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Network motifs are subgraph patterns that occur frequently in biological networks and represent 

significant interaction between molecules. Discovering motifs reveal unidentified interactions that 

are of great importance to biological applications. However, motif detection is a computationally 

intense process due to the exponential growth of motif patterns with an increase in network or 

motif size. Due to the computational complexity, existing sequential tools impose a limitation on 

motif sizes, and larger network analysis takes unreasonable time. The performance issue of these 

tools resulted in a constant drive to improve the speed with parallel approaches. However, most 

approaches using MapReduce, OpenMPI, and previously implemented agent-based parallelization 

are limited to compute the frequency of candidate motifs and don’t offer tools to detect significant 

motifs. Hence, this project implements parallel agent-based significant motif discovery using the 

MASS (Multi-Agent Spatial Simulation) library by crawling the reactive agents over the network 

distributed across multiple computing nodes. Additional Spark implementation helped in 

identifying strengths and enhancements to MASS to handle large-scale data. Compared to previous 

MASS agent-based implementation, the latest implementation gained at most 2x speedup and 

reduced memory usage by a factor of 2. Spark implementation attained almost 2x speedup 

compared to the sequential NemoLib tool. Although MASS implementation encountered memory 

limitation, both MASS and Spark implementations exhibited a higher level of parallelism with 

increased computing power and memory resources. Additionally, this work discusses the 

opportunity to parallelize graph algorithms with MASS in terms of development efforts and data 

reuse benefits.
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Chapter 1. INTRODUCTION 

‘Network Motifs’ are defined as the recurrent and statistically significant patterns that are 

found more often in the biological networks than in randomized networks [1]. Network motif 

detection and analysis led to the discovery of unidentified biological interactions, detection of 

essential proteins, drug discovery, and disease diagnosis. 

Biological data can be analyzed by modeling biological data as a graph with vertices 

representing molecules, and edges symbolizing molecular interaction. Network motif detection 

involves computationally intense subgraph enumeration, random graph generation, NP-complete 

subgraph isomorphic testing, and statistical testing. Existing sequential tools [5], [6] employ 

sampling methods (to find approximate results) to reduce computational complexity at the expense 

of detection accuracy. 

Vertex-to-vertex communication and in-memory data analysis play a vital role to parallelize 

the network motif detection. Unlike other parallel frameworks, MASS offers direct communication 

between vertices by migrating agents, and Spark offers in-memory computation by reducing data 

movement. These features motivate us to use the MASS and Spark frameworks in this work. 

This research exploits MASS [3] agent-based parallelization and Spark [4] parallelization to 

reduce computational complexity without compromising motif detection accuracy and enhance 

the scalability of motif detection. The main bottleneck in motif detection is subgraph enumeration, 

taking on average more than 95% of the whole execution time, as noted in [18]. In this work, 

computationally expensive subgraph enumeration step has been parallelized in both MASS and 

Spark implementations. 

1.1 PROBLEM DESCRIPTION 

The k-sized network motifs are k-vertices induced subgraphs that occur more frequently than 

any other k-vertices subgraphs in the target network. 

 
Figure 1.1. Non-Isomorphic Directed Motif Structures for Motif Size 3[2]. 
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Figure 1.1 depicts 13 non-isomorphic directed motif structures for motif size 3. As seen in 

Table 1.1, the number of non-isomorphic subgraph patterns increases exponentially with an 

increase in motif size (‘k’ vertices motif). For directed graphs, subgraph patterns increase 

enormously. Enumerating all k-sized subgraphs in a large graph is computationally intensive. 

Consequently, existing sequential tools [5], [6], and parallel works [14], [16] impose the maximum 

motif size limitation that can be detected using these tools. 

Table 1.1. Non-Isomorphic Subgraph Patterns in Graphs up to size 10[2]. 

Vertices Undirected Directed 

1 1 1 

2 1 2 

3 2 13 

4 6 199 

5 21 9364 

6 112 1530843 

7 853 880471142 

8 11117 1792473955306 

9 261080 13026161682466252 

10 11716571 341247400399400765678 

1.2 PARALLEL FRAMEWORKS 

Due to the computational complexity described in section 1.1, sequential tools [5], [6], and [7] 

take a long time to detect large motif sizes or analyze large graph sizes, as these tools are restricted 

to use single machine compute and memory resources This work attempts to speedup the motif 

detection by utilizing collective memory and compute power offered by multiple systems in the 

cluster environment. To realize the goal of improving motif detection speed, this work parallelized 

network motif detection process using the MASS and Spark framework described in this section. 

1.2.1 Multi-Agent Spatial Simulation (MASS) Library 

Multi-Agent Spatial Simulation (MASS) [3] is a parallel computing library built as an agent-based 

model intended to parallelize applications from physical, biological, social, and behavioral 

domains. Figure 1.2 portrays the high-level architecture of the MASS library. MASS comprises 

two major components, Places and Agents. Places represent simulation space, a multi-dimensional 

matrix dynamically allocated over the computing nodes in the cluster. Agents represent execution 

instances that can reside at a place, or migrate to another place in a local or remote computing 

node. Agents can access data at its residing place, communicate with other agents via inter-agent 
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broadcast [8], and are also capable of duplicating itself. Applications can be parallelized in the 

MASS library using the notion of places and agents. 

 

Figure 1.2. MASS Architecture[3]. 

MASS spawns as many threads as the number of CPU cores and executes parallel operations 

on all places and agents using multiple threads. MASS uses sockets to communicate across the 

computing nodes utilized for the execution. MASS library completely hides the underlying parallel 

framework so that developers can focus only on their application. 

1.2.2 Apache Spark Framework 

Apache Spark is an open-source parallel framework that provides a unified computing engine for 

different data analytic tasks such as SQL querying, real-time streaming, machine learning, and big 

data applications. As seen from Figure 1.3, Spark [4] follows Master-Worker architecture with two 

main processes (driver and executor) and a cluster manager. Its driver's responsibility to translate 

spark application into actual spark jobs that run on the worker nodes. The cluster manager is 

responsible for allocating and deallocating resources to spark jobs.  
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Figure 1.3. Spark Architecture[10]. 

Spark provides a fault-tolerant abstraction termed as Resilient Distributed Datasets (RDD) 

[9], which are the immutable collection of elements partitioned over the distributed computing 

nodes. Spark provides two operations - transformations and actions, that can be performed on RDD 

partitions in parallel. Transformation operations such as map, filter, join build new RDDs by 

transforming parent RDDs. Action operations such as collect, reduce, count performs computation 

on RDDs, and return results to the driver. Spark lazily evaluates transformations by delaying 

execution until action is requested. 

Transformations are further classified into narrow and wide based on the dependency involved 

in RDD creation. Objects residing in a single partition are dependent only on objects residing in a 

single partition of the parent RDD in narrow dependencies (map, filter). In contrast, objects are 

dependent upon objects residing in multiple partitions of the parent RDD in wide dependencies 

(join, reduceByKey). Thus, wide dependencies require costly shuffle operation that involves 

redistributing data across the worker machines. 

Spark runtime splits the spark application into multiple jobs when it encounters spark action. 

Each job is divided into multiple stages when runtime encounters a wide-dependency 

transformation. Each stage, in turn, includes multiple tasks (pipelined narrow-dependencies) that 

are executed in parallel on RDD partitions. Thus, Spark builds an optimized execution plan to run 

parallel tasks. 
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1.3 RESEARCH GOALS 

The research goals of this capstone work are as follows: 

• Improve Execution Speed of the network motif detection process by parallelizing 

computation-intensive k-sized subgraph enumeration in the cluster environment. 

• Enhance the Scalability of the network motif detection by detecting large size motifs and 

analyzing large graph sizes. Scalability can be enhanced by utilizing memory and compute 

power offered by all computing machines in the cluster environment. 

• Evaluate MASS Features. MASS Parallel File I/O, Asynchronous Automatic Agent 

Migration features were developed to improve the parallel performance, and Agent Control 

Population feature was implemented to overcome the computation and memory overhead 

incurred by agent expansion for big data applications. This research evaluates these 

features for the network motif detection problem and identifies potential enhancements. 

• Identify Enhancements to MASS for Big Data Applications. Comparing MASS and Spark 

implementations reveal possible enhancements to MASS to handle big data applications. 

This comparative analysis exposes MASS strengths to intuitively parallelize similar graph 

problems with lesser development efforts for biologists from the non-parallel computing 

background. 

The rest of this document is organized as follows: Chapter 2 introduces the network motif 

detection process and algorithm employed to enumerate subgraphs. Chapter 3 reviews related 

works of sequential and parallel network motif detection tools. Chapter 4 describes in detail the 

system flow of the parallel motif detection, presents details of MASS and Spark implementations 

along with the performance enhancements. Chapter 5 provides a detailed experimental evaluation 

of MASS and Spark parallelization on different real and synthetic data sets. Finally, Chapter 6 

concludes the paper with limitations and future enhancements. 

Chapter 2. BACKGROUND 

This chapter provides background on various steps involved in the network motif detection process 

and explains the algorithm used to enumerate subgraphs in the input and random networks. 
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2.1 NETWORK MOTIF DETECTION PROCESS 

Network motif detection process involves the below three major steps, as depicted in Figure 2.1. 

1. Find Candidate Motif Frequencies in Input Graph. Network-centric motif search approach 

finds candidate motifs in input graph 'G' by enumerating all k-sized motifs, groups 

isomorphic motifs, and then computes the frequency of the non-isomorphic motifs FG(m). 

2. Find Candidate Motif Frequencies in Random Graphs. Motif search process generates 

hundreds or thousands of random graphs 'R' by preserving the topological properties of the 

input network such as the number of vertices and degree of each vertex. Then, it repeats 

enumeration and frequency computation of all non-isomorphic k-sized candidate motifs 

FR(m) in each of the random graphs. 

3. Statistical Significance Test. Finally, the statistical significance test using Z-score and p-

value is performed to discover candidate motifs that are significant network motifs. 

 

Figure 2.1. Network Motif Detection Process. 

Z-score is the ratio of the difference between the original frequency and the mean random 

frequency to the standard deviation. Z-score may be undefined when the standard deviation is zero. 

The higher the Z-score, the more significant is the network motif. 

𝑍(𝑚)  =
𝐹𝐺(𝑚) − 𝑀𝑒𝑎𝑛(𝐹𝑅(𝑚))

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐹𝑅(𝑚))
 

The p-value represents the number of random networks in which network motif occurred more 

often than in the original network, divided by the number of random networks ‘N’. This value lies 

in the range from 0 to 1 inclusive. The smaller the p-value, the more significant is the network 

motif. 

𝑝(𝑚)  =  
1

𝑁
∑𝑛=1

𝑁 𝑐(𝑛)    𝑤ℎ𝑒𝑟𝑒 𝑐(𝑛) = 1, 𝑖𝑓 𝐹𝑅(𝑚) ≥  𝐹𝐺(𝑚) 

Generally, candidates with Z(m)>2 and p(m)<0.01 are recognized as significant motifs [11]. 
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2.2 SUBGRAPH ENUMERATION ALGORITHM 

The Enumerate Subgraph (ESU) algorithm [12] is the fastest and efficient algorithm to enumerate 

all k-sized subgraphs in the input graph. Figure 2.2 shows the ESU algorithm that recursively 

enumerates subgraphs from each vertex. The main idea of this algorithm is to traverse only a 

limited set of neighbors (termed as ‘exclusive neighborhood’), whose identifier values are higher 

than the source vertex identifier of the current enumeration tree. This concept of the exclusive 

neighborhood facilitates the ESU algorithm to generate unique subgraphs. 

 

Figure 2.2. Subgraph Enumeration Algorithm[12]. 

Figure 2.3 illustrates subgraph enumeration from each vertex is independent of each other. 

The unique and independent enumeration properties reveal the easily parallelizable potential and 

encourage to use this algorithm in this work. 

 

Figure 2.3. Subgraph Enumeration Tree[12]. 
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Chapter 3. RELATED WORKS 

This chapter describes the existing sequential tools and parallel approaches for motif search using 

different parallel frameworks such as Message Passing Interface (MPI), Hadoop, and MASS. It 

discusses the limitations of the existing tools and highlights past research strategies adopted in this 

work. 

3.1 SEQUENTIAL NETWORK MOTIF DETECTION TOOLS 

Mfinder [5] enumerates all k-sized subgraphs starting from an edge in a brute force manner, which 

takes longer run time and consumes more memory. Mfinder’s exhaustive enumeration version can 

detect small motifs up to size 4 in both directed and undirected graphs. Mfinder’s sampling version 

implements the edge-sampling strategy proposed in [13] to reduce run time, but results in biased 

results by finding the same motif pattern repeatedly. Owing to the computational complexity, 

Mfinder’s sampling version can only detect motifs up to size 6. 

 

Fast Network Motif Detection (FANMOD) [6] tool implements ESU algorithm [12] explained 

in section 2.2. ESU algorithm adopts a vertex-sampling strategy with distinct vertex identifiers. 

Unlike Mfinder, ESU finds a motif only once and hence it is faster. In contrast to sampled Mfinder, 

Randomized ESU (RAND-ESU) yields unbiased results by sampling neighbors at each depth with 

identical visiting probability. FANMOD can detect motifs up to size 8 in undirected, directed, and 

colored networks. 

 

Network Motif Library (NemoLib) [7] is a general-purpose network-centric approach library 

used for the detection and analysis of network motifs in undirected and directed networks. Similar 

to FANMOD, it uses ESU and RAND-ESU algorithms [12] to count motif frequencies referred to 

as NemoCount. Additionally, it offers NemoProfile that finds motifs concentration on each vertex 

and NemoCollect that retrieves all instances of input graph that match network motif patternss. 

 

Though these sequential tools [5], [6] can detect motifs up to particular sizes, the motif size 

limitation imposed by these sequential tools implies the necessity to improve the detection process 

to discover large motifs and reduce the detection complexity. 
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3.2 PARALLEL NETWORK MOTIF DETECTION APPROACHES 

Parallel Network Motif Extraction. Wang et al. proposed MPI based parallel motif detection 

[14], in which master process partitions network and broadcast to workers. Worker processes 

detect candidate motifs in parallel by constructing a Breadth-First Search (BFS) tree to depth k-1 

for each vertex and finds all k-connected subgraphs. Eventually, the master process gathers results 

from all workers and deduces the actual motifs with isomorphism check. Although this parallelism 

performed faster for motifs up to size 4, Wang’s parallel implementation was slower than the 

sequential random sampling method for large motif sizes (5 and 6). 

 

Parallel G-tries. Riberio et al. proposed a data structure Graph reTRIEval (G-trie) [15] that 

provides an efficient way to store and search the collection of subgraphs. Similar to the prefix tree, 

G-trie is a multi-way tree where descendant nodes share a common subgraph structure. Later, 

Riberio et al. proposed a parallel g-tries [16] approach, which parallelized independent and 

recursive g-trie matching calls by distributing work evenly to different processes using receiver-

initiated dynamic load balancing. This parallel subgraph count implementation using OpenMPI 

achieved almost linear speedup up to 128 processors for motifs of size at most 9. 

 

Iterative Hadoop MapReduce ESU. Verma et al. [17] parallelized ESU algorithm using iterative 

Hadoop MapReduce. This parallelization consists of three MapReduce jobs, ESU job, Labeler job, 

and Combiner job. ESU job is executed repeatedly up to input motif size to enumerate all candidate 

motifs. Labeler job computes canonical labels for candidate motifs. Finally, the combiner job 

aggregates the candidate motif frequencies. This parallelism suffered from disk I/O overhead for 

smaller networks. Though parallel performance surpassed their sequential implementation for size 

4 motif search on 25714-nodes network, it's slower than the sequential FANMOD [6] speed. 

 

Parallel Network Motif Discovery. Parallel Network Motif Discovery [18] proposed by Riberio 

et al. parallelized motif search in input and random graphs simultaneously in different processes 

using OpenMPI.  In contrast to the above parallel approaches, this approach parallelized the entire 

motif detection process using ESU. A distributed work-sharing strategy performed better than the 

master-worker strategy due to the optimal utilization of all CPU cores. It achieved almost linear 

speedup up to 128 processors for 1000 random graphs in 6 different networks for motif size 5-8. 
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3.3 MASS-BASED PARALLEL NETWORK MOTIF ANALYSIS  

Agent and Spatial Parallelization of Network Motif Enumeration. Kipps et al. [19] parallelized 

biological network motif enumeration in three different ways, MASS agent-based, MASS place-

based, and MPI based enumeration. Results showed consistent performance improvement for 

MASS place-based and MPI based enumeration with an increase in the number of threads and 

number of computing machines. But, MASS agent-based enumeration struggled to enumerate 5.5 

million subgraphs for motif size 5 in a 2365-nodes network. This was caused by poor memory 

usage during agent explosion, and nearly all computing power spent to create and terminate agents. 

 

MASS-based NemoProfile Construction. In research work [20], Andersen et al. extended MASS 

agent-based, MASS place-based, and MPI based motif enumerations [19] to construct 

NemoProfile [22], that determines motif concentration on the individual vertices. MASS place-

based parallelization proved to be beneficial for NemoProfile, while MASS agent-based parallel 

implementation encountered memory exhaustion for motif size 4 in a 5193 network. 

 

MASS Agent Management and Performance Features. To enhance performance and mitigate 

memory overhead issues reported by [19] and [20], the below features were added to MASS. 

Parallel File I/O feature to relieve the main program from the burden of distributing input data to 

all computing nodes in the cluster. Asynchronous Automatic Agent Migration feature to reduce 

communication with user application during each iteration of agent management functions. Agent 

Population Control feature to control the number of active agents by serializing agents that exceed 

population limit value. Serialized agents are activated once the current agent population drops 

below the population threshold. This work evaluates these features for motif detection problem. 

 

Similar to tools [6], [7], [17], [18], [19], [20], this work employs ESU algorithms to enumerate 

motifs and relies on NautyTraces [21] program to test graph isomorphism. Sequential tools [6], [7] 

are used to prove correctness and evaluate performance, while previous MASS agent-based 

enumeration [19] serves as a parallel baseline for this work. Furthermore, existing parallel network 

motif implementations with OpenMPI [16], MapReduce [17], and MASS [19] are limited to motif 

frequency count and don’t offer the entire network motif detection functionality. This project 

implements the complete motif detection process and identifies the statistically significant motifs. 
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Chapter 4. PARALLELIZATION OF BIOLOGICAL NETWORK 

MOTIF DETECTION 

This chapter describes the overall system flow to detect network motifs of the desired size (≥ 3) in 

an undirected or directed target network. It also explains MASS and Spark approaches along with 

implementation-specific fine-tuning performed to improve speed and reduce memory use. 

4.1 SYSTEM FLOW 

The network motif detector comprises of five distinct modules, graph parser, target graph analyzer, 

random graph generator, random graph analyzer, and statistical analyzer. Figure 4.1 demonstrates 

the system flow that portrays the parallel or sequential execution of the modules. Both MASS and 

Spark implementations follow the identical execution pattern to develop compatible versions for 

consistent evaluation of parallelism.  

 

Figure 4.1. System Flow for Network Motif Detection. 

A 

D B 

E 

C 
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Graph Parser (A in Figure 4.1). This module parses the target graph represented in the edge list 

format and constructs graph in adjacency list representation. With this representation, out and in 

neighbors' information for all vertices are initialized. Undirected graphs store an edge as 'out' 

neighbor in both vertices, while directed graphs store neighbor information based on the edge 

direction. Graph parser computes target graph's out-degree, in-degree sequences that are required 

to generate random graphs. During graph construction, graph parser eliminates self and parallel 

edges to avoid unnecessary computations. MASS parallel I/O feature evaluated in section 5.5.1 

clarifies the decision to execute the graph parser module serially.  

 

Target Graph Analyzer (B in Figure 4.1). It performs exhaustive enumeration of the target graph 

to identify all candidate motifs for the given motif size. Enumeration happens in parallel across all 

the computing machines utilized for the execution. The target graph analyzer first instantiates all 

vertices with their corresponding neighbor information obtained from graph parser. Then, it 

executes the ESU algorithm shown in Figure 2.2 simultaneously from all the vertices. Once the 

subgraph of input motif size is enumerated, compact graph6 or digraph6 representation is 

computed and returned. Appendix A describes the procedure to convert undirected and directed 

subgraph structures to graph6 and digraph6 formats respectively. At the termination of all parallel 

enumerations, the target graph analyzer gathers all motif sized subgraphs in graph6 or digraph6 

format. Finally, isomorphic subgraph occurrences are grouped by providing graph6 or digraph6 

representation to Labelg program [23], and resultant canonical labels of candidate motifs are saved 

along with respective frequencies. Figure 4.2 depicts isomorphism grouping, where the Labelg 

assigns the same canonical label (BW) for different graph6 labels (Bg, Bo) with identical structure. 

Input Graph Enumerated Subgraphs for Motif Size 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph6 Label Bw Bg Bg Bg Bg Bo 

Canonical Label Bw BW BW BW BW BW 

Figure 4.2. Graph6 and Canonical Labels for Motif Size 3. 

 

Random Graph Generator (C in Figure 4.1). Random graphs are generated from the input graph 

by preserving the degree distribution of the vertices in the input graph. This work generates degree-
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preserving random graphs using the configuration model described in [24]. Random graph 

generator fetches degree distribution sequence from graph parser. Degree distribution sequence 

contains a list of vertex identifiers created by repeatedly adding each vertex identifier up to its 

degree value (number of neighbors). Random graph generator shuffles degree distribution 

sequence and repeatedly picks a random pair of vertices as an edge for the random graph. 

Consequently, the generated random graph may be a connected or disconnected graph with lesser 

degree distribution than expected, due to the exclusion of self edges and parallel edges. 

 

Random Graph Analyzer (D in Figure 4.1). This module employs the RAND-ESU algorithm to 

perform approximate enumeration based on the input sampling probabilities. Instead of traversing 

all neighbors, it selectively traverses the limited set of neighbors at each ESU tree-level shown in 

Figure 2.3. RAND-ESU algorithm reduces the time taken to compute the frequency of candidate 

motifs in a large number of random graphs. Similar to the target graph analyzer, this module 

executes in parallel across all computing machines. Random graph analyzer filters non-candidate 

motifs enumerated in the randomized networks and gathers frequency of all candidate motifs. 

 

Statistical Analyzer(E in Figure 4.1). As a final step, the statistical analyzer computes the Z-score 

and p-value for all the candidate motifs, using the mathematical relations stated in section 2.1. It 

executes sequentially in the master computing machine and displays the result to the user, as seen 

in Figure 4.3. 

 
Figure 4.3. MASS Execution Result for Motif Size 5 in 1000 Random Graphs 
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4.2 MASS IMPLEMENTATION 

MASS Places and Agents, introduced in section 1.2.1, are used to parallelize subgraph 

enumeration in target and random graphs. MASS places map to graph vertices that hold neighbors' 

information throughout the lifetime of the program. MASS agents are responsible for enumerating 

subgraphs of given motif size from each place (vertex) in parallel. Graph parser assigns zero-

indexed vertex identifiers to map vertex identifier to the MASS place index effortlessly. 

   
a. Initial Agents          b. Agents execution (1st iteration)          c. Agents after 1st iteration 

                        
           d. Agents execution (2nd iteration)                    e. Agents deposit subgraphs 

Figure 4.4. MASS Agents Execution for Motif Size 3 

Initially, an agent is populated at every place, as seen in 4.4.a. At every iteration of agent 

function execution, agents examine the neighborhood and perform either of the following actions. 

If valid neighbors exist, it spawns child agents and migrates itself to the first valid neighbor or 

terminates otherwise. After repeating this procedure for motif size iterations, agents deposit 

enumerated subgraph structure at the current residing place (4.4.e) before terminating itself. 

Finally, the driver gathers subgraphs from all the places in parallel. Figure 4.4.d. demonstrates 

agent at vertex ‘3’ migrates to vertex ‘4’, although vertices ‘3’ and ‘4’ aren’t direct neighbors 

(directly connected). MASS supports flexible agent movement, unlike Spark’s graph processing 

library discussed later. 
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4.2.1 MASS Place and Agent Data Structure 

MASS agent movement pattern described in the previous section is comparable to Kipps et al. [19] 

agent-based subgraph count implementation. As discussed in related works, MASS agent-based 

network motif analysis implementations [19], [20] faced memory overhead. Consequently, the 

main focus of this agent-based implementation is to reduce memory use at the application level. 

 

     
 

Figure 4.5. MASS Place and Agent Data Structure 

To differentiate Kipps et al. implementation [19] from the current implementation, the former 

version termed as ‘Old MASS Network Motif’ and the latter version termed as ‘New MASS 

Network Motif’ throughout this paper. Figure 4.5 depicts the data structure transition from Old 

MASS Network Motif (Graph Crawler represents Agent and Graph Node represents Place) to New 

MASS Network Motif (Crawler represents Agent and Node represents Place). Additionally, New 

MASS network motif includes ‘In Neighbors’ and ‘Sampling probability’ fields to support directed 

graphs and RAND-ESU algorithm, which aren’t supported by old MASS network motif. 

As seen in Figure 4.5, Old MASS network motif used wrapper objects and multiple levels of 

nested object references, while New MASS network motif version eliminated wrapper objects and 

used primitive types. The primitive type-specific collections are used instead of Java built-in 

collection (HashSet<Integer>) or user-defined collection (CompactHashSet) to avoid boxed 



20 

 

objects or multiple levels of embedded object references. Thus, minimal use of java objects 

enabled New MASS network motif version to consume less heap space and improve execution 

speed with reduced garbage collection pauses for memory management tasks. 

New MASS network motif utilized Fastutil library [25] due to its compatibility with standard 

java library and easy to use well-documented APIs. More importantly, as per evaluations [26], 

[27], Fastutil performs consistently faster with less memory footprint when compared against other 

Java type-specific collection libraries such as Trove, Goldman Sachs Collections, Koloboke, and 

High-Performance Primitive Collections for Java (HPPC). Furthermore, Spark documentation [28] 

also recommends Fastutil for tuning data structures without wrapper objects and pointer-based 

data structures. 

4.2.2 MASS Performance Tuning 

New MASS network motif implementation intended to minimize data within each agent primarily 

to keep JVM heap memory utilization in control during agent expansion in order of millions. And 

additionally, reduce the time spent to serialize and deserialize agent data during migration across 

computing nodes. This section captures performance improvements incorporated in New MASS 

network motif implementation to reduce the overall memory footprint of the application and 

improve execution speed. 

• Preferred Primitive Types over Primitive-Wrapper Objects to reduce memory space and 

avoid autoboxing/unboxing performed during primitive to non-primitive type conversions 

and vice versa. 

• Replaced Built-in Java Collection with Fastutil’s Collection. Built-in Java collections such 

as HashMap, HashSet, and ArrayList consume enormous memory with an increase in the 

collection size and tightly couples the internal data structure used. To reduce memory 

overhead and benefit from using different internal data structures such as array, AVL tree, 

RB tree, open hash, and custom hash, Fastutil [25] collections are used. In MASS 

implementation, the number of agents increases exponentially for large motif size and large 

graph size. With primitive type-specific collections, each agent contained considerably 

lesser data. 
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• MASS Asynchronous Agent Migration. Replaced Agent’s callAll followed by manageAll 

with doAll for ‘motif size’ iterations to reduce time incurred by returning control to the 

driver program in between the successive function calls for each iteration. 

• Reduced HashMap with String Key. The initial version maintained data uniquely for each 

motif in multiple hash maps (8 hash maps) with motif’s canonical label string as a key. 

These hashmaps are restructured to ‘Motif’ class to reduce memory space occupied by the 

recurrent canonical label string key references stored across multiple maps. 

• Moved Agent’s data to Places. Input motif size and sampling probabilities are stored in the 

agent initially. These input data occupied huge memory with the creation of millions of 

agents. Input data used by agents are stored in all places and agents fetch data from place 

upon arrival to the place, thereby reducing memory utilized during the agent expansion.  

• Eliminate redundant data in Agent. Early implementation maintained source vertex, next 

migration vertex fields within each agent, which are later dropped and computed from 

subgraphList at run time.  

• Avoid passing unnecessary data during Agent duplication. At the last iteration of the 

enumeration process, spawned agents migrate to the last vertex to discover its connectivity 

to all other vertices of the enumerated subgraph and deposit subgraph structure at last 

vertex. Hence, agents spawned in the last iteration require only subgraph data and not 

subgraph neighbors and extension data. This unnecessary data prevention reduced memory 

and time taken to duplicate the data from parent to child agents. 

These performance tuning has reduced execution time significantly by minimizing agent size, 

reducing heap utilization, decreasing serialization-deserialization time, and notably lowering 

garbage collection cycles. 

4.3 SPARK IMPLEMENTATION 

Spark implementation to parallelize subgraph enumeration in target and random graphs uses basic 

Spark abstraction, Resilient Distributed Datasets (RDD). Graph vertices map to VertexRDD and 

enumerated subgraphs map to SubgraphRDD, as viewed in Figure 4.6. In contrast to MASS that 

allows vertex addition to enumerated subgraph (agent) dynamically, new SubgraphRDD has to be 

created every time to add a vertex to the enumerated subgraph, due to the immutable nature of 

Spark RDDs. 
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In Spark implementation, subgraph enumeration happens through a series of narrow-

dependency transformations such as mapToPair, values, flatMap, followed by an expensive wide-

dependency transformation (reduceByKey), that shuffles data across all the computing nodes. 

Finally, the driver program gathers the frequency of all enumerated subgraphs either in graph6 or 

digraph6 format via collectAsMap Spark action. 

 

Figure 4.6. Spark Implementation of Subgraph Enumeration 

Spark implementation doesn’t utilize Graphx [29], Spark’s graph processing library optimized 

for distributed graph operations. Pregel [30] is a vertex-centric graph processing model developed 

by Google for large-scale graph processing. Although Graphx provides an optimized Pregel like 

operator for iterative computations, restrictions imposed to optimize graph computation evolved 

as an obstacle to utilize for the subgraph enumeration algorithm. As pointed out in [31], Graphx 

Pregel operator prohibits direct communication between vertices that are not adjacent in the graph 

to reduce data movement. But, subgraph enumeration requires direct communication between non-

adjacent vertices. Consequently, Spark implementation employed basic RDD instead of Graphx 

operators to enumerate subgraphs efficiently. 
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4.3.1 Spark Performance Tuning 

The initial version of spark implementation performed slower than sequential tools [6], [7] because 

of the under-utilization of the cluster resources to execute tasks in parallel, and data serialization 

overhead that impacted network bandwidth. 

• Tune Default Parallelism Level. In Spark, RDDs [32] are created either by parallelizing an 

existing collection from the driver program via parallelize() or by reading from the file 

system via textFile(). Later RDD creation splits input file into multiple partitions depending 

on file size so that Spark can run tasks in parallel across the partitions. But, Spark 

implementation depicted in Figure 4.6 creates initial vertexRDDs by parallelizing vertices 

collection. Automatic RDD partitioning done by Spark turns out to be inefficient in this 

scenario. Hence, it is crucial to split vertexRDD into multiple partitions to increase task 

parallelism of all narrow-dependency transformations applied successively on vertexRDD. 

Thus, the default parallelism level was fine-tuned by configuring 'spark.default.parallelism' 

property to 3 tasks per CPU core in the cluster, as suggested in [28]. 

• Tweak ReduceByKey Partitions. ReduceByKey inherits the number of partitions either 

from the largest parent RDD or 'spark.default.parallelism' property. It is essential to tweak 

the partition value for reduce tasks, that involve shuffle operation. Smaller partition count 

might cause out of memory issues when large RDD partitions don't fit in memory, while 

larger partition count might incur the repartition overhead. After experimenting with 

different partition values (that are multiples of the number of CPU cores in the cluster) on 

different graphs, optimal partition value has been identified to be 48 for the test cluster. 

• Eliminate unnecessary spark actions used for debugging. Listing 1 shows the initial spark 

code that applied count action to find the number of subgraphs enumerated in every 

iteration. Following the spark’s job execution model described in section 1.2.2, multiple 

jobs are created, one for each count action up to motif size. 

1   for (int size = 1; size <= motifSize; size++) { // Iteratively enumerate subgraphs 
2       System.out.println(subgraphRDD.count() + " subgraphs enumerated for motif size: " + size ); 
3                 
4       enumerateSubgraphsRDD = subgraphRDD.mapToPair( 
5                   (PairFunction<Subgraph, Subgraph, Iterable<Subgraph>>) subgraph -> {...}); 
6        
7      subgraphRDD = enumerateSubgraphsRDD.values().flatMap( 
8   (FlatMapFunction<Iterable<Subgraph>, Subgraph>) subgraphs -> {...}); 
9   } 

Listing 1. Spark’s code to get enumerated subgraphs count 
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Figure 4.7 depicts the re-evaluation of RDD lineage from the earliest parallelize 

transformation in each stage. Developers need to pay more attention while using spark 

actions to debug intermediate results. Thus, the removal of count action eliminated RDD 

lineage re-evaluation and improved execution speed. Incase graph computation requires 

spark action, then RDDs can be cached in on-heap memory or persisted in disk or off-heap 

memory based on input storage level passed to persist() API to overcome the expensive re-

evaluation of RDD lineage. 

 

 

 

 
Figure 4.7. Spark’s RDD Lineage Re-evaluation for Spark Action 

• Reduce Data Serialization Overhead. Though default Java serialization is flexible, it results 

in large serialized data. But Kryo library serializes objects faster and at most 10x compact 

than default java serialized objects. The only downside of the Kryo serializer is to register 

user-defined classes. Spark [28] recommends Kryo serializer for network-intensive 

distributed applications. Thus, Spark implementation improved network performance by 

transferring compact objects serialized using the Kryo library. 

These fine-tuning efforts enabled Spark implementation to outperform sequential tools [6], 

[7] for large motif sizes in small graphs, and even small motif sizes in large graphs. 
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Chapter 5. RESULTS 

This chapter presents the experimental results of MASS and Spark parallel implementations 

discussed in chapter 4, and compares execution performance with sequential tools FANMOD [6], 

NemoLib [7], and parallel Kipps et al. [19] MASS version. Being a GUI based tool, FANMOD 

tests are carried out in Intel i7-8550U Windows laptop with 16 GB RAM. Except for FANMOD, 

all other implementations are tested in the environment described in 5.1. This chapter follows the 

same naming convention, 'Old MASS’ refers to Kipps et al. [19] MASS version, and ‘New MASS’ 

refers to the MASS implementation described in 4.2. The correctness of the results is verified by 

comparing parallel output with the sequential output of motif detection presented in Appendix B. 

5.1 EXECUTION ENVIRONMENT 

Experiments are conducted in a cluster of 8 computing nodes made available by the University of 

Washington Bothell. Among 8 computing nodes, 4 nodes have 8-core 2.33GHz CPU (Intel Xeon 

E5410) with 16GB memory and the remaining 4 nodes have 4-core 2.66GHz CPU (Intel Xeon 

5150) with 16GB memory. The latest stable version of software libraries used in this work are as 

follows, MASS Java [33] core version 1.2.1, NemoLib Java [34] version 2, Apache Spark [35] 

version 2.4.5, Nauty Traces [36] version 2.6 (r12), and Fastutil [37] version 8.3.1. NemoLib, Old 

MASS, and New MASS java applications are configured with 4GB initial heap and 12GB 

maximum heap space. The Spark version is configured to utilize 8GB memory for driver and 2GB 

memory for executor processes. 

5.2 INPUT DATASETS 

This section presents the graph properties of the undirected and directed real network datasets used 

for experiments. As stated in [2], typical biological networks are often sparse, with an average 

degree (ratio of the number of edges to the number of vertices) between 1 and 3. Hence, synthetic 

graphs are used to evaluate performance and memory usage of the implementations in dense 

networks. 
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5.2.1 Real Biological Network Datasets 

Table 5.2 lists three undirected and two directed real datasets used to conduct experiments. These 

downloaded input datasets are in different graph formats such as Graph Modeling Language 

(GML), Pajek, and Weighted Edge-List format. Different input graphs formats are converted to 

the Edge-List format expected by the current implementation using a python script. This script 

uses open-source python library NetworkX [38], for format conversion and graph visualization. 

Figure 5.1 depicts the dolphin network visualized using python script. 

Table 5.2. Real Network Graph Properties. 

Real Datasets Vertices Edges Directed? 
Connected 

Components 

Dolphin [39] 62 159 No 1 

Power [40] 4,941 6,594 No 1 

DIP [41] 26,695 73,085 No 1,204 

Yeast [42] 688 1,078 Yes 11 

Gnutella P2P [43] 6,301 20,777 Yes 2 
 

 
Figure 5.1. Dolphin Network 

5.2.2 Undirected Synthetic Graphs 

Undirected synthetic graphs (single connected component) are generated using NetworkX’s API 

fast_gnp_random_graph, which implements an efficient version of the Erdős-Rényi random graph 

generation model [44].  Table 5.3 lists graph properties along with edge creation probability used 

to generate these graphs.  

Table 5.3. Undirected Synthetic Graph Properties. 

Vertices Edges 
Edge Creation 

Probability 

Maximum 

Degree 
Average 

Degree 

1,024 52,116 0.1 134 50.89 

2,048 83,925 0.04 118 40.97 

4,096 125,668 0.015 90 30.68 

8,192 234,678 0.007 86 28.64 

5.3 EXECUTION PERFORMANCE 

This section compares the performance of sequential tools (FANMOD, NemoLib) against parallel 

implementations (Old MASS, New MASS, and Spark) for target graph enumeration. Listing 2 

shows execution time measured with System.currentTimeMillis() uniformly in all versions (except 

FANMOD). Both MASS versions utilized 8 computing nodes and 4 threads per computing node. 
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1    long startTime = System.currentTimeMillis(); 

2  

3    // Execute Network Motif Detection Application 

4  

5     System.out.println("Overall execution time = " + (System.currentTimeMillis() - startTime) + " milliseconds"); 

Listing 2. Execution time measurement code snippet 

5.3.1 Real graphs performance comparison with increasing motif sizes 

   
Figure 5.2. Undirected Real Networks Performance. 

 

Undirected Real Graphs Performance. Figure 5.2 shows New MASS version performs 

consistently faster than the Old MASS version for small (Dolphin) and medium (Power) sized 

undirected graphs. But in large (DIP) graph, Old MASS runs faster than New MASS 

implementation for small motif size (3). The phase-wise execution time analysis reveals the 

parallel subgraph enumeration (ESU) happens faster in New MASS, but New MASS takes more 

time to initialize the target graph compared to Old MASS implementation. Due to additional data 

structures incorporated in the New MASS version to support directed graphs and approximate 

enumeration (presented in 4.2.1), New MASS takes more time to initialize larger graphs. 

Though New MASS improved over Old MASS, MASS versions lag behind Spark and 

sequential tools in all experiments. Spark performance significantly improves with an increase in 

motif size as well as graph size. Figure 5.2 depicts the parallel Spark version attained almost 2x 

speedup in medium-sized power graph (motif size 9) and large DIP network (motif size 4). 

FANMOD faced maximum motif size limitation (> 8), and MASS versions encountered memory 

overhead to enumerate larger subgraphs. Old MASS can enumerate up to 12.4 million subgraphs 

while New MASS can enumerate up to 33.4 million subgraphs. In conclusion, spark parallelization 

improved speed and enhanced scalability over the sequential tools for undirected real graphs. 
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Table 5.4. Enumerated Subgraphs Count in Undirected Real Graphs. 

Target 

Graph 

Motif 

Size 

#Subgraphs Target 

Graph 

Motif 

Size 

#Subgraphs Target 

Graph 

Motif 

Size 

#Subgraphs 

Dolphin 7 550,428 Power 5 268,694 DIP 3 1,859,101 

Dolphin 8 2,683,740 Power 6 1,260,958 DIP 4 89,371,477 

Dolphin 9 12,495,833 Power 7 6,340,413    

Dolphin 10 55,824,707 Power 8 33,494,650    

   Power 9 183,453,978    

Table 5.4 lists the number of subgraphs enumerated for increasing motif sizes in undirected 

real datasets. Dolphin graph performance shows New MASS speedup (compared to Old MASS) 

increased from 1.5x to 2.4x with increased enumerated subgraphs (agents) from 2.6 million to 12.4 

million. With compact agent structure implementation, New MASS minimized CPU time spent on 

memory management tasks, while operating with millions of agents.  

 

Directed Real Graphs Performance. This subsection compares performance for directed real 

graphs. Tests were not conducted in Old MASS, as it doesn’t support directed graphs.  

  

Figure 5.3. Directed Real Networks Performance. 

Figure 5.3 illustrates New MASS performs comparably equivalent to Spark for small motif 

size (3). But for motifs (≥ 4), agent creation and management cost increases with an exponential 

increase in agent population and consequently impacts MASS performance. This is because a large 

number of subgraphs are enumerated even for small motif size in directed graphs (for instance, 10 

million subgraphs are enumerated for motif size 4 in P2P), as seen in Table 5.5. Similar to 

undirected graphs, MASS version encountered memory limitation beyond motif size 6 and 4 in 

Yeast and P2P graphs respectively. Figure 5.3 shows performance only upto certain motif sizes 

because parallel implementations support subgraph enumeration up to maximum integer value of 
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231-1 (2,147,483,647). NemoLib, the sequential baseline, also exhibits the same limitation. Figure 

5.2 and Figure 5.3 depict parallel Spark implementation outperformed sequential tools, NemoLib 

and FANMOD for large motif sizes in both undirected and directed real graphs. 

Table 5.5. Enumerated Subgraphs Count in Directed Real Graphs. 

Target 

Graph 

Motif 

Size 

#Subgraphs Target 

Graph 

Motif 

Size 

#Subgraphs 

Yeast 3 13,150 P2P 3 341,267 

Yeast 4 183,174 P2P 4 10,031,003 

Yeast 5 2,508,149 P2P 5 391,618,916 

Yeast 6 32,883,898    

Yeast 7 416,284,878    

5.4 MASS SPEEDUP AND MEMORY REDUCTION 

This section evaluates the impact of MASS performance improvement by comparing speedup and 

memory reduction on dense synthetic graphs generated using the technique described in 5.2.2. All 

tests used 8 computing nodes and 4 threads per computing node and enumerated motif size 3. 

5.4.1 Synthetic graphs performance comparison with increasing graph sizes 

Table 5.6. New MASS Speedup in Undirected Synthetic Graphs. 

Graph Subgraphs Old 

MASS 

New 

MASS 

Speedup 

1,024 4,949,229 87.022 43.381 2.00 

2,048 6,693,448 94.884 51.472 1.843 

4,096 7,629,910 117.717 53.525 2.19 

8,192 13,389,518 303.443 79.674 3.80 

 

Table 5.6 demonstrates New MASS achieved an average of 2.4x speedup than Old MASS for 

dense synthetic graphs.  Fine-tuning MASS version explained in 4.2.2 improved performance of 

New MASS over Old MASS. Although application-level optimization enhanced New MASS 

speed, increasing motif size beyond the value presented in this section affects the MASS execution. 

This is due to the memory exhaustion caused by millions of agents that fill up the heap space. In 

this scenario, CPU resources are utilized for garbage collection rather than algorithm computation, 

which impacts performance. Thus, current MASS implementation is limited by the maximum heap 

availability on the cluster machines. 
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5.4.2 Memory Reduction 

This section measures the memory usage of Old MASS and New MASS implementations and 

evaluates reduction achieved by the New MASS version. Listing 3 shows memory consumption 

measured by finding the difference between total memory and available free memory. 

1     long MemAtStart = Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory();  

2  

3    // Execute Network Motif Detection Application 

4  

5    long MemAtExit = Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory(); 

6    long actualMemUsed = MemAtExit-MemAtStart; 

7    // Memory Utilized 

8    System.out.println("Memory Used: "+ actualMemUsed + " Bytes (" + actualMemUsed/1048576 + " MB)"); 

Listing 3. Memory utilization measurement code snippet 
 

Table 5.7 displays memory usage (in MB) of MASS versions to detect motif size 3 in 

undirected synthetic graphs. As per Java SE documentation [45], approximate values returned by 

totalMemory() and freeMemory() methods (in Listing 3) vary over time depending on garbage 

collection execution in the host. Owing to the unreliable nature of this measurement, a series of 

experiments (5 executions at different times) are conducted to find the overall memory usage trend. 

Table 5.7. Memory Reduction in MASS Implementation 

Graph 1024V_52116E 2048V_83925E 4096V_125668E 8192V_234678E 

Version Old 

MASS 

New 

MASS 

Old 

MASS 

New 

MASS 

Old 

MASS 

New 

MASS 

Old 

MASS 

New 

MASS 

Execution 1 1165 487 2115 347 2442 906 2687 1013 

Execution 2 1161 472 2163 368 2336 942 2509 1070 

Execution 3 1048 483 2119 350 2382 927 2651 1048 

Execution 4 1223 465 2167 369 2402 983 2599 1180 

Execution 5 1129 448 2017 397 2426 927 2417 955 

Min (in MB) 1048 448 2017 347 2336 906 2417 955 

Avg (in MB) 1145.2 471 2116.2 366.2 2397.6 937 2572.6 1053.2 

Max(in MB) 1223 487 2167 397 2442 983 2687 1180 

Reduction 2.431422505 5.778809394 2.558804696 2.442650968 
 

The memory usage trend exhibits variation in the range of 39~270 MB across the executions. 

Based on average memory usage, it can be concluded that the New MASS version achieved at 

least 2.4 times memory reduction in dense graphs. Compact data structure and minimal data carried 

by agents in New Mass version reduced memory usage, which in turn decreased garbage collection 

pauses and enhanced performance. Consequently, reducing memory footprint at the application 

level can significantly improve speed and enhance scalability to deal with large-scale data. 
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5.5 MASS FEATURE EVALUATION 

This section evaluates three MASS features, parallel file I/O, agent population control, and 

asynchronous agent migration features that are tried in New MASS implementation. 

5.5.1 MASS Parallel I/O Feature 

MASS Parallel I/O feature expects each line in the input graph to have the same alignment so that 

the file can be partitioned and read in parallel from the computing nodes. To meet even alignment 

constraint, each neighbor data need to be filled with -1 and spaces up to maximum neighbors as 

seen in Figure 5.4 and end up creating a huge input file. As visualized from Table 5.8, MASS 

Parallel I/O drastically increases the input file size for large graphs. Additionally, it expects the 

number of input lines to be an exact multiple of the number of computing nodes to partition the 

input file accurately. Although MASS Parallel I/O provides great parallelization potential for 

complete graphs wherein every vertex has a connection to all other vertices in the graph. Current 

MASS Parallel I/O is not well suited for biological networks that exhibit network property of fewer 

vertices with high degree and more vertices with low degree. Hence, MASS implementation 

preferred sequential graph parser described in 4.1 over parallel I/O. 

Table 5.8. Input graph size for different formats 

Dataset 
Edge List 

File Size 

Parallel I/O 

File Size 

Dolphin 1 KB 8 KB 

Power 62 KB 923 KB 

DIP 761 KB 75,370 KB 
  

Figure 5.4. Parallel I/O Graph 

5.5.2 MASS Agent Population Control Feature 

This feature controls the active agent population by serializing agents that are spawned beyond the 

maximum limit and deserialize agents once the current population drops below the maximum limit. 

Although this feature caches inactive agent data in a serialized form (that are much smaller than 

raw agent objects), serialized agent data consumes significant heap space when inactive agents 

grow exponentially in order of millions. Due to highly imbalanced agents in computing nodes, 

even if a single computing node (whose heap is filled by active agents and serialized inactive 

agents) triggers full garbage collection, then execution takes unreasonable time. To reduce heap 
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utilization and avoid garbage collection pauses, inactive agents are stored to disk in GZIP 

compressed format to minimize disk space usage as seen in Listing 4. Though this implementation 

worked for small graphs, it couldn’t be tested in the current Network File System (NFS) cluster 

environment for larger graphs. This is because when MASS execution creates millions of files (for 

serialized inactive agents) parallelly from all computing nodes, remote connection to the test 

cluster gets aborted. Although this application couldn’t benefit from this feature, it could be useful 

for applications in which agent expansion happens linearly between successive iterations. 

1 public byte[] serializeAgent(Agent agent) { 

2      ByteArrayOutputStream baos =  

3                                new ByteArrayOutputStream(); 

4      ObjectOutputStream oos =  

5                                new ObjectOutputStream(baos); 

6      oos.writeObject(agent); 

7      oos.flush();  

8      oos.close();    

9      byte[] serializedAgent = baos.toByteArray(); 

10    return serializedAgent;                     

11  }   

12  

13  public Agent deserializeAgent(byte[] serializedAgent) { 

14    ByteArrayInputStream bais =  

15                          new ByteArrayInputStream(serializedAgent); 

16    ObjectInputStream ois = new ObjectInputStream(bais); 

17    Agent deserializedAgent = (Agent) ois.readObject(); 

18    ois.close(); 

19    return deserializedAgent; 

20  } 

21 

public String serializeAgent(Agent agent) { 

  // Use UUID as filename to store serialized agents in disk 

  // Compress serialized agent in .gz format to save disk space 

  String serializedAgent = UUID.randomUUID().toString() + ".gz"; 

  FileOutputStream fos = new FileOutputStream(serializedAgent); 

  GZIPOutputStream gz = new GZIPOutputStream(fos); 

  ObjectOutputStream oos = new ObjectOutputStream(gz); 

  oos.writeObject(agent); 

  oos.close(); 

  return serializedAgent; 

} 

 

public Agent deserializeAgent(String serializedAgent) { 

  FileInputStream fin = new FileInputStream(serializedAgent); 

  GZIPInputStream gis = new GZIPInputStream(fin); 

  ObjectInputStream ois = new ObjectInputStream(gis); 

  Agent deserializedAgent = (Agent) ois.readObject(); 

  ois.close(); // close stream and delete agent data file 

  deleteFile(serializedAgent); 

  return deserializedAgent; 

} 

Listing 4. Agent serialize and deserialize code snippets (Left: Existing code that maintains 

inactive agents in heap, Right: Modified code to store inactive agents in disk)  

5.5.3 MASS Asynchronous Agent Migration Feature 

1  // Synchronous Agent Migration 

2  crawler.callAll(Crawler.enumerateExhaustive_); 

3  crawler.manageAll(); 

1  // Asynchronous Agent Migration 

2  crawler.doAll(new int[] {Crawler.enumerateExhaustive_}, null, motifSize); 

Listing 5. Synchronous vs Asynchronous agent migration code snippet 

MASS asynchronous agent migration feature reduces communication and synchronization 

overhead across computing nodes by repeatedly performing agent function execution and 

migration for specified iterations without returning control to the driver program. To evaluate this 

feature, the execution time for synchronous and asynchronous agent migrations shown in Listing 

5, are measured for Dolphin graph in which large motif size (9) can be detected. Table 5.9 shows 
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performance gain slowly increases with the number of iterations (motif size). Consequently, graph 

algorithms that execute for a higher number of iterations will benefit from this feature. 

Table 5.9. MASS callAll vs doAll Performance 

Motif Size #Subgraphs 
Execution Time (sec) doAll 

Speedup callAll doAll 

6 107,775 17.623 17.851 0.987 

7 550,428 18.246 18.111 1.007 

8 2,683,740 39.372 35.548 1.107 

9 12,495,833 150.832 129.185 1.167 

5.6 MASS VERSUS SPARK ANALYSIS 

This section analyzes MASS and Spark parallel implementations and evaluates the fitness of 

MASS for similar graph problems that handle large-scale data. 

5.6.1 Parallelism Analysis 

 

Figure 5.5. MASS Parallel Performance 

 

Figure 5.6. Spark Parallel Performance 

To assess MASS and Spark parallelism, New MASS version tested with different threads and 

computing nodes, and Spark version tested with different executors and parallelism configurations 

for motif size 9 in Dolphin graph. As evident from Figure 5.5, MASS performance improved with 

an increase in the number of computing nodes and maximum threads (4) utilized. 2-threads 

performed slower than single thread execution because threads synchronization time nullified the 

parallel performance gained by 2-threads. But 4-threads gained more parallel performance than 2-

threads such that threads synchronization time had no negative impact on performance.  
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Analogous to MASS, Figure 5.6 depicts Spark also exhibits similar parallel performance gain 

with an increase in the number of computing nodes, executors, and default parallelism value. 

MASS achieved 1.925x speedup, and Spark gained 1.924x speedup from the minimum to 

maximum parallel configuration. This signifies both MASS and Spark parallel implementations 

can execute faster in a sophisticated cluster environment with enormous computing power and 

large physical memory capacity. 

5.6.2 Programmability Analysis 

This section presents quantitative and qualitative programmability analysis of the parallel versions. 

The quantitative analysis focuses on the boilerplate code ratio, lines of code (LoC), and the number 

of parallel methods or operations. The quantitative analysis targets development efforts, data 

representation, flexible communication, ease of parallelism, and performance improvements. 

 

Quantitative Analysis. Boilerplate code represents the lines to code that are intended to configure 

the parallelization framework and are not related to application implementation. Boilerplate code 

ratio measures the percentage of boilerplate code to the total number of lines of code. The smaller 

boilerplate code ratio symbolizes easiness to set up the parallel environment. Lines of code 

measurement presented in this section omitted comment and blank lines and both parallel versions 

followed standard java coding convention (80 characters code width). Table 5.10 shows both 

MASS and Spark implementations have a significantly lesser boilerplate code ratio. But, the 

boilerplate code ratio for Spark is slightly higher than the MASS. This is because the Spark version 

has to register all user-defined classes to utilize Kryo serializer, as discussed in section 4.3.1. 

Table 5.10. Lines of Code (LoC) and Boilerplate Code Ratio 

Modules MASS LoC Spark LoC 

Graph Parser 170 

Labeler & Statistical Test 302 

Boilerplate code 12 16 

Framework specific code 661 463 

Total LoC 1145 951 

Boilerplate Code Ratio 1.04% 1.68% 
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Table 5.10 indicates MASS has a higher total LoC than Spark due to the difference in parallel 

paradigms. MASS version includes 3 classes (TargetNwArgs2Places, RandomNwArgs2Places, 

Args2Agents) with parameterized constructor alone that serve the purpose of passing arguments 

to specific agent or place during the invocation of parallel methods. Such framework-specific 

implementation increases total LoC, but enhancing MASS features will relieve the application 

developers from the burden of implementing common functionalities. For instance, the graph 

parser module can be eliminated for the MASS version if the enhanced MASS Parallel I/O feature 

eliminates constraints described in 5.5.1. This elimination makes MASS total LoC (975) roughly 

equivalent to Spark total LoC (951). Thus, excluding code that performs common tasks such as 

graph parsing reduces the total LoC, and simplifies application parallelization using MASS. 

Table 5.11. Parallel Methods or Operations Count 

MASS Parallel Methods Spark Parallel Operations 

MASS Place 3 Transformations 8 

MASS Agent 2 Actions 1 

Total 5 Total 9 

Table 5.11 presents programmability analysis based on the number of parallel methods used 

in MASS and the number of parallel operations used in Spark version. As seen in Table 5.11, Spark 

implements more parallel operations than the MASS version. MASS version has three parallel 

methods in place to initialize (target and random) network and gather (collect subgraphs) results, 

and two methods in agent for algorithm implementation (exhaustive and random enumeration). 

But Spark version applies eight transformations (one to initialize network and seven to implement 

algorithm) and one final action to gather results. This reveals the MASS version closely resembles 

sequential java implementation and developers can easily parallelize applications using the MASS 

library by identifying methods that can be operated in parallel from places and agents. 

 

Qualitative Analysis. Unlike Spark’s RDD flat representation, MASS provides spatial graph 

representation to easily discover graph structure and intuitively parallelize sequential graph 

algorithms. Developing a parallel application using MASS is less complex and requires fewer 

development efforts for biologists, while Spark implementation involves longer development time 

to change sequential algorithms to fit into Spark's data-parallel model of transformations and 

actions. Factors such as choosing efficient transformation/action (reduceByKey instead of 



36 

 

groupByKey), and deciding on RDD partitioning and persistence play an important role to 

guarantee optimal utilization of the cluster resources and improve performance.  

MASS offers a simple API to alter parallelism whereas Spark requires deep dive into default 

configurations to fine-tune parallelism described in 4.3.1. Consequently, developers from non-

parallel backgrounds spent more time and effort to achieve maximum parallelism with Spark. 

Additionally, MASS allows flexible communication between graph vertices, while Spark GraphX 

restricts direct communication between non-adjacent vertices. Hence, graph algorithms that 

require direct communication between non-adjacent vertices benefit from MASS’s flexibility. 

5.6.3 In-Memory Data Reuse Analysis 

To assess in-memory data analysis, MASS and Spark versions are tested for a 50% sampled 

subgraph enumeration in 1000 random graphs. As discussed in section 4.3, Spark streams data or 

recreates vertexRDD for each random graph, while MASS updates neighbor information in Place 

structure instead of deleting and creating vertex structure for every graph. Table 5.10 shows the 

benefit of retaining data structure in memory (MASS places) for multiple iterations so that 

different operations can be performed over the same data structure (holding the same or modified 

data for each iteration). Though Spark executed 3.2-3.5 times faster than MASS for single target 

graph enumeration, MASS performed 1.6 times faster than Spark for 1000 random graphs 

enumeration. In conclusion, iterative graph algorithms that perform different operations on the 

same or modified graph structure can attain higher speedup using MASS. 

Table 5.12. MASS Speedup for In-Memory Data Reuse 

Target Graph Undirected Power 

(Motif Size = 4) 

Directed Yeast 

(Motif Size = 3) 

 MASS Spark MASS Spark 

Target Subgraphs 63,401 63,401 13,150 13,150 

Random Subgraphs 39,983,983 39,962,071 5,389,395 5,391,802 

Total Subgraphs 40,047,384 40,025,472 5,402,545 5,404,952 

Target Enumeration 29.288 8.912 22.273 6.221 

Random Enumeration 705.126 1191.824 266.653 427.241 

Total Time (sec) 734.543 1202.804 288.997 435.467 

MASS Speedup 1.637 1.506 
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Chapter 6. CONCLUSION & FUTURE WORK 

Agent-based and Spark network motif implementations detect high-order motifs (> 8) that are 

infeasible with sequential tools Mfinder, FANMOD. This work verified the correctness of parallel 

results by comparing it with sequential results from NemoLib, and FANMOD. It also evaluated 

performance for different sparse real networks and dense synthetic graphs. Unlike old MASS 

implementation, New MASS version detects significant motifs and also supports directed graph 

analysis as well as the sampled version of subgraph enumeration to improve the speed. 

Compared with the Old MASS version, New MASS version achieved 2x speedup on higher-

order motifs in real networks, and on average, 2x memory reduction in dense networks. New 

MASS version optimized data structures by eliminating nested objects and utilized primitive type-

specific collections. These optimized structures consumed less heap space, which in turn reduced 

garbage collection time and improved performance. Light-weight agents reduced data serialization 

cost during agent migration and object creation overhead during agent duplication. 

This work proved that developing a memory-optimized application enhances MASS 

scalability to deal with millions of agents with a moderate performance impact. But increasing 

more than tens of millions of agents cause memory exhaustion, which needs to be addressed by 

fine-tuning data structures within the library or by modifying the memory model to use off-heap 

memory or disk space, that are not managed by the garbage collector. 

Parallel Spark version achieved at most 2x speedup than sequential NemoLib for high-order 

motif enumeration in target graphs. But MASS gained 1.5 times speedup than Spark for low-order 

significant motif detection. This project demonstrates graph algorithms that require flexible 

communication between vertices irrespective of connectivity, and those that perform different 

computations on the same data will benefit from MASS. 

As for future work, MASS network motif application can be extended to support NemoProfile 

and NemoCollect functionalities, and also visualize detected significant motifs in Cytoscape using 

the recently developed MASS Cytoscape plugin. Due to memory overhead, current 

implementation enumerates random graphs sequentially. In future, random graph enumeration can 

be parallelized along with target graph enumeration to significantly improve the performance.  

The source code for MASS and Spark implementations are available in MASS Java 

applications repository (https://bitbucket.org/mass_application_developers/mass_java_appl). 
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APPENDIX A 

Graph6 and Digraph6 formats used by NautyTraces utility. NautyTraces tool is commonly 

used to test graph isomorphism with canonical labels. In this work, it is used to group isomorphic 

subgraphs. This tool requires an input graph to be in a specific compact encoded format described 

here. Undirected and directed graphs have to be encoded in ‘graph6’ and ‘digraph6’ formats 

respectively to use labelg executable of the NautyTraces utility. 

graph6 format: N(n) R(x)   digraph6 format: & N(n) R(x) 

where N(n), R(x) denotes bit vector representation of graph size ‘n’ and graph structure, and 

‘&’ is used to distinguish directed graphs. 

 

Bit vector representation. In this representation, all bytes have a value in the range 63-126 that 

are printable ASCII characters (A-Z, a-z, ?, @, [, \, ], ^, _, `, {, |, }, ~). The below steps explain the 

procedure to create a bit vector representation for value ‘35612’. 

Step 1: Convert value to binary 100010   110001   1100 

Step 2: Pad ‘0’ to right to make digits exact multiple of ‘6’ 100010   110001   110000 

Step 3: Add 63 to each group of 6 bits (34+63)  (49+63)  (48+63) 

Step 4: Store each group of 6 bits value in a byte      97          112        111 

 

Bit vector representation N(n) for graph size ‘n’: 

‘n’ range N(n) size  N(n) bit vector representation 

0 ≤ n ≤ 62 1 byte n+63 

63 ≤ n ≤ 258047 4 bytes 126 R(n),          R(n): 18-bit bitvector representation of n 

258048 ≤ n ≤ 68719476735 8 bytes 126 126 R(n),   R(n): 36-bit bitvector representation of n 

 

Bit vector representation R(x) for graph structure. Graph6 format encodes the upper triangle 

of the adjacency matrix of an undirected graph as a bit vector x of length ‘n(n-1)/2’, while digraph6 

encodes the adjacency matrix of a directed graph as a bit vector x of length ‘n2’ row by row. 

 
 

n = 5, N(n) = 5+63 = 68 

R(x) = 010010 1001 => 010010 100100 (Padding)  

        = (18+63) (36+63) => 81 99 

Graph6: N(n) R(x): 68 81 99 => ‘DQc’ 

 

 
 

n = 5, N(n) = 5+63 = 68 

R(x) = 001010 000000 000010 010000 000000 

        = (10+63) (0+63) (2+63) (16+63) (0+63) 

Digraph6: & N(n) R(x): 38 68 73 63 65 79 63  

        => ‘&DI?AO?’ 
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APPENDIX B 

Appendix B presents the execution results of the sequential tool (NemoLib) and implemented 

parallel versions (MASS and Spark). The correctness of the result can be verified by comparing 

the target graph enumeration results of all implementations. All executions used 1000 random 

graphs and 50% sampling (1,1,…1,0.5) for randomization. The following list of values associated 

with random graphs are expected to be different in each execution. 

• Number of subgraphs enumerated in random graphs, 

• Random Mean Frequency, 

• Random Standard Deviation, 

• Z-score, and  

• P-value 

Directed Yeast Graph Execution Results.  

 
NemoLib Execution Output 

 
Spark Execution Output 

 

 

MASS Execution Output 

 

Another difference is that NemoLib displays non-candidate motifs (motifs that aren’t present in 

target graph but found in random graphs) that are insignificant in addition to candidates (motifs 

that are present in target graph), whereas parallel implementations display only candidate motifs. 
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Undirected Dolphin Network Execution Results.  

 
NemoLib Execution Output 

 
Spark Execution Output 

 

 

 

MASS Execution Output 
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Undirected Power Network Execution Results.  

 
NemoLib Execution Output 

 
Spark Execution Output 

 

 

MASS Execution Output 
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APPENDIX C 

MASS execution results with increased computing nodes. This appendix section compares the 

MASS execution results using 11 (cssmpiNh) and 20 computing nodes (cssmpiNh and hermes0N) 

against results using 8 computing nodes (hermes0N) discussed in chapter 5. 11 computing nodes 

testing in cssmpiNh machines excluded cssmpi9h machine due to the reverse DNS lookup issue 

(which was resolved later).  

Table 1. MASS speedup with increased computing nodes for real networks. 

Graphs Motif 

Size 

Subgraphs MASS Execution Time (sec) 11 Nodes 

Speedup 

20 Nodes 

Speedup 8 Nodes 11 Nodes 20 Nodes 

Dolphin 7 550,428 18.042 4.589 15.86 3.932 1.138 

Dolphin 8 2,683,740 35.548 14.062 27.458 2.528 1.295 

Dolphin 9 12,495,833 129.185 63.315 48.29 2.04 2.675 

Dolphin 10 55,824,707 * 354.017 215.918 - - 

Power 5 268,694 20.798 5.69 14.922 3.655 1.394 

Power 6 1,260,958 27.657 11.149 15.235 2.481 1.815 

Power 7 6,340,413 69.367 25.362 22.251 2.735 3.117 

Power 8 33,494,650 246.977 115.124 95.775 2.145 2.579 

DIP 3 1,859,101 59.702 21.112 25.614 2.828 2.331 

DIP 4 89,371,477 * * 557.156 - - 

Yeast 3 13,150 12.377 1.649 6.76 7.506 1.831 

Yeast 4 183,174 19.167 2.99 10.995 6.41 1.743 

Yeast 5 2,508,149 39.434 15.081 14.766 2.615 2.671 

Yeast 6 32,883,898 399.557 198.537 171.033 2.013 2.336 

P2P 3 341,267 23.689 7.266 6.584 3.26 3.598 

P2P 4 10,031,003 77.027 29.571 35.488 2.605 2.171 

    * Execution terminated due to the memory exhaustion. 

Table 1 depicts MASS gained 2x speedup with increased computing nodes from 8 to 11 and 20 

machines. Highlighted rows in the table indicate 8 nodes MASS execution faced memory 

exhaustion, and at max, it can enumerate up to 33.4 million subgraphs. But, with 11 computing 

nodes, the MASS version can enumerate up to 55.8 million subgraphs, and using 20 computing 

nodes it can enumerate up to 89.3 million subgraphs. Consequently, additional computing nodes 

improved MASS execution speed and enhanced scalability. 
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   Table 2. MASS Initialization and Enumeration Time. 

Graphs Motif 

Size 

Initialization Time Enumeration Time 

11 Nodes 20 Nodes 11 Nodes 20 Nodes 

Dolphin 7 0.271 10.4 3.394 4.562 

Dolphin 8 0.258 14.4 11.15 10.988 

Dolphin 9 0.265 0.292 45.717 33.254 

Dolphin 10 0.267 8.434 262.148 215.918 

Power 5 3.387 12.486 1.661 1.833 

Power 6 4.343 8.336 5.571 5.409 

Power 7 4.475 3.515 18.657 16.42 

Power 8 4.351 12.49 96.461 72.43 

DIP 3 11.619 14.156 8.494 10.574 

DIP 4 * 14.526 * 541.145 

Yeast 3 0.942 5.844 0.538 0.76 

Yeast 4 0.952 8.807 1.845 2.003 

Yeast 5 0.938 0.748 13.706 13.636 

Yeast 6 0.922 9.027 196.433 160.73 

P2P 3 5.007 3.8 1.709 2.388 

P2P 4 5.062 7.841 23.35 26.453 

            * Execution terminated due to the memory exhaustion. 

 

Table 1 illustrates for small motif 

size MASS performance improved 

from 8 nodes to 11 nodes. But, 

further addition of nodes (11 nodes 

to 20 nodes), impacts performance 

negatively due to the time incurred 

for the network communication. 

Table 2 indicates that enumeration 

in 20 nodes execution faster or 

comparable to the 11 nodes 

execution, but initialization in 20 

nodes execution takes longer time 

than 11 nodes execution in most 

cases. 

 

 
       Table 3. Sequential tools and Spark Execution Time. 

Graphs Motif Size Subgraphs FANMOD NemoLib Spark 

Dolphin 7 550,428 0.786 1.347 9.942 

Dolphin 8 2,683,740 3.648 5.994 12.195 

Dolphin 9 12,495,833 * 26.756 25.135 

Dolphin 10 55,824,707 * 133.011 126.395 

Power 5 268,694 0.259 0.767 10.558 

Power 6 1,260,958 1.383 2.865 10.899 

Power 7 6,340,413 7.151 8.426 14.399 

Power 8 33,494,650 42.283 46.784 24.91 

DIP 3 1,859,101 1.296 2.916 15.745 

DIP 4 89,371,477 73.913 61.731 31.807 

Yeast 3 13,150 0.016 0.464 8.416 

Yeast 4 183,174 0.291 0.711 8.492 

Yeast 5 2,508,149 3.934 3.747 11.364 

Yeast 6 32,883,898 96.26 33.063 42.637 

P2P 3 341,267 0.26 1.048 13.437 

P2P 4 10,031,003 6.935 10.348 16.773 

            * Infeasible due to FANMOD’s motif size limitation (≤ 8).  

 

 

Table 3 lists the execution time for 

sequential tools (FANMOD, 

NemoLib) and Spark version (using 

8 nodes) depicted in Figure 5.2 and 

Figure 5.3 (Results chapter). 

Although extra computing nodes 

improved MASS performance, 

Table 1 and Table 3 reveals MASS 

performance (with 11 & 20 nodes) 

still lags behind sequential tools and 

Spark performance (with 8 nodes). 

 

 


