
Sarah Panther CSS 499: Spring 2020 Term Paper

Benchmarking MASS C++: An Overview of Program
Progress over the Spring Quarter and Current Plan for the
Summer Quarter

Table of Contents
Purpose ……………………………………………………………………………………………………. 1

Summary of Progress for the Spring Quarter ………………………………………………………... 2

MASS C++ Brain Grid ………………………………………………………………………………….. 2
Initialization …………………………………………………………………………………………... 2
Neuronal Growth …………………………………………………………………………………….. 3
Neuronal Connections ………………………………………………………………………………. 3
Signal Sending ………………………………………………………………………………………... 4

Changes to the MATSIM Initialization Program Specification ………………………………….... 4

Test Programs for the Updated MASS C++ Core ……………………………………………………. 4

Looking Forward: Plan for Future Quarters …………………………………………………………. 5

Sources …………………………………………………………………………………………………….. 6

Purpose

The purpose of this research project is to compare three multi-agent simulation platforms -
MASS C++, RepastHPC, and FLAME by completing the following tasks:

● implementing the following seven benchmarks:
○ Game of Life
○ Brain Grid
○ Tuberculosis
○ Social Networks
○ Bail In/Bail Out
○ MatSim
○ VDT

● conducting quantitative and qualitative analyses of each of the three platforms using the

process of creating and running the seven ported benchmarks

● co-authoring a journal paper with my advisor

1

Sarah Panther CSS 499: Spring 2020 Term Paper

My goal for the spring quarter was to continue creating benchmarks for MASS C++.

Summary of Progress for the Spring Quarter

The code for the benchmark Brain Grid was completed this quarter for MASS C++. The
functionality of initialization and neuron growth was tested with the older version of MASS
C++ (prior to fellow undergraduate student Josh Landron adding neighbor functionality during
the Winter 2020 quarter). The functionality of neuronal connections and signal sending will be
debugged and tested with the updated MASS C++ with neighbor functionality during a future
quarter.

Additionally, the concept for the initialization program for the benchmark MATSIM for all three
platforms was reworked; the details of this are outlined in section Test Programs for the Updated
MASS C++ Core .

Finally, the updates for the new version of MASS C++ were investigated and tested.

MASS C++ Brain Grid

In this benchmark, the behavior of cell growth and signal sending of a self-organizing
autonomous neural network is simulated using the derived Place class BrainPlace and the
derived Agent class GrowingEnd. This code may be found in the following repository on the
SARAH-MASS-BRAIN-GRID branch:

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-BRA
IN-GRID/Benchmarks/MASS/MASS_BrainGrid/

The code for this program has been written, but not tested or debugged with the most updated
version of MASS C++, which is necessitated by this program’s use of the function
addNeighbor().

Initialization

For this simulation’s initialization, a space composed of N by N BrainPlaces is created, where N
is input by the user. Each BrainPlace has the probability to spawn an excitatory, inhibitory, or
neutral neuron with E%, I%, and N%, respectively. For the BrainPlaces that don’t spawn a
neuron, these spaces remain unoccupied until a neuron requests to grow there later in the
simulation.

The BrainPlaces that are initialized as having an occupying neuron are defined as the space that
holds the soma, or cell body of the neuron. This particular BrainPlace holds most of the neuron

2

https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-BRAIN-GRID/Benchmarks/MASS/MASS_BrainGrid/
https://bitbucket.org/mass_application_developers/mass_cpp_appl/src/SARAH-MASS-BRAIN-GRID/Benchmarks/MASS/MASS_BrainGrid/

Sarah Panther CSS 499: Spring 2020 Term Paper

entity’s information: when to spawn which cell part, what other neurons is this cell connected
to, what is this neuron’s cell type, etc. In order to grow different cell parts during future
iterations, a Growing Agent migrates to each soma to act as a spawner.

Neuronal Growth

Next, the following phases occur for the user-input number of iterations : neuronal growth,
additions of neuronal connections to each neuron, and signal sending.

During the neuronal growth phase, the soma checks to see if the current iteration is the spawn
time for any of its cell parts. When this occurs, the soma spawns a new Growing End agent of
the needed cell part type.

The newly spawned Growing End migrates to a BrainPlace adjacent to the soma and marks that
Place as occupied. It then continues to grow and branch as specified by its type and associated
probabilities. The dendrite and the axon are the only neuron part types that are spawned from
the soma; the axon Growing End changes its part type to synaptic terminal with 100 - G% in
order to grow that part for its neuron.

If a Growing End stops growing - which occurs at a 10% probability for each iteration - it exits
the simulation by calling kill(). A Growing End branches by spawning another agent of the
same cell part type and having the newly spawned Growing End migrate to a new BrainPlace
that is +/- 45 degrees from the current BrainPlace.

Because a BrainPlace may have at most one neuron part occupying its space during the
simulation, Growing Ends must request movement access from the desired BrainPlace by
submitting a move request and checking that BrainPlace’s outMessage for approval.

Neuronal Connections

Following the growth phase, the Growing Ends check their Moore’s area for any neighboring
neurons. If a neighboring neuron is discovered, the Growing End hops back to the BrainPlace
holding its home neuron’s soma and records that connection at that place. If the connection is
an out-connection (the current neuron’s synaptic terminals neighboring another neuron’s
dendrites), it is added to that BrainPlace’s neighbors.

If any in-connections are found, a newConnectionMsg is sent to the neuron that forms the
in-connection with the current cell, and the receiver adds the sender to its Place neighbors
vector. An important note is that each neuron adds only its out-connections as a neighbor to
forward a signal to, creating a unidirectional edge between the current Neuron and its
out-connection.

3

Sarah Panther CSS 499: Spring 2020 Term Paper

Signal Sending

After the new neighbor connections are added in the current iteration, each BrainPlace with a
neuron’s soma takes the signal received from the past iteration (inputSignal) and modifies it
based on its neuron type. Additionally, if the neuron at the current BrainPlace is excitatory, it
activates an outgoing signal of 1.0 in addition to the signal received in the past iteration with a
probability of 10%.

Once modifications to the received signal have been made and passes the threshold amount of
.4, the neurons forward the signal to their out-connections using brainPlaces.exchangeAll().

Lastly, each neuron reads through its inMessages and adds any received signals (from its
in-connections) to its total inputSignal. This signal will be sent out at the end of the next
iteration, and the simulation continues with neuron growth at the start of the next iteration.

Changes to the MATSIM Initialization Program Specification

During this quarter, the initialization program for the benchmark MATSIM was also
re-evaluated. The existing initialization program needed quite a few complex algorithms that
could be considered outside the scope of this research project, so the MATSIM platform itself
was revisited to create a network generation program that was closer to the source simulation.

After some research, I found that the MATSIM platform uses OpenStreetMap, Osmosis, and the
function “RunPNetworkGenerator” to build the road system from existing, real-world OSM
data and create a MATSIM network file. [1] The MATSIM network file is written in XML and
contains a node adjacency list of the network as well as distances and road capacities between
the nodes. [2] This XML file would be ideal for importing a realistic road network for our
versions of MATSIM across the three ABM platforms.

Then, the demand (start and end points of each agent’s trips) can be either generated
synthetically by running the function “RunPPopulationGenerator”. Alternatively, the demand
can be created using a census file and the function “RunZPopulationGenerator” [1]; however,
more research must be done to verify that the output of these population functions would be in
a useful format for initializing the MASS C++, FLAME, and RepastHPC versions of this
simulation.

Test Programs for the Updated MASS C++ Core

In addition to the work done for the main research project, I aided in debugging the most
updated version of MASS C++ core by writing two test programs, “simple_mass_test” and

4

https://matsim.org/

Sarah Panther CSS 499: Spring 2020 Term Paper

“simple_neighbor_test”, to verify that the old functionality as well as the new neighbor
functions were working.

These test programs can be found on the hermes cluster in the following directories:

● simple_mass_test - /CSSDIV/research/dslab/mass_cpp/test
● simple_neighbor_test - /CSSDIV/research/dslab/mass_cpp/neighbors_test

When using these tests, an illegal free issue was found during runtime as well as some strange
relative indexes for newly-added neighbors. These issues will be investigated during future
quarters.

Looking Forward: Plan for Future Quarters

My goal for the week between spring and summer quarter is to read and learn the code of the
MASS C++ platform so I can debug some issues the updated version was having.

My goals for the summer quarter are as follows:

● finish editing the MATSIM specification to reflect the changes outlined in this document
● complete the MATSIM initialization program(s) according to the revised specification
● write the remaining specifications for VDT and Bail-In/Bail-Out
● implement the remaining two benchmarks for FLAME: VDT and Bail-In/Bail-Out
● learn how to use the RepastHPC platform
● implement at least three agent-based model benchmarks for RepastHPC

5

Sarah Panther CSS 499: Spring 2020 Term Paper

Sources

[1] Rieser, M, Nagel, K and Horni, A. 2016. Generation of the Initial MATSim Input. In: Horni,

A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim,
Pp. 61–64. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.7. License:
CC-BY

[2] Network.xml. Matsim-org/matsim-libs. (2018, June 21). Retrieved June 13, 2020, from

https://github.com/ matsim-org/matsim-libs/blob/master/examples/scenarios/equil
/network.xml

6

https://github.com/

