only consists of a
soma (cell body) and, at random time steps, grows dendrites and an axon.

Once the axon is finished growing , synaptic terminals are spawned. These may make
connections with other neurons’ dendrites. Likewise, the dendrites of the current neuron are
grown and may make connections with other neurons’ synaptic terminals.

Once a connection is made, all neurons will sum the received signals and add them to the
output sum. Then, the neuron may activate a signal if it is an excitatory type and add it to the
output sum it will send to its synaptic terminals.

 The output sum is then modified depending on the type of the current neuron. If the value is
above the threshold value, it will forward the signal to the other neurons connected to its
synaptic terminals.

Model template

The Self-Organizing Neural Network XML model template consists of two main types of agents
- the Place Agent and the Neuron agent.

It also has one helper agent type : the IterationTracker.

The Place agent represents one square of the grid simulation space and contains the state of that
area. It consists of the following variables:

14

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/master/Benchmark_Specifications/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-BRAIN-GRID-V2/Benchmarks/FLAME/Brain%20Grid/Brain_Grid_V2/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-BRAIN-GRID-V2/Benchmarks/FLAME/Brain%20Grid/Brain_Grid_V2/

Sarah Panther CSS 499 - Fall 2019 Term Paper

● a unique ID

● an occupying neuron ID (-1 if a neuron isn’t present)

● a neuron part type if there is a neuron occupying this place (synaptic terminal, dendrite,
etc.)

The Neuron agent represents a human neuron cell and is made up of the following elements:

● a unique ID

● the type of neuron (excitatory, inhibitory, or neutral)

● sum of signals from the previous iteration. If this is the first iteration, this value is 0.

● array of in-connections (neurons from which this current neuron will receive signals)

● array of out-connections (neurons to which this neuron will send signals)

● Place ID where the soma resides

● array of available directions to grow around the soma - this is where the dendrites and
axon will spawn and grow from

● array of Places that neighbor new synaptic terminal growth

○ this is used to filter Place ID’s to only track the delta of neuron position and
check for new neuronal out-connections

○ cleared and reset at the end of every iteration

● array of Places that neighbor new dendrite growth

○ this is used to filter Place ID’s to only track the delta of neuron position and
check for new neuronal in-connections

○ cleared and reset at the end of every iteration

● axon state information - position, Place growth requests, branches, etc.

● dendrite array - state and position of this neuron’s dendrites

● dendrite Place growth requests

Functions

The Place agent has two state functions:

15

Sarah Panther CSS 499 - Fall 2019 Term Paper

● approve_growth_requests() :

○ reads through growth_request messages

○ if this Place isn’t occupied, grants one growth request approval and denies the
rest, or ,if this Place is occupied, deny all of the requests

○ post a growth_approval message to approve or deny the requests

● occupied_post_state() : if this Place is occupied by a synaptic terminal or a dendrite, post
which part is present and the neuron’s ID in an occuppied_state message

The Neuron agent has the following six state functions:

● request_to_grow() : the neuron attempts to grow by the rules outlined in the specification
by requesting the appropriate Place ID’s using a growth_request message

● grow() : the neuron updates the positions of its parts by reading through the
growth_approval messages sent to it and changes the state of its parts accordingly (stop
branching, stop growing, etc.)

● process_connections() : the neuron adds new connections to its in_connections and
out_connections as necessary by reading through its neighboring Place’s occupied_state
messages and seeing if the correct parts are neighboring each other (its synaptic terminal
to another neuron’s dendrite or its dendrite to another neuron’s synaptic terminal)

● receive_new_connections() : add new connections to its in_connections and
out_connections as necessary by reading new_connections messages sent to it by other
neurons

● process_and_transmit_signal() :

○ modulate signals received during the previous time step according to this
neuron’s type

■ excitatory amplifies the signal

■ inhibitory reduces the signal

■ neutral transmits the signal without a change

○ if this is an excitatory neuron, add 1.0 to the output sum

○ transmit the signal by posting a signal message to this neuron’s out_connections

● receive_signals() : receive the signal from this neuron’s in_connections by reading through
the signal messages addressed to this neuron

16

Sarah Panther CSS 499 - Fall 2019 Term Paper

Initialization program

The initialization program WriteNeuron.java creates an S by S sized grid of Places and populates
N number of neurons’ somas on it randomly. It then assigns a random iteration number for the
axon and each dendrite to spawn.

It then writes the neurons and places to the file “0.xml”.

Output

The visualization program of this simulation’s output was adapted from Dr. Fukuda’s
WOut.java program.

In the visualization, neurons are displayed as follows:

● somas - dark purple
● excitatory neurons - bright purple/pink
● inhibitory neurons - warm gray
● neutral neurons - light blue

The received and modulated signals are shown as greens that lighten into white as the signal
value grows higher.

Figure 6 shows the last iteration of the visualization demoed during this quarter’s presentation.

Figure 6. Visualization of Brain Grid output for a 100 by 100 grid with 50 neurons for 20 iterations

17

Sarah Panther CSS 499 - Fall 2019 Term Paper

MatSim

This benchmark is in progress, and its specification and code has not been pushed to Bitbucket
currently.

Specification

The rough draft of the specification for this benchmark was written this quarter, and has been
reviewed by Dr. Fukuda. Some edits need to be made to the document to reflect what was
discussed in the last lab meeting of the quarter.

The purpose of this simulation is to model traffic flow and congestion during morning and
evening commutes, when most vehicles have similar origin and destination points.

In the simulation, a graph is created and stored in an adjacency list. Each node represents an
intersection, and each unidirectional edge represents a one-way road. The intersections and
roads each have a car capacity that they can hold during a single iteration. Roads additionally
have a distance weight, or the number of iterations needed for a vehicle to traverse them.

In the morning, the cars will start from a predetermined origin point. They will then proceed to
their predetermined destination point located either at the appointed center vertex or nearby as
the node’s capacities allow. Cars will be aware of and follow their optimal route as computed
by an initialization program.

In the evening, they will make the reverse commute from the morning’s destination point
(“work”) to the morning’s origin point (“home”).

Initialization program

The initialization program to generate the graph/map, cars’ origin and destination points, and
cars’ routes will be a sequential C++ program.

This program will first generate a directed, connected graph with random weights and
capacities stored in an adjacency list. Then, the graph will be modified to be strongly connected
so the cars will have a guaranteed route between their “home” and their “work”. This will be
accomplished using Tarjan’s algorithm and connecting the strongly connected components.

Then, the shortest paths between each pair of vertices will be calculated using the
Floyd-Warshall algorithm - this information will be used to select the cars’ origin and
destination points as well as compute their routes.

18

Sarah Panther CSS 499 - Fall 2019 Term Paper

Then, the origin and destination points will be determined by selecting a single node as the
center of the graph - vertex 0. The top X nodes furthest away from vertex 0 will be selected as
the morning origin (“home”) points for the car agents. X is the number of nodes that will be
selected whose capacity will accommodate the desired number of car agents.

Similarly, Y number of nodes neighboring vertex 0 will be selected to accommodate the desired
number of car agents vertex 0 can not hold - these nodes will be the morning destination point
(“work”).

Finally, the program will write the graph’s adjacency list, the cars’ “home” and “work” points,
and their morning and evening commute routes to an input file. This input file will be used for
the FLAME, MASS C++, and RepsatHPC MatSim simulations.

Next Steps

Goals for Winter Break

My plan for winter break is to finish the MatSim benchmark: the initialization program, the
model template, and the function files.

Also, I will add comments to the benchmarks I’ve written this quarter and push those changes
and any additional edits I’ve made to bring the mass_cpp_appl repository up to date

Finally, I plan to work on the VDT and Bail-In, Bail-Out benchmark specifications in preparation
for the winter quarter.

Plan for Winter Quarter 2020

During winter quarter, I plan to finish the VDT and Bail-In, Bail-Out benchmark specifications,
learn MASS C++, and port all seven benchmarks to MASS C++.

References

[1] D’Souza, R. et al(n.d.). Data-Parallel Algorithms for Agent-Based Model Simulation of Tuberculosis
On Graphics Processing Units . Michigan Tech. University.

19

