

© Copyright 2020

Saranya Duraisamy

AGENT-BASED PARALLELIZATION OF BIOLOGICAL NETWORK MOTIF

DETECTION

Saranya Duraisamy

A report

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington, Bothell

2020

Project Committee:

Munehiro Fukuda, Chair

Wooyoung Kim, Member

Clark Olson, Member

Program Authorized to Offer Degree:

Computing and Software Systems

University of Washington, Bothell

Abstract

 AGENT-BASED PARALLELIZATION OF BIOLOGICAL NETWORK MOTIF

DETECTION

Saranya Duraisamy

Chair of the Supervisory Committee:

Dr. Munehiro Fukuda

Computing and Software Systems

Network motifs are subgraph patterns that occur frequently in biological networks and represent

significant interaction between molecules. Discovering motifs reveal unidentified interactions that

are of great importance to biological applications. However, motif detection is a computationally

intense process due to the exponential growth of motif patterns with an increase in network or

motif size. Due to the computational complexity, existing sequential tools impose a limitation on

motif sizes, and larger network analysis takes unreasonable time. The performance issue of these

tools resulted in a constant drive to improve the speed with parallel approaches. However, most

approaches using MapReduce, OpenMPI, and previously implemented agent-based parallelization

are limited to compute the frequency of candidate motifs and don’t offer tools to detect significant

motifs. Hence, this project implements parallel agent-based significant motif discovery using the

MASS (Multi-Agent Spatial Simulation) library by crawling the reactive agents over the network

distributed across multiple computing nodes. Additional Spark implementation helped in

identifying strengths and enhancements to MASS to handle large-scale data. Compared to previous

MASS agent-based implementation, the latest implementation gained at most 2x speedup and

reduced memory usage by a factor of 2. Spark implementation attained almost 2x speedup

compared to the sequential NemoLib tool. Although MASS implementation encountered memory

limitation, both MASS and Spark implementations exhibited a higher level of parallelism with

increased computing power and memory resources. Additionally, this work discusses the

opportunity to parallelize graph algorithms with MASS in terms of development efforts and data

reuse benefits.

 i

TABLE OF CONTENTS

List of Figures .. iii

List of Tables ... iv

Chapter 1. Introduction ... 5

1.1 Problem Description ... 5

1.2 Parallel Frameworks ... 6

1.3 Research Goals.. 9

Chapter 2. Background ... 9

2.1 Network Motif Detection Process ... 10

2.2 Subgraph Enumeration Algorithm .. 11

Chapter 3. Related Works ... 12

3.1 Sequential Network Motif Detection Tools .. 12

3.2 Parallel Network Motif Detection Approaches ... 13

3.3 MASS-based Parallel Network Motif Analysis .. 14

Chapter 4. Parallelization of Biological Network Motif Detection .. 15

4.1 System Flow.. 15

4.2 MASS Implementation ... 18

4.3 Spark Implementation ... 21

Chapter 5. Results ... 25

5.1 Execution Environment .. 25

 ii

5.2 Input Datasets.. 25

5.3 Execution Performance ... 26

5.4 MASS Speedup and Memory Reduction .. 29

5.5 MASS Feature Evaluation .. 31

5.6 MASS versus Spark Analysis ... 33

Chapter 6. Conclusion & Future Work ... 37

Bibliography ... 38

Appendix A ... 42

Appendix B ... 43

Appendix C ... 46

 iii

LIST OF FIGURES

Figure 1.1. Non-Isomorphic Directed Motif Structures for Motif Size 3[2]. 5

Figure 1.2. MASS Architecture[3]. .. 7

Figure 1.3. Spark Architecture[10]. .. 8

Figure 2.1. Network Motif Detection Process. ... 10

Figure 2.2. Subgraph Enumeration Algorithm[12]. .. 11

Figure 2.3. Subgraph Enumeration Tree[12]. ... 11

Figure 4.1. System Flow for Network Motif Detection. ... 15

Figure 4.2. Graph6 and Canonical Labels for Motif Size 3. ... 16

Figure 4.3. MASS Execution Result for Motif Size 5 in 1000 Random Graphs 17

Figure 4.4. MASS Agents Execution for Motif Size 3 ... 18

Figure 4.5. MASS Place and Agent Data Structure .. 19

Figure 4.6. Spark Implementation of Subgraph Enumeration .. 22

Figure 4.7. Spark’s RDD Lineage Re-evaluation for Spark Action 24

Figure 5.1. Dolphin Network .. 26

Figure 5.2. Undirected Real Networks Performance. ... 27

Figure 5.3. Directed Real Networks Performance. ... 28

Figure 5.4. Parallel I/O Graph... 31

Figure 5.5. MASS Parallel Performance... 33

Figure 5.6. Spark Parallel Performance .. 33

 iv

LIST OF TABLES

Table 1.1. Non-Isomorphic Subgraph Patterns in Graphs up to size 10[2]. 6

Table 5.2. Real Network Graph Properties. .. 26

Table 5.3. Undirected Synthetic Graph Properties. .. 26

Table 5.4. Enumerated Subgraphs Count in Undirected Real Graphs. 28

Table 5.5. Enumerated Subgraphs Count in Directed Real Graphs. 29

Table 5.6. New MASS Speedup in Undirected Synthetic Graphs. 29

Table 5.7. Memory Reduction in MASS Implementation .. 30

Table 5.8. Input graph size for different formats .. 31

Table 5.9. MASS callAll vs doAll Performance... 33

Table 5.10. Lines of Code (LoC) and Boilerplate Code Ratio ... 34

Table 5.11. Parallel Methods or Operations Count... 35

Table 5.12. MASS Speedup for In-Memory Data Reuse ... 36

5

Chapter 1. INTRODUCTION

‘Network Motifs’ are defined as the recurrent and statistically significant patterns that are

found more often in the biological networks than in randomized networks [1]. Network motif

detection and analysis led to the discovery of unidentified biological interactions, detection of

essential proteins, drug discovery, and disease diagnosis.

Biological data can be analyzed by modeling biological data as a graph with vertices

representing molecules, and edges symbolizing molecular interaction. Network motif detection

involves computationally intense subgraph enumeration, random graph generation, NP-complete

subgraph isomorphic testing, and statistical testing. Existing sequential tools [5], [6] employ

sampling methods (to find approximate results) to reduce computational complexity at the expense

of detection accuracy.

Vertex-to-vertex communication and in-memory data analysis play a vital role to parallelize

the network motif detection. Unlike other parallel frameworks, MASS offers direct communication

between vertices by migrating agents, and Spark offers in-memory computation by reducing data

movement. These features motivate us to use the MASS and Spark frameworks in this work.

This research exploits MASS [3] agent-based parallelization and Spark [4] parallelization to

reduce computational complexity without compromising motif detection accuracy and enhance

the scalability of motif detection. The main bottleneck in motif detection is subgraph enumeration,

taking on average more than 95% of the whole execution time, as noted in [18]. In this work,

computationally expensive subgraph enumeration step has been parallelized in both MASS and

Spark implementations.

1.1 PROBLEM DESCRIPTION

The k-sized network motifs are k-vertices induced subgraphs that occur more frequently than

any other k-vertices subgraphs in the target network.

Figure 1.1. Non-Isomorphic Directed Motif Structures for Motif Size 3[2].

6

Figure 1.1 depicts 13 non-isomorphic directed motif structures for motif size 3. As seen in

Table 1.1, the number of non-isomorphic subgraph patterns increases exponentially with an

increase in motif size (‘k’ vertices motif). For directed graphs, subgraph patterns increase

enormously. Enumerating all k-sized subgraphs in a large graph is computationally intensive.

Consequently, existing sequential tools [5], [6], and parallel works [14], [16] impose the maximum

motif size limitation that can be detected using these tools.

Table 1.1. Non-Isomorphic Subgraph Patterns in Graphs up to size 10[2].

Vertices Undirected Directed

1 1 1

2 1 2

3 2 13

4 6 199

5 21 9364

6 112 1530843

7 853 880471142

8 11117 1792473955306

9 261080 13026161682466252

10 11716571 341247400399400765678

1.2 PARALLEL FRAMEWORKS

Due to the computational complexity described in section 1.1, sequential tools [5], [6], and [7]

take a long time to detect large motif sizes or analyze large graph sizes, as these tools are restricted

to use single machine compute and memory resources This work attempts to speedup the motif

detection by utilizing collective memory and compute power offered by multiple systems in the

cluster environment. To realize the goal of improving motif detection speed, this work parallelized

network motif detection process using the MASS and Spark framework described in this section.

1.2.1 Multi-Agent Spatial Simulation (MASS) Library

Multi-Agent Spatial Simulation (MASS) [3] is a parallel computing library built as an agent-based

model intended to parallelize applications from physical, biological, social, and behavioral

domains. Figure 1.2 portrays the high-level architecture of the MASS library. MASS comprises

two major components, Places and Agents. Places represent simulation space, a multi-dimensional

matrix dynamically allocated over the computing nodes in the cluster. Agents represent execution

instances that can reside at a place, or migrate to another place in a local or remote computing

node. Agents can access data at its residing place, communicate with other agents via inter-agent

7

broadcast [8], and are also capable of duplicating itself. Applications can be parallelized in the

MASS library using the notion of places and agents.

Figure 1.2. MASS Architecture[3].

MASS spawns as many threads as the number of CPU cores and executes parallel operations

on all places and agents using multiple threads. MASS uses sockets to communicate across the

computing nodes utilized for the execution. MASS library completely hides the underlying parallel

framework so that developers can focus only on their application.

1.2.2 Apache Spark Framework

Apache Spark is an open-source parallel framework that provides a unified computing engine for

different data analytic tasks such as SQL querying, real-time streaming, machine learning, and big

data applications. As seen from Figure 1.3, Spark [4] follows Master-Worker architecture with two

main processes (driver and executor) and a cluster manager. Its driver's responsibility to translate

spark application into actual spark jobs that run on the worker nodes. The cluster manager is

responsible for allocating and deallocating resources to spark jobs.

8

Figure 1.3. Spark Architecture[10].

Spark provides a fault-tolerant abstraction termed as Resilient Distributed Datasets (RDD)

[9], which are the immutable collection of elements partitioned over the distributed computing

nodes. Spark provides two operations - transformations and actions, that can be performed on RDD

partitions in parallel. Transformation operations such as map, filter, join build new RDDs by

transforming parent RDDs. Action operations such as collect, reduce, count performs computation

on RDDs, and return results to the driver. Spark lazily evaluates transformations by delaying

execution until action is requested.

Transformations are further classified into narrow and wide based on the dependency involved

in RDD creation. Objects residing in a single partition are dependent only on objects residing in a

single partition of the parent RDD in narrow dependencies (map, filter). In contrast, objects are

dependent upon objects residing in multiple partitions of the parent RDD in wide dependencies

(join, reduceByKey). Thus, wide dependencies require costly shuffle operation that involves

redistributing data across the worker machines.

Spark runtime splits the spark application into multiple jobs when it encounters spark action.

Each job is divided into multiple stages when runtime encounters a wide-dependency

transformation. Each stage, in turn, includes multiple tasks (pipelined narrow-dependencies) that

are executed in parallel on RDD partitions. Thus, Spark builds an optimized execution plan to run

parallel tasks.

9

1.3 RESEARCH GOALS

The research goals of this capstone work are as follows:

• Improve Execution Speed of the network motif detection process by parallelizing

computation-intensive k-sized subgraph enumeration in the cluster environment.

• Enhance the Scalability of the network motif detection by detecting large size motifs and

analyzing large graph sizes. Scalability can be enhanced by utilizing memory and compute

power offered by all computing machines in the cluster environment.

• Evaluate MASS Features. MASS Parallel File I/O, Asynchronous Automatic Agent

Migration features were developed to improve the parallel performance, and Agent Control

Population feature was implemented to overcome the computation and memory overhead

incurred by agent expansion for big data applications. This research evaluates these

features for the network motif detection problem and identifies potential enhancements.

• Identify Enhancements to MASS for Big Data Applications. Comparing MASS and Spark

implementations reveal possible enhancements to MASS to handle big data applications.

This comparative analysis exposes MASS strengths to intuitively parallelize similar graph

problems with lesser development efforts for biologists from the non-parallel computing

background.

The rest of this document is organized as follows: Chapter 2 introduces the network motif

detection process and algorithm employed to enumerate subgraphs. Chapter 3 reviews related

works of sequential and parallel network motif detection tools. Chapter 4 describes in detail the

system flow of the parallel motif detection, presents details of MASS and Spark implementations

along with the performance enhancements. Chapter 5 provides a detailed experimental evaluation

of MASS and Spark parallelization on different real and synthetic data sets. Finally, Chapter 6

concludes the paper with limitations and future enhancements.

Chapter 2. BACKGROUND

This chapter provides background on various steps involved in the network motif detection process

and explains the algorithm used to enumerate subgraphs in the input and random networks.

10

2.1 NETWORK MOTIF DETECTION PROCESS

Network motif detection process involves the below three major steps, as depicted in Figure 2.1.

1. Find Candidate Motif Frequencies in Input Graph. Network-centric motif search approach

finds candidate motifs in input graph 'G' by enumerating all k-sized motifs, groups

isomorphic motifs, and then computes the frequency of the non-isomorphic motifs FG(m).

2. Find Candidate Motif Frequencies in Random Graphs. Motif search process generates

hundreds or thousands of random graphs 'R' by preserving the topological properties of the

input network such as the number of vertices and degree of each vertex. Then, it repeats

enumeration and frequency computation of all non-isomorphic k-sized candidate motifs

FR(m) in each of the random graphs.

3. Statistical Significance Test. Finally, the statistical significance test using Z-score and p-

value is performed to discover candidate motifs that are significant network motifs.

Figure 2.1. Network Motif Detection Process.

Z-score is the ratio of the difference between the original frequency and the mean random

frequency to the standard deviation. Z-score may be undefined when the standard deviation is zero.

The higher the Z-score, the more significant is the network motif.

𝑍(𝑚) =
𝐹𝐺(𝑚) − 𝑀𝑒𝑎𝑛(𝐹𝑅(𝑚))

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐹𝑅(𝑚))

The p-value represents the number of random networks in which network motif occurred more

often than in the original network, divided by the number of random networks ‘N’. This value lies

in the range from 0 to 1 inclusive. The smaller the p-value, the more significant is the network

motif.

𝑝(𝑚) =
1

𝑁
∑𝑛=1

𝑁 𝑐(𝑛) 𝑤ℎ𝑒𝑟𝑒 𝑐(𝑛) = 1, 𝑖𝑓 𝐹𝑅(𝑚) ≥ 𝐹𝐺(𝑚)

Generally, candidates with Z(m)>2 and p(m)<0.01 are recognized as significant motifs [11].

11

2.2 SUBGRAPH ENUMERATION ALGORITHM

The Enumerate Subgraph (ESU) algorithm [12] is the fastest and efficient algorithm to enumerate

all k-sized subgraphs in the input graph. Figure 2.2 shows the ESU algorithm that recursively

enumerates subgraphs from each vertex. The main idea of this algorithm is to traverse only a

limited set of neighbors (termed as ‘exclusive neighborhood’), whose identifier values are higher

than the source vertex identifier of the current enumeration tree. This concept of the exclusive

neighborhood facilitates the ESU algorithm to generate unique subgraphs.

Figure 2.2. Subgraph Enumeration Algorithm[12].

Figure 2.3 illustrates subgraph enumeration from each vertex is independent of each other.

The unique and independent enumeration properties reveal the easily parallelizable potential and

encourage to use this algorithm in this work.

Figure 2.3. Subgraph Enumeration Tree[12].

12

Chapter 3. RELATED WORKS

This chapter describes the existing sequential tools and parallel approaches for motif search using

different parallel frameworks such as Message Passing Interface (MPI), Hadoop, and MASS. It

discusses the limitations of the existing tools and highlights past research strategies adopted in this

work.

3.1 SEQUENTIAL NETWORK MOTIF DETECTION TOOLS

Mfinder [5] enumerates all k-sized subgraphs starting from an edge in a brute force manner, which

takes longer run time and consumes more memory. Mfinder’s exhaustive enumeration version can

detect small motifs up to size 4 in both directed and undirected graphs. Mfinder’s sampling version

implements the edge-sampling strategy proposed in [13] to reduce run time, but results in biased

results by finding the same motif pattern repeatedly. Owing to the computational complexity,

Mfinder’s sampling version can only detect motifs up to size 6.

Fast Network Motif Detection (FANMOD) [6] tool implements ESU algorithm [12] explained

in section 2.2. ESU algorithm adopts a vertex-sampling strategy with distinct vertex identifiers.

Unlike Mfinder, ESU finds a motif only once and hence it is faster. In contrast to sampled Mfinder,

Randomized ESU (RAND-ESU) yields unbiased results by sampling neighbors at each depth with

identical visiting probability. FANMOD can detect motifs up to size 8 in undirected, directed, and

colored networks.

Network Motif Library (NemoLib) [7] is a general-purpose network-centric approach library

used for the detection and analysis of network motifs in undirected and directed networks. Similar

to FANMOD, it uses ESU and RAND-ESU algorithms [12] to count motif frequencies referred to

as NemoCount. Additionally, it offers NemoProfile that finds motifs concentration on each vertex

and NemoCollect that retrieves all instances of input graph that match network motif patternss.

Though these sequential tools [5], [6] can detect motifs up to particular sizes, the motif size

limitation imposed by these sequential tools implies the necessity to improve the detection process

to discover large motifs and reduce the detection complexity.

13

3.2 PARALLEL NETWORK MOTIF DETECTION APPROACHES

Parallel Network Motif Extraction. Wang et al. proposed MPI based parallel motif detection

[14], in which master process partitions network and broadcast to workers. Worker processes

detect candidate motifs in parallel by constructing a Breadth-First Search (BFS) tree to depth k-1

for each vertex and finds all k-connected subgraphs. Eventually, the master process gathers results

from all workers and deduces the actual motifs with isomorphism check. Although this parallelism

performed faster for motifs up to size 4, Wang’s parallel implementation was slower than the

sequential random sampling method for large motif sizes (5 and 6).

Parallel G-tries. Riberio et al. proposed a data structure Graph reTRIEval (G-trie) [15] that

provides an efficient way to store and search the collection of subgraphs. Similar to the prefix tree,

G-trie is a multi-way tree where descendant nodes share a common subgraph structure. Later,

Riberio et al. proposed a parallel g-tries [16] approach, which parallelized independent and

recursive g-trie matching calls by distributing work evenly to different processes using receiver-

initiated dynamic load balancing. This parallel subgraph count implementation using OpenMPI

achieved almost linear speedup up to 128 processors for motifs of size at most 9.

Iterative Hadoop MapReduce ESU. Verma et al. [17] parallelized ESU algorithm using iterative

Hadoop MapReduce. This parallelization consists of three MapReduce jobs, ESU job, Labeler job,

and Combiner job. ESU job is executed repeatedly up to input motif size to enumerate all candidate

motifs. Labeler job computes canonical labels for candidate motifs. Finally, the combiner job

aggregates the candidate motif frequencies. This parallelism suffered from disk I/O overhead for

smaller networks. Though parallel performance surpassed their sequential implementation for size

4 motif search on 25714-nodes network, it's slower than the sequential FANMOD [6] speed.

Parallel Network Motif Discovery. Parallel Network Motif Discovery [18] proposed by Riberio

et al. parallelized motif search in input and random graphs simultaneously in different processes

using OpenMPI. In contrast to the above parallel approaches, this approach parallelized the entire

motif detection process using ESU. A distributed work-sharing strategy performed better than the

master-worker strategy due to the optimal utilization of all CPU cores. It achieved almost linear

speedup up to 128 processors for 1000 random graphs in 6 different networks for motif size 5-8.

14

3.3 MASS-BASED PARALLEL NETWORK MOTIF ANALYSIS

Agent and Spatial Parallelization of Network Motif Enumeration. Kipps et al. [19] parallelized

biological network motif enumeration in three different ways, MASS agent-based, MASS place-

based, and MPI based enumeration. Results showed consistent performance improvement for

MASS place-based and MPI based enumeration with an increase in the number of threads and

number of computing machines. But, MASS agent-based enumeration struggled to enumerate 5.5

million subgraphs for motif size 5 in a 2365-nodes network. This was caused by poor memory

usage during agent explosion, and nearly all computing power spent to create and terminate agents.

MASS-based NemoProfile Construction. In research work [20], Andersen et al. extended MASS

agent-based, MASS place-based, and MPI based motif enumerations [19] to construct

NemoProfile [22], that determines motif concentration on the individual vertices. MASS place-

based parallelization proved to be beneficial for NemoProfile, while MASS agent-based parallel

implementation encountered memory exhaustion for motif size 4 in a 5193 network.

MASS Agent Management and Performance Features. To enhance performance and mitigate

memory overhead issues reported by [19] and [20], the below features were added to MASS.

Parallel File I/O feature to relieve the main program from the burden of distributing input data to

all computing nodes in the cluster. Asynchronous Automatic Agent Migration feature to reduce

communication with user application during each iteration of agent management functions. Agent

Population Control feature to control the number of active agents by serializing agents that exceed

population limit value. Serialized agents are activated once the current agent population drops

below the population threshold. This work evaluates these features for motif detection problem.

Similar to tools [6], [7], [17], [18], [19], [20], this work employs ESU algorithms to enumerate

motifs and relies on NautyTraces [21] program to test graph isomorphism. Sequential tools [6], [7]

are used to prove correctness and evaluate performance, while previous MASS agent-based

enumeration [19] serves as a parallel baseline for this work. Furthermore, existing parallel network

motif implementations with OpenMPI [16], MapReduce [17], and MASS [19] are limited to motif

frequency count and don’t offer the entire network motif detection functionality. This project

implements the complete motif detection process and identifies the statistically significant motifs.

15

Chapter 4. PARALLELIZATION OF BIOLOGICAL NETWORK

MOTIF DETECTION

This chapter describes the overall system flow to detect network motifs of the desired size (≥ 3) in

an undirected or directed target network. It also explains MASS and Spark approaches along with

implementation-specific fine-tuning performed to improve speed and reduce memory use.

4.1 SYSTEM FLOW

The network motif detector comprises of five distinct modules, graph parser, target graph analyzer,

random graph generator, random graph analyzer, and statistical analyzer. Figure 4.1 demonstrates

the system flow that portrays the parallel or sequential execution of the modules. Both MASS and

Spark implementations follow the identical execution pattern to develop compatible versions for

consistent evaluation of parallelism.

Figure 4.1. System Flow for Network Motif Detection.

A

D B

E

C

16

Graph Parser (A in Figure 4.1). This module parses the target graph represented in the edge list

format and constructs graph in adjacency list representation. With this representation, out and in

neighbors' information for all vertices are initialized. Undirected graphs store an edge as 'out'

neighbor in both vertices, while directed graphs store neighbor information based on the edge

direction. Graph parser computes target graph's out-degree, in-degree sequences that are required

to generate random graphs. During graph construction, graph parser eliminates self and parallel

edges to avoid unnecessary computations. MASS parallel I/O feature evaluated in section 5.5.1

clarifies the decision to execute the graph parser module serially.

Target Graph Analyzer (B in Figure 4.1). It performs exhaustive enumeration of the target graph

to identify all candidate motifs for the given motif size. Enumeration happens in parallel across all

the computing machines utilized for the execution. The target graph analyzer first instantiates all

vertices with their corresponding neighbor information obtained from graph parser. Then, it

executes the ESU algorithm shown in Figure 2.2 simultaneously from all the vertices. Once the

subgraph of input motif size is enumerated, compact graph6 or digraph6 representation is

computed and returned. Appendix A describes the procedure to convert undirected and directed

subgraph structures to graph6 and digraph6 formats respectively. At the termination of all parallel

enumerations, the target graph analyzer gathers all motif sized subgraphs in graph6 or digraph6

format. Finally, isomorphic subgraph occurrences are grouped by providing graph6 or digraph6

representation to Labelg program [23], and resultant canonical labels of candidate motifs are saved

along with respective frequencies. Figure 4.2 depicts isomorphism grouping, where the Labelg

assigns the same canonical label (BW) for different graph6 labels (Bg, Bo) with identical structure.

Input Graph Enumerated Subgraphs for Motif Size 3

Graph6 Label Bw Bg Bg Bg Bg Bo

Canonical Label Bw BW BW BW BW BW

Figure 4.2. Graph6 and Canonical Labels for Motif Size 3.

Random Graph Generator (C in Figure 4.1). Random graphs are generated from the input graph

by preserving the degree distribution of the vertices in the input graph. This work generates degree-

17

preserving random graphs using the configuration model described in [24]. Random graph

generator fetches degree distribution sequence from graph parser. Degree distribution sequence

contains a list of vertex identifiers created by repeatedly adding each vertex identifier up to its

degree value (number of neighbors). Random graph generator shuffles degree distribution

sequence and repeatedly picks a random pair of vertices as an edge for the random graph.

Consequently, the generated random graph may be a connected or disconnected graph with lesser

degree distribution than expected, due to the exclusion of self edges and parallel edges.

Random Graph Analyzer (D in Figure 4.1). This module employs the RAND-ESU algorithm to

perform approximate enumeration based on the input sampling probabilities. Instead of traversing

all neighbors, it selectively traverses the limited set of neighbors at each ESU tree-level shown in

Figure 2.3. RAND-ESU algorithm reduces the time taken to compute the frequency of candidate

motifs in a large number of random graphs. Similar to the target graph analyzer, this module

executes in parallel across all computing machines. Random graph analyzer filters non-candidate

motifs enumerated in the randomized networks and gathers frequency of all candidate motifs.

Statistical Analyzer(E in Figure 4.1). As a final step, the statistical analyzer computes the Z-score

and p-value for all the candidate motifs, using the mathematical relations stated in section 2.1. It

executes sequentially in the master computing machine and displays the result to the user, as seen

in Figure 4.3.

Figure 4.3. MASS Execution Result for Motif Size 5 in 1000 Random Graphs

18

4.2 MASS IMPLEMENTATION

MASS Places and Agents, introduced in section 1.2.1, are used to parallelize subgraph

enumeration in target and random graphs. MASS places map to graph vertices that hold neighbors'

information throughout the lifetime of the program. MASS agents are responsible for enumerating

subgraphs of given motif size from each place (vertex) in parallel. Graph parser assigns zero-

indexed vertex identifiers to map vertex identifier to the MASS place index effortlessly.

a. Initial Agents b. Agents execution (1st iteration) c. Agents after 1st iteration

 d. Agents execution (2nd iteration) e. Agents deposit subgraphs

Figure 4.4. MASS Agents Execution for Motif Size 3

Initially, an agent is populated at every place, as seen in 4.4.a. At every iteration of agent

function execution, agents examine the neighborhood and perform either of the following actions.

If valid neighbors exist, it spawns child agents and migrates itself to the first valid neighbor or

terminates otherwise. After repeating this procedure for motif size iterations, agents deposit

enumerated subgraph structure at the current residing place (4.4.e) before terminating itself.

Finally, the driver gathers subgraphs from all the places in parallel. Figure 4.4.d. demonstrates

agent at vertex ‘3’ migrates to vertex ‘4’, although vertices ‘3’ and ‘4’ aren’t direct neighbors

(directly connected). MASS supports flexible agent movement, unlike Spark’s graph processing

library discussed later.

19

4.2.1 MASS Place and Agent Data Structure

MASS agent movement pattern described in the previous section is comparable to Kipps et al. [19]

agent-based subgraph count implementation. As discussed in related works, MASS agent-based

network motif analysis implementations [19], [20] faced memory overhead. Consequently, the

main focus of this agent-based implementation is to reduce memory use at the application level.

Figure 4.5. MASS Place and Agent Data Structure

To differentiate Kipps et al. implementation [19] from the current implementation, the former

version termed as ‘Old MASS Network Motif’ and the latter version termed as ‘New MASS

Network Motif’ throughout this paper. Figure 4.5 depicts the data structure transition from Old

MASS Network Motif (Graph Crawler represents Agent and Graph Node represents Place) to New

MASS Network Motif (Crawler represents Agent and Node represents Place). Additionally, New

MASS network motif includes ‘In Neighbors’ and ‘Sampling probability’ fields to support directed

graphs and RAND-ESU algorithm, which aren’t supported by old MASS network motif.

As seen in Figure 4.5, Old MASS network motif used wrapper objects and multiple levels of

nested object references, while New MASS network motif version eliminated wrapper objects and

used primitive types. The primitive type-specific collections are used instead of Java built-in

collection (HashSet<Integer>) or user-defined collection (CompactHashSet) to avoid boxed

20

objects or multiple levels of embedded object references. Thus, minimal use of java objects

enabled New MASS network motif version to consume less heap space and improve execution

speed with reduced garbage collection pauses for memory management tasks.

New MASS network motif utilized Fastutil library [25] due to its compatibility with standard

java library and easy to use well-documented APIs. More importantly, as per evaluations [26],

[27], Fastutil performs consistently faster with less memory footprint when compared against other

Java type-specific collection libraries such as Trove, Goldman Sachs Collections, Koloboke, and

High-Performance Primitive Collections for Java (HPPC). Furthermore, Spark documentation [28]

also recommends Fastutil for tuning data structures without wrapper objects and pointer-based

data structures.

4.2.2 MASS Performance Tuning

New MASS network motif implementation intended to minimize data within each agent primarily

to keep JVM heap memory utilization in control during agent expansion in order of millions. And

additionally, reduce the time spent to serialize and deserialize agent data during migration across

computing nodes. This section captures performance improvements incorporated in New MASS

network motif implementation to reduce the overall memory footprint of the application and

improve execution speed.

• Preferred Primitive Types over Primitive-Wrapper Objects to reduce memory space and

avoid autoboxing/unboxing performed during primitive to non-primitive type conversions

and vice versa.

• Replaced Built-in Java Collection with Fastutil’s Collection. Built-in Java collections such

as HashMap, HashSet, and ArrayList consume enormous memory with an increase in the

collection size and tightly couples the internal data structure used. To reduce memory

overhead and benefit from using different internal data structures such as array, AVL tree,

RB tree, open hash, and custom hash, Fastutil [25] collections are used. In MASS

implementation, the number of agents increases exponentially for large motif size and large

graph size. With primitive type-specific collections, each agent contained considerably

lesser data.

21

• MASS Asynchronous Agent Migration. Replaced Agent’s callAll followed by manageAll

with doAll for ‘motif size’ iterations to reduce time incurred by returning control to the

driver program in between the successive function calls for each iteration.

• Reduced HashMap with String Key. The initial version maintained data uniquely for each

motif in multiple hash maps (8 hash maps) with motif’s canonical label string as a key.

These hashmaps are restructured to ‘Motif’ class to reduce memory space occupied by the

recurrent canonical label string key references stored across multiple maps.

• Moved Agent’s data to Places. Input motif size and sampling probabilities are stored in the

agent initially. These input data occupied huge memory with the creation of millions of

agents. Input data used by agents are stored in all places and agents fetch data from place

upon arrival to the place, thereby reducing memory utilized during the agent expansion.

• Eliminate redundant data in Agent. Early implementation maintained source vertex, next

migration vertex fields within each agent, which are later dropped and computed from

subgraphList at run time.

• Avoid passing unnecessary data during Agent duplication. At the last iteration of the

enumeration process, spawned agents migrate to the last vertex to discover its connectivity

to all other vertices of the enumerated subgraph and deposit subgraph structure at last

vertex. Hence, agents spawned in the last iteration require only subgraph data and not

subgraph neighbors and extension data. This unnecessary data prevention reduced memory

and time taken to duplicate the data from parent to child agents.

These performance tuning has reduced execution time significantly by minimizing agent size,

reducing heap utilization, decreasing serialization-deserialization time, and notably lowering

garbage collection cycles.

4.3 SPARK IMPLEMENTATION

Spark implementation to parallelize subgraph enumeration in target and random graphs uses basic

Spark abstraction, Resilient Distributed Datasets (RDD). Graph vertices map to VertexRDD and

enumerated subgraphs map to SubgraphRDD, as viewed in Figure 4.6. In contrast to MASS that

allows vertex addition to enumerated subgraph (agent) dynamically, new SubgraphRDD has to be

created every time to add a vertex to the enumerated subgraph, due to the immutable nature of

Spark RDDs.

22

In Spark implementation, subgraph enumeration happens through a series of narrow-

dependency transformations such as mapToPair, values, flatMap, followed by an expensive wide-

dependency transformation (reduceByKey), that shuffles data across all the computing nodes.

Finally, the driver program gathers the frequency of all enumerated subgraphs either in graph6 or

digraph6 format via collectAsMap Spark action.

Figure 4.6. Spark Implementation of Subgraph Enumeration

Spark implementation doesn’t utilize Graphx [29], Spark’s graph processing library optimized

for distributed graph operations. Pregel [30] is a vertex-centric graph processing model developed

by Google for large-scale graph processing. Although Graphx provides an optimized Pregel like

operator for iterative computations, restrictions imposed to optimize graph computation evolved

as an obstacle to utilize for the subgraph enumeration algorithm. As pointed out in [31], Graphx

Pregel operator prohibits direct communication between vertices that are not adjacent in the graph

to reduce data movement. But, subgraph enumeration requires direct communication between non-

adjacent vertices. Consequently, Spark implementation employed basic RDD instead of Graphx

operators to enumerate subgraphs efficiently.

23

4.3.1 Spark Performance Tuning

The initial version of spark implementation performed slower than sequential tools [6], [7] because

of the under-utilization of the cluster resources to execute tasks in parallel, and data serialization

overhead that impacted network bandwidth.

• Tune Default Parallelism Level. In Spark, RDDs [32] are created either by parallelizing an

existing collection from the driver program via parallelize() or by reading from the file

system via textFile(). Later RDD creation splits input file into multiple partitions depending

on file size so that Spark can run tasks in parallel across the partitions. But, Spark

implementation depicted in Figure 4.6 creates initial vertexRDDs by parallelizing vertices

collection. Automatic RDD partitioning done by Spark turns out to be inefficient in this

scenario. Hence, it is crucial to split vertexRDD into multiple partitions to increase task

parallelism of all narrow-dependency transformations applied successively on vertexRDD.

Thus, the default parallelism level was fine-tuned by configuring 'spark.default.parallelism'

property to 3 tasks per CPU core in the cluster, as suggested in [28].

• Tweak ReduceByKey Partitions. ReduceByKey inherits the number of partitions either

from the largest parent RDD or 'spark.default.parallelism' property. It is essential to tweak

the partition value for reduce tasks, that involve shuffle operation. Smaller partition count

might cause out of memory issues when large RDD partitions don't fit in memory, while

larger partition count might incur the repartition overhead. After experimenting with

different partition values (that are multiples of the number of CPU cores in the cluster) on

different graphs, optimal partition value has been identified to be 48 for the test cluster.

• Eliminate unnecessary spark actions used for debugging. Listing 1 shows the initial spark

code that applied count action to find the number of subgraphs enumerated in every

iteration. Following the spark’s job execution model described in section 1.2.2, multiple

jobs are created, one for each count action up to motif size.

1 for (int size = 1; size <= motifSize; size++) { // Iteratively enumerate subgraphs
2 System.out.println(subgraphRDD.count() + " subgraphs enumerated for motif size: " + size);
3
4 enumerateSubgraphsRDD = subgraphRDD.mapToPair(
5 (PairFunction<Subgraph, Subgraph, Iterable<Subgraph>>) subgraph -> {...});
6
7 subgraphRDD = enumerateSubgraphsRDD.values().flatMap(
8 (FlatMapFunction<Iterable<Subgraph>, Subgraph>) subgraphs -> {...});
9 }

Listing 1. Spark’s code to get enumerated subgraphs count

24

Figure 4.7 depicts the re-evaluation of RDD lineage from the earliest parallelize

transformation in each stage. Developers need to pay more attention while using spark

actions to debug intermediate results. Thus, the removal of count action eliminated RDD

lineage re-evaluation and improved execution speed. Incase graph computation requires

spark action, then RDDs can be cached in on-heap memory or persisted in disk or off-heap

memory based on input storage level passed to persist() API to overcome the expensive re-

evaluation of RDD lineage.

Figure 4.7. Spark’s RDD Lineage Re-evaluation for Spark Action

• Reduce Data Serialization Overhead. Though default Java serialization is flexible, it results

in large serialized data. But Kryo library serializes objects faster and at most 10x compact

than default java serialized objects. The only downside of the Kryo serializer is to register

user-defined classes. Spark [28] recommends Kryo serializer for network-intensive

distributed applications. Thus, Spark implementation improved network performance by

transferring compact objects serialized using the Kryo library.

These fine-tuning efforts enabled Spark implementation to outperform sequential tools [6],

[7] for large motif sizes in small graphs, and even small motif sizes in large graphs.

25

Chapter 5. RESULTS

This chapter presents the experimental results of MASS and Spark parallel implementations

discussed in chapter 4, and compares execution performance with sequential tools FANMOD [6],

NemoLib [7], and parallel Kipps et al. [19] MASS version. Being a GUI based tool, FANMOD

tests are carried out in Intel i7-8550U Windows laptop with 16 GB RAM. Except for FANMOD,

all other implementations are tested in the environment described in 5.1. This chapter follows the

same naming convention, 'Old MASS’ refers to Kipps et al. [19] MASS version, and ‘New MASS’

refers to the MASS implementation described in 4.2. The correctness of the results is verified by

comparing parallel output with the sequential output of motif detection presented in Appendix B.

5.1 EXECUTION ENVIRONMENT

Experiments are conducted in a cluster of 8 computing nodes made available by the University of

Washington Bothell. Among 8 computing nodes, 4 nodes have 8-core 2.33GHz CPU (Intel Xeon

E5410) with 16GB memory and the remaining 4 nodes have 4-core 2.66GHz CPU (Intel Xeon

5150) with 16GB memory. The latest stable version of software libraries used in this work are as

follows, MASS Java [33] core version 1.2.1, NemoLib Java [34] version 2, Apache Spark [35]

version 2.4.5, Nauty Traces [36] version 2.6 (r12), and Fastutil [37] version 8.3.1. NemoLib, Old

MASS, and New MASS java applications are configured with 4GB initial heap and 12GB

maximum heap space. The Spark version is configured to utilize 8GB memory for driver and 2GB

memory for executor processes.

5.2 INPUT DATASETS

This section presents the graph properties of the undirected and directed real network datasets used

for experiments. As stated in [2], typical biological networks are often sparse, with an average

degree (ratio of the number of edges to the number of vertices) between 1 and 3. Hence, synthetic

graphs are used to evaluate performance and memory usage of the implementations in dense

networks.

26

5.2.1 Real Biological Network Datasets

Table 5.2 lists three undirected and two directed real datasets used to conduct experiments. These

downloaded input datasets are in different graph formats such as Graph Modeling Language

(GML), Pajek, and Weighted Edge-List format. Different input graphs formats are converted to

the Edge-List format expected by the current implementation using a python script. This script

uses open-source python library NetworkX [38], for format conversion and graph visualization.

Figure 5.1 depicts the dolphin network visualized using python script.

Table 5.2. Real Network Graph Properties.

Real Datasets Vertices Edges Directed?
Connected

Components

Dolphin [39] 62 159 No 1

Power [40] 4,941 6,594 No 1

DIP [41] 26,695 73,085 No 1,204

Yeast [42] 688 1,078 Yes 11

Gnutella P2P [43] 6,301 20,777 Yes 2

Figure 5.1. Dolphin Network

5.2.2 Undirected Synthetic Graphs

Undirected synthetic graphs (single connected component) are generated using NetworkX’s API

fast_gnp_random_graph, which implements an efficient version of the Erdős-Rényi random graph

generation model [44]. Table 5.3 lists graph properties along with edge creation probability used

to generate these graphs.

Table 5.3. Undirected Synthetic Graph Properties.

Vertices Edges
Edge Creation

Probability

Maximum

Degree
Average

Degree

1,024 52,116 0.1 134 50.89

2,048 83,925 0.04 118 40.97

4,096 125,668 0.015 90 30.68

8,192 234,678 0.007 86 28.64

5.3 EXECUTION PERFORMANCE

This section compares the performance of sequential tools (FANMOD, NemoLib) against parallel

implementations (Old MASS, New MASS, and Spark) for target graph enumeration. Listing 2

shows execution time measured with System.currentTimeMillis() uniformly in all versions (except

FANMOD). Both MASS versions utilized 8 computing nodes and 4 threads per computing node.

27

1 long startTime = System.currentTimeMillis();

2

3 // Execute Network Motif Detection Application

4

5 System.out.println("Overall execution time = " + (System.currentTimeMillis() - startTime) + " milliseconds");

Listing 2. Execution time measurement code snippet

5.3.1 Real graphs performance comparison with increasing motif sizes

Figure 5.2. Undirected Real Networks Performance.

Undirected Real Graphs Performance. Figure 5.2 shows New MASS version performs

consistently faster than the Old MASS version for small (Dolphin) and medium (Power) sized

undirected graphs. But in large (DIP) graph, Old MASS runs faster than New MASS

implementation for small motif size (3). The phase-wise execution time analysis reveals the

parallel subgraph enumeration (ESU) happens faster in New MASS, but New MASS takes more

time to initialize the target graph compared to Old MASS implementation. Due to additional data

structures incorporated in the New MASS version to support directed graphs and approximate

enumeration (presented in 4.2.1), New MASS takes more time to initialize larger graphs.

Though New MASS improved over Old MASS, MASS versions lag behind Spark and

sequential tools in all experiments. Spark performance significantly improves with an increase in

motif size as well as graph size. Figure 5.2 depicts the parallel Spark version attained almost 2x

speedup in medium-sized power graph (motif size 9) and large DIP network (motif size 4).

FANMOD faced maximum motif size limitation (> 8), and MASS versions encountered memory

overhead to enumerate larger subgraphs. Old MASS can enumerate up to 12.4 million subgraphs

while New MASS can enumerate up to 33.4 million subgraphs. In conclusion, spark parallelization

improved speed and enhanced scalability over the sequential tools for undirected real graphs.

28

Table 5.4. Enumerated Subgraphs Count in Undirected Real Graphs.

Target

Graph

Motif

Size

#Subgraphs Target

Graph

Motif

Size

#Subgraphs Target

Graph

Motif

Size

#Subgraphs

Dolphin 7 550,428 Power 5 268,694 DIP 3 1,859,101

Dolphin 8 2,683,740 Power 6 1,260,958 DIP 4 89,371,477

Dolphin 9 12,495,833 Power 7 6,340,413

Dolphin 10 55,824,707 Power 8 33,494,650

 Power 9 183,453,978

Table 5.4 lists the number of subgraphs enumerated for increasing motif sizes in undirected

real datasets. Dolphin graph performance shows New MASS speedup (compared to Old MASS)

increased from 1.5x to 2.4x with increased enumerated subgraphs (agents) from 2.6 million to 12.4

million. With compact agent structure implementation, New MASS minimized CPU time spent on

memory management tasks, while operating with millions of agents.

Directed Real Graphs Performance. This subsection compares performance for directed real

graphs. Tests were not conducted in Old MASS, as it doesn’t support directed graphs.

Figure 5.3. Directed Real Networks Performance.

Figure 5.3 illustrates New MASS performs comparably equivalent to Spark for small motif

size (3). But for motifs (≥ 4), agent creation and management cost increases with an exponential

increase in agent population and consequently impacts MASS performance. This is because a large

number of subgraphs are enumerated even for small motif size in directed graphs (for instance, 10

million subgraphs are enumerated for motif size 4 in P2P), as seen in Table 5.5. Similar to

undirected graphs, MASS version encountered memory limitation beyond motif size 6 and 4 in

Yeast and P2P graphs respectively. Figure 5.3 shows performance only upto certain motif sizes

because parallel implementations support subgraph enumeration up to maximum integer value of

29

231-1 (2,147,483,647). NemoLib, the sequential baseline, also exhibits the same limitation. Figure

5.2 and Figure 5.3 depict parallel Spark implementation outperformed sequential tools, NemoLib

and FANMOD for large motif sizes in both undirected and directed real graphs.

Table 5.5. Enumerated Subgraphs Count in Directed Real Graphs.

Target

Graph

Motif

Size

#Subgraphs Target

Graph

Motif

Size

#Subgraphs

Yeast 3 13,150 P2P 3 341,267

Yeast 4 183,174 P2P 4 10,031,003

Yeast 5 2,508,149 P2P 5 391,618,916

Yeast 6 32,883,898

Yeast 7 416,284,878

5.4 MASS SPEEDUP AND MEMORY REDUCTION

This section evaluates the impact of MASS performance improvement by comparing speedup and

memory reduction on dense synthetic graphs generated using the technique described in 5.2.2. All

tests used 8 computing nodes and 4 threads per computing node and enumerated motif size 3.

5.4.1 Synthetic graphs performance comparison with increasing graph sizes

Table 5.6. New MASS Speedup in Undirected Synthetic Graphs.

Graph Subgraphs Old

MASS

New

MASS

Speedup

1,024 4,949,229 87.022 43.381 2.00

2,048 6,693,448 94.884 51.472 1.843

4,096 7,629,910 117.717 53.525 2.19

8,192 13,389,518 303.443 79.674 3.80

Table 5.6 demonstrates New MASS achieved an average of 2.4x speedup than Old MASS for

dense synthetic graphs. Fine-tuning MASS version explained in 4.2.2 improved performance of

New MASS over Old MASS. Although application-level optimization enhanced New MASS

speed, increasing motif size beyond the value presented in this section affects the MASS execution.

This is due to the memory exhaustion caused by millions of agents that fill up the heap space. In

this scenario, CPU resources are utilized for garbage collection rather than algorithm computation,

which impacts performance. Thus, current MASS implementation is limited by the maximum heap

availability on the cluster machines.

30

5.4.2 Memory Reduction

This section measures the memory usage of Old MASS and New MASS implementations and

evaluates reduction achieved by the New MASS version. Listing 3 shows memory consumption

measured by finding the difference between total memory and available free memory.

1 long MemAtStart = Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory();

2

3 // Execute Network Motif Detection Application

4

5 long MemAtExit = Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory();

6 long actualMemUsed = MemAtExit-MemAtStart;

7 // Memory Utilized

8 System.out.println("Memory Used: "+ actualMemUsed + " Bytes (" + actualMemUsed/1048576 + " MB)");

Listing 3. Memory utilization measurement code snippet

Table 5.7 displays memory usage (in MB) of MASS versions to detect motif size 3 in

undirected synthetic graphs. As per Java SE documentation [45], approximate values returned by

totalMemory() and freeMemory() methods (in Listing 3) vary over time depending on garbage

collection execution in the host. Owing to the unreliable nature of this measurement, a series of

experiments (5 executions at different times) are conducted to find the overall memory usage trend.

Table 5.7. Memory Reduction in MASS Implementation

Graph 1024V_52116E 2048V_83925E 4096V_125668E 8192V_234678E

Version Old

MASS

New

MASS

Old

MASS

New

MASS

Old

MASS

New

MASS

Old

MASS

New

MASS

Execution 1 1165 487 2115 347 2442 906 2687 1013

Execution 2 1161 472 2163 368 2336 942 2509 1070

Execution 3 1048 483 2119 350 2382 927 2651 1048

Execution 4 1223 465 2167 369 2402 983 2599 1180

Execution 5 1129 448 2017 397 2426 927 2417 955

Min (in MB) 1048 448 2017 347 2336 906 2417 955

Avg (in MB) 1145.2 471 2116.2 366.2 2397.6 937 2572.6 1053.2

Max(in MB) 1223 487 2167 397 2442 983 2687 1180

Reduction 2.431422505 5.778809394 2.558804696 2.442650968

The memory usage trend exhibits variation in the range of 39~270 MB across the executions.

Based on average memory usage, it can be concluded that the New MASS version achieved at

least 2.4 times memory reduction in dense graphs. Compact data structure and minimal data carried

by agents in New Mass version reduced memory usage, which in turn decreased garbage collection

pauses and enhanced performance. Consequently, reducing memory footprint at the application

level can significantly improve speed and enhance scalability to deal with large-scale data.

31

5.5 MASS FEATURE EVALUATION

This section evaluates three MASS features, parallel file I/O, agent population control, and

asynchronous agent migration features that are tried in New MASS implementation.

5.5.1 MASS Parallel I/O Feature

MASS Parallel I/O feature expects each line in the input graph to have the same alignment so that

the file can be partitioned and read in parallel from the computing nodes. To meet even alignment

constraint, each neighbor data need to be filled with -1 and spaces up to maximum neighbors as

seen in Figure 5.4 and end up creating a huge input file. As visualized from Table 5.8, MASS

Parallel I/O drastically increases the input file size for large graphs. Additionally, it expects the

number of input lines to be an exact multiple of the number of computing nodes to partition the

input file accurately. Although MASS Parallel I/O provides great parallelization potential for

complete graphs wherein every vertex has a connection to all other vertices in the graph. Current

MASS Parallel I/O is not well suited for biological networks that exhibit network property of fewer

vertices with high degree and more vertices with low degree. Hence, MASS implementation

preferred sequential graph parser described in 4.1 over parallel I/O.

Table 5.8. Input graph size for different formats

Dataset
Edge List

File Size

Parallel I/O

File Size

Dolphin 1 KB 8 KB

Power 62 KB 923 KB

DIP 761 KB 75,370 KB

Figure 5.4. Parallel I/O Graph

5.5.2 MASS Agent Population Control Feature

This feature controls the active agent population by serializing agents that are spawned beyond the

maximum limit and deserialize agents once the current population drops below the maximum limit.

Although this feature caches inactive agent data in a serialized form (that are much smaller than

raw agent objects), serialized agent data consumes significant heap space when inactive agents

grow exponentially in order of millions. Due to highly imbalanced agents in computing nodes,

even if a single computing node (whose heap is filled by active agents and serialized inactive

agents) triggers full garbage collection, then execution takes unreasonable time. To reduce heap

32

utilization and avoid garbage collection pauses, inactive agents are stored to disk in GZIP

compressed format to minimize disk space usage as seen in Listing 4. Though this implementation

worked for small graphs, it couldn’t be tested in the current Network File System (NFS) cluster

environment for larger graphs. This is because when MASS execution creates millions of files (for

serialized inactive agents) parallelly from all computing nodes, remote connection to the test

cluster gets aborted. Although this application couldn’t benefit from this feature, it could be useful

for applications in which agent expansion happens linearly between successive iterations.

1 public byte[] serializeAgent(Agent agent) {

2 ByteArrayOutputStream baos =

3 new ByteArrayOutputStream();

4 ObjectOutputStream oos =

5 new ObjectOutputStream(baos);

6 oos.writeObject(agent);

7 oos.flush();

8 oos.close();

9 byte[] serializedAgent = baos.toByteArray();

10 return serializedAgent;

11 }

12

13 public Agent deserializeAgent(byte[] serializedAgent) {

14 ByteArrayInputStream bais =

15 new ByteArrayInputStream(serializedAgent);

16 ObjectInputStream ois = new ObjectInputStream(bais);

17 Agent deserializedAgent = (Agent) ois.readObject();

18 ois.close();

19 return deserializedAgent;

20 }

21

public String serializeAgent(Agent agent) {

 // Use UUID as filename to store serialized agents in disk

 // Compress serialized agent in .gz format to save disk space

 String serializedAgent = UUID.randomUUID().toString() + ".gz";

 FileOutputStream fos = new FileOutputStream(serializedAgent);

 GZIPOutputStream gz = new GZIPOutputStream(fos);

 ObjectOutputStream oos = new ObjectOutputStream(gz);

 oos.writeObject(agent);

 oos.close();

 return serializedAgent;

}

public Agent deserializeAgent(String serializedAgent) {

 FileInputStream fin = new FileInputStream(serializedAgent);

 GZIPInputStream gis = new GZIPInputStream(fin);

 ObjectInputStream ois = new ObjectInputStream(gis);

 Agent deserializedAgent = (Agent) ois.readObject();

 ois.close(); // close stream and delete agent data file

 deleteFile(serializedAgent);

 return deserializedAgent;

}

Listing 4. Agent serialize and deserialize code snippets (Left: Existing code that maintains

inactive agents in heap, Right: Modified code to store inactive agents in disk)

5.5.3 MASS Asynchronous Agent Migration Feature

1 // Synchronous Agent Migration

2 crawler.callAll(Crawler.enumerateExhaustive_);

3 crawler.manageAll();

1 // Asynchronous Agent Migration

2 crawler.doAll(new int[] {Crawler.enumerateExhaustive_}, null, motifSize);

Listing 5. Synchronous vs Asynchronous agent migration code snippet

MASS asynchronous agent migration feature reduces communication and synchronization

overhead across computing nodes by repeatedly performing agent function execution and

migration for specified iterations without returning control to the driver program. To evaluate this

feature, the execution time for synchronous and asynchronous agent migrations shown in Listing

5, are measured for Dolphin graph in which large motif size (9) can be detected. Table 5.9 shows

33

performance gain slowly increases with the number of iterations (motif size). Consequently, graph

algorithms that execute for a higher number of iterations will benefit from this feature.

Table 5.9. MASS callAll vs doAll Performance

Motif Size #Subgraphs
Execution Time (sec) doAll

Speedup callAll doAll

6 107,775 17.623 17.851 0.987

7 550,428 18.246 18.111 1.007

8 2,683,740 39.372 35.548 1.107

9 12,495,833 150.832 129.185 1.167

5.6 MASS VERSUS SPARK ANALYSIS

This section analyzes MASS and Spark parallel implementations and evaluates the fitness of

MASS for similar graph problems that handle large-scale data.

5.6.1 Parallelism Analysis

Figure 5.5. MASS Parallel Performance

Figure 5.6. Spark Parallel Performance

To assess MASS and Spark parallelism, New MASS version tested with different threads and

computing nodes, and Spark version tested with different executors and parallelism configurations

for motif size 9 in Dolphin graph. As evident from Figure 5.5, MASS performance improved with

an increase in the number of computing nodes and maximum threads (4) utilized. 2-threads

performed slower than single thread execution because threads synchronization time nullified the

parallel performance gained by 2-threads. But 4-threads gained more parallel performance than 2-

threads such that threads synchronization time had no negative impact on performance.

34

Analogous to MASS, Figure 5.6 depicts Spark also exhibits similar parallel performance gain

with an increase in the number of computing nodes, executors, and default parallelism value.

MASS achieved 1.925x speedup, and Spark gained 1.924x speedup from the minimum to

maximum parallel configuration. This signifies both MASS and Spark parallel implementations

can execute faster in a sophisticated cluster environment with enormous computing power and

large physical memory capacity.

5.6.2 Programmability Analysis

This section presents quantitative and qualitative programmability analysis of the parallel versions.

The quantitative analysis focuses on the boilerplate code ratio, lines of code (LoC), and the number

of parallel methods or operations. The quantitative analysis targets development efforts, data

representation, flexible communication, ease of parallelism, and performance improvements.

Quantitative Analysis. Boilerplate code represents the lines to code that are intended to configure

the parallelization framework and are not related to application implementation. Boilerplate code

ratio measures the percentage of boilerplate code to the total number of lines of code. The smaller

boilerplate code ratio symbolizes easiness to set up the parallel environment. Lines of code

measurement presented in this section omitted comment and blank lines and both parallel versions

followed standard java coding convention (80 characters code width). Table 5.10 shows both

MASS and Spark implementations have a significantly lesser boilerplate code ratio. But, the

boilerplate code ratio for Spark is slightly higher than the MASS. This is because the Spark version

has to register all user-defined classes to utilize Kryo serializer, as discussed in section 4.3.1.

Table 5.10. Lines of Code (LoC) and Boilerplate Code Ratio

Modules MASS LoC Spark LoC

Graph Parser 170

Labeler & Statistical Test 302

Boilerplate code 12 16

Framework specific code 661 463

Total LoC 1145 951

Boilerplate Code Ratio 1.04% 1.68%

35

Table 5.10 indicates MASS has a higher total LoC than Spark due to the difference in parallel

paradigms. MASS version includes 3 classes (TargetNwArgs2Places, RandomNwArgs2Places,

Args2Agents) with parameterized constructor alone that serve the purpose of passing arguments

to specific agent or place during the invocation of parallel methods. Such framework-specific

implementation increases total LoC, but enhancing MASS features will relieve the application

developers from the burden of implementing common functionalities. For instance, the graph

parser module can be eliminated for the MASS version if the enhanced MASS Parallel I/O feature

eliminates constraints described in 5.5.1. This elimination makes MASS total LoC (975) roughly

equivalent to Spark total LoC (951). Thus, excluding code that performs common tasks such as

graph parsing reduces the total LoC, and simplifies application parallelization using MASS.

Table 5.11. Parallel Methods or Operations Count

MASS Parallel Methods Spark Parallel Operations

MASS Place 3 Transformations 8

MASS Agent 2 Actions 1

Total 5 Total 9

Table 5.11 presents programmability analysis based on the number of parallel methods used

in MASS and the number of parallel operations used in Spark version. As seen in Table 5.11, Spark

implements more parallel operations than the MASS version. MASS version has three parallel

methods in place to initialize (target and random) network and gather (collect subgraphs) results,

and two methods in agent for algorithm implementation (exhaustive and random enumeration).

But Spark version applies eight transformations (one to initialize network and seven to implement

algorithm) and one final action to gather results. This reveals the MASS version closely resembles

sequential java implementation and developers can easily parallelize applications using the MASS

library by identifying methods that can be operated in parallel from places and agents.

Qualitative Analysis. Unlike Spark’s RDD flat representation, MASS provides spatial graph

representation to easily discover graph structure and intuitively parallelize sequential graph

algorithms. Developing a parallel application using MASS is less complex and requires fewer

development efforts for biologists, while Spark implementation involves longer development time

to change sequential algorithms to fit into Spark's data-parallel model of transformations and

actions. Factors such as choosing efficient transformation/action (reduceByKey instead of

36

groupByKey), and deciding on RDD partitioning and persistence play an important role to

guarantee optimal utilization of the cluster resources and improve performance.

MASS offers a simple API to alter parallelism whereas Spark requires deep dive into default

configurations to fine-tune parallelism described in 4.3.1. Consequently, developers from non-

parallel backgrounds spent more time and effort to achieve maximum parallelism with Spark.

Additionally, MASS allows flexible communication between graph vertices, while Spark GraphX

restricts direct communication between non-adjacent vertices. Hence, graph algorithms that

require direct communication between non-adjacent vertices benefit from MASS’s flexibility.

5.6.3 In-Memory Data Reuse Analysis

To assess in-memory data analysis, MASS and Spark versions are tested for a 50% sampled

subgraph enumeration in 1000 random graphs. As discussed in section 4.3, Spark streams data or

recreates vertexRDD for each random graph, while MASS updates neighbor information in Place

structure instead of deleting and creating vertex structure for every graph. Table 5.10 shows the

benefit of retaining data structure in memory (MASS places) for multiple iterations so that

different operations can be performed over the same data structure (holding the same or modified

data for each iteration). Though Spark executed 3.2-3.5 times faster than MASS for single target

graph enumeration, MASS performed 1.6 times faster than Spark for 1000 random graphs

enumeration. In conclusion, iterative graph algorithms that perform different operations on the

same or modified graph structure can attain higher speedup using MASS.

Table 5.12. MASS Speedup for In-Memory Data Reuse

Target Graph Undirected Power

(Motif Size = 4)

Directed Yeast

(Motif Size = 3)

 MASS Spark MASS Spark

Target Subgraphs 63,401 63,401 13,150 13,150

Random Subgraphs 39,983,983 39,962,071 5,389,395 5,391,802

Total Subgraphs 40,047,384 40,025,472 5,402,545 5,404,952

Target Enumeration 29.288 8.912 22.273 6.221

Random Enumeration 705.126 1191.824 266.653 427.241

Total Time (sec) 734.543 1202.804 288.997 435.467

MASS Speedup 1.637 1.506

37

Chapter 6. CONCLUSION & FUTURE WORK

Agent-based and Spark network motif implementations detect high-order motifs (> 8) that are

infeasible with sequential tools Mfinder, FANMOD. This work verified the correctness of parallel

results by comparing it with sequential results from NemoLib, and FANMOD. It also evaluated

performance for different sparse real networks and dense synthetic graphs. Unlike old MASS

implementation, New MASS version detects significant motifs and also supports directed graph

analysis as well as the sampled version of subgraph enumeration to improve the speed.

Compared with the Old MASS version, New MASS version achieved 2x speedup on higher-

order motifs in real networks, and on average, 2x memory reduction in dense networks. New

MASS version optimized data structures by eliminating nested objects and utilized primitive type-

specific collections. These optimized structures consumed less heap space, which in turn reduced

garbage collection time and improved performance. Light-weight agents reduced data serialization

cost during agent migration and object creation overhead during agent duplication.

This work proved that developing a memory-optimized application enhances MASS

scalability to deal with millions of agents with a moderate performance impact. But increasing

more than tens of millions of agents cause memory exhaustion, which needs to be addressed by

fine-tuning data structures within the library or by modifying the memory model to use off-heap

memory or disk space, that are not managed by the garbage collector.

Parallel Spark version achieved at most 2x speedup than sequential NemoLib for high-order

motif enumeration in target graphs. But MASS gained 1.5 times speedup than Spark for low-order

significant motif detection. This project demonstrates graph algorithms that require flexible

communication between vertices irrespective of connectivity, and those that perform different

computations on the same data will benefit from MASS.

As for future work, MASS network motif application can be extended to support NemoProfile

and NemoCollect functionalities, and also visualize detected significant motifs in Cytoscape using

the recently developed MASS Cytoscape plugin. Due to memory overhead, current

implementation enumerates random graphs sequentially. In future, random graph enumeration can

be parallelized along with target graph enumeration to significantly improve the performance.

The source code for MASS and Spark implementations are available in MASS Java

applications repository (https://bitbucket.org/mass_application_developers/mass_java_appl).

38

BIBLIOGRAPHY

[1] Milo, Ron, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.

Network motifs: simple building blocks of complex networks. Science 298, no. 5594, pp. 824-

827, 2002.

[2] Junker, Björn H., and Falk Schreiber. Analysis of biological networks. Vol. 2. John Wiley &

Sons, 2011.

[3] Fukuda, Munehiro. MASS: Parallel-computing library for multi-agent spatial simulation.

Distributed Systems Laboratory, Computing & Software Systems, University of Washington

Bothell, Bothell, WA (2010).

[4] Apache Spark, https://spark.apache.org/docs/latest/index.html

[5] Mfinder, https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software

[6] Wernicke, Sebastian, and Florian Rasche. FANMOD: a tool for fast network motif detection.

Bioinformatics 22, no. 9 (2006): 1152-1153.

[7] Andersen, Andrew, and Wooyoung Kim. NemoLib: A Java Library for Efficient Network

Motif Detection. In International Symposium on Bioinformatics Research and Applications,

pp. 403-407. Springer, Cham, 2017.

[8] Matthew Sell, Munehiro Fukuda, Agent Programmability Enhancement for Rambling over a

Scientific Dataset, to appear in PAAMS 2020, October 7-9, L'Aquila, Italy

[9] Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing. In Presented as part of the 9th

(USENIX) Symposium on Networked Systems Design and Implementation (NSDI 12) pp. 15-

28. 2012.

[10] The Internals of Apache Spark, https://books.japila.pl/apache-spark-internals/apache-spark-

internals/2.4.4/spark-architecture.html

[11] Erciyes, Kayhan. Distributed and sequential algorithms for bioinformatics. Vol. 23. Cham:

Springer, 2015.

[12] Wernicke, Sebastian. Efficient detection of network motifs. IEEE/ACM transactions on

Computational Biology and Bioinformatics, vol. 3, no. 4, pp. 347-359, 2006.

39

[13] Kashtan, Nadav, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for

estimating subgraph concentrations and detecting network motifs. Bioinformatics 20, no. 11,

pp. 1746-1758, 2004.

[14] Wang T, Touchman JW, Zhang W, Suh EB, Xue G (2005) A parallel algorithm for extracting

transcription regulatory network motifs. In Proceedings of the IEEE international symposium

on bioinformatics and bioengineering, IEEE Computer Society Press, LosAlamitos,

CA,USA, pp 193–200.

[15] Ribeiro, Pedro, and Fernando Silva. G-tries: an efficient data structure for discovering

network motifs. In Proceedings of the 2010 ACM symposium on applied computing, pp. 1559-

1566. 2010.

[16] Ribeiro, Pedro, Fernando Silva, and Luis Lopes. Efficient parallel subgraph counting using g-

tries. In 2010 IEEE International Conference on Cluster Computing, pp. 217-226. IEEE,

2010.

[17] Verma, Vartika, Paul Park Kwon, Anand Joglekar, and Wooyoung Kim. Network motif

analysis in clouds-subgraph enumeration with iterative hadoop mapreduce. vol. 4,pp. 28-4, 10

2016.

[18] Ribeiro, Pedro, Fernando Silva, and Luís Lopes. Parallel discovery of network motifs. Journal

of Parallel and Distributed Computing 72, no. 2, pp. 144-154, 2012.

[19] Matthew Kipps, Wooyoung Kim, and Munehiro Fukuda. Agent and Spatial Based

Parallelization of Biological Network Motif Search. In Proc. 17th IEEE International

Conference on High Performance Computing and Communications - HPCC 2015, pages

786–791, New York, NY, August 2015.

[20] Andrew Andersen, Wooyoung Kim, and Munehiro Fukuda. Mass-based nemoprofile

construction for an efficient network motif search. In IEEE International Conference on Big

Data and Cloud Computing in Bioinformatics - BDCloud 2016, pp. 601–606, Atlanta, GA,

October 2016.

[21] McKay, Brendan D., and Adolfo Piperno. Practical graph isomorphism, II. Journal of

Symbolic Computation 60, pp. 94-112, 2014.

[22] Kim, Wooyoung, and Lynnette Haukap. NemoProfile as an efficient approach to network

motif analysis with instance collection. BMC bioinformatics 18, no. 12, p.423, 2017.

[23] Nauty labelg Man Page, https://www.mankier.com/1/nauty-labelg

[24] Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2),

167-256.

[25] Fastutil: Fast & compact type-specific collections for Java, http://fastutil.di.unimi.it/

https://www.mankier.com/1/nauty-labelg

40

[26] Costa, Diego, Artur Andrzejak, Janos Seboek, and David Lo. Empirical study of usage and

performance of java collections. In Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering, pp. 389-400. 2017.

[27] http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-

trove-january-2015/

[28] Tuning - Spark 2.4.5 Documentation, https://spark.apache.org/docs/latest/tuning.html

[29] Gonzalez, Joseph E., Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin,

and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp.

599-613. 2014.

[30] Malewicz, Grzegorz, Matthew H. Austern, Aart JC Bik, James C. Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,

pp. 135-146. 2010.

[31] Ryza, Sandy, Uri Laserson, Sean Owen, and Josh Wills. Advanced analytics with spark:

patterns for learning from data at scale, Second Edition, O'Reilly Media, Inc., 2017.

[32] RDD Programming Guide, https://spark.apache.org/docs/latest/rdd-programming-guide.html

[33] MASS Java Core, https://bitbucket.org/mass_library_developers/mass_java_core/src/master/

[34] NemoLib Java version 2, https://github.com/Kimw6/NemoLib-Java-V2

[35] Downloads - Apache Spark, https://spark.apache.org/downloads.html

[36] Nauty Traces - Home, http://pallini.di.uniroma1.it/

[37] Maven Repository: Fastutil, https://mvnrepository.com/artifact/it.unimi.dsi/fastutil/8.3.1

[38] Hagberg, Aric, Pieter Swart, and Daniel S Chult. Exploring Network Structure, Dynamics,

and Function using NetworkX. In Proceedings of the 7th Python in Science Conference

(SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds.), (Pasadena, CA

USA), pp. 11–15.

[39] Lusseau, David, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisabeth Slooten, and

Steve M. Dawson. The bottlenose dolphin community of Doubtful Sound features a large

proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54, no. 4

(2003), pp. 396-405.

[40] Watts, Duncan J., and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature 393, no. 6684 (1998), pp. 440-442.

https://github.com/Kimw6/NemoLib-Java-V2

41

[41] Xenarios, Ioannis, Lukasz Salwinski, Xiaoqun Joyce Duan, Patrick Higney, Sul-Min Kim,

and David Eisenberg. DIP, the Database of Interacting Proteins: a research tool for studying

cellular networks of protein interactions. Nucleic Acids Research, 30, no. 1 (2002), pp. 303-

305.

[42] Gene regulation network (Transcription interaction of yeast S. cerevisiae),

https://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks

[43] Ripeanu, Matei, Ian Foster, and Adriana Iamnitchi. Mapping the Gnutella Network: Properties

of Large-Scale Peer-to-Peer Systems and Implications for System Design. IEEE Internet

Computing Journal, (2002).

[44] Batagelj, Vladimir, and Ulrik Brandes. Efficient generation of large random networks.

Physical Review E 71, no. 3, 2005.

[45] Runtime (Java SE 8), https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

42

APPENDIX A

Graph6 and Digraph6 formats used by NautyTraces utility. NautyTraces tool is commonly

used to test graph isomorphism with canonical labels. In this work, it is used to group isomorphic

subgraphs. This tool requires an input graph to be in a specific compact encoded format described

here. Undirected and directed graphs have to be encoded in ‘graph6’ and ‘digraph6’ formats

respectively to use labelg executable of the NautyTraces utility.

graph6 format: N(n) R(x) digraph6 format: & N(n) R(x)

where N(n), R(x) denotes bit vector representation of graph size ‘n’ and graph structure, and

‘&’ is used to distinguish directed graphs.

Bit vector representation. In this representation, all bytes have a value in the range 63-126 that

are printable ASCII characters (A-Z, a-z, ?, @, [, \,], ^, _, `, {, |, }, ~). The below steps explain the

procedure to create a bit vector representation for value ‘35612’.

Step 1: Convert value to binary 100010 110001 1100

Step 2: Pad ‘0’ to right to make digits exact multiple of ‘6’ 100010 110001 110000

Step 3: Add 63 to each group of 6 bits (34+63) (49+63) (48+63)

Step 4: Store each group of 6 bits value in a byte 97 112 111

Bit vector representation N(n) for graph size ‘n’:

‘n’ range N(n) size N(n) bit vector representation

0 ≤ n ≤ 62 1 byte n+63

63 ≤ n ≤ 258047 4 bytes 126 R(n), R(n): 18-bit bitvector representation of n

258048 ≤ n ≤ 68719476735 8 bytes 126 126 R(n), R(n): 36-bit bitvector representation of n

Bit vector representation R(x) for graph structure. Graph6 format encodes the upper triangle

of the adjacency matrix of an undirected graph as a bit vector x of length ‘n(n-1)/2’, while digraph6

encodes the adjacency matrix of a directed graph as a bit vector x of length ‘n2’ row by row.

n = 5, N(n) = 5+63 = 68

R(x) = 010010 1001 => 010010 100100 (Padding)

 = (18+63) (36+63) => 81 99

Graph6: N(n) R(x): 68 81 99 => ‘DQc’

n = 5, N(n) = 5+63 = 68

R(x) = 001010 000000 000010 010000 000000

 = (10+63) (0+63) (2+63) (16+63) (0+63)

Digraph6: & N(n) R(x): 38 68 73 63 65 79 63

 => ‘&DI?AO?’

43

APPENDIX B

Appendix B presents the execution results of the sequential tool (NemoLib) and implemented

parallel versions (MASS and Spark). The correctness of the result can be verified by comparing

the target graph enumeration results of all implementations. All executions used 1000 random

graphs and 50% sampling (1,1,…1,0.5) for randomization. The following list of values associated

with random graphs are expected to be different in each execution.

• Number of subgraphs enumerated in random graphs,

• Random Mean Frequency,

• Random Standard Deviation,

• Z-score, and

• P-value

Directed Yeast Graph Execution Results.

NemoLib Execution Output

Spark Execution Output

MASS Execution Output

Another difference is that NemoLib displays non-candidate motifs (motifs that aren’t present in

target graph but found in random graphs) that are insignificant in addition to candidates (motifs

that are present in target graph), whereas parallel implementations display only candidate motifs.

44

Undirected Dolphin Network Execution Results.

NemoLib Execution Output

Spark Execution Output

MASS Execution Output

45

Undirected Power Network Execution Results.

NemoLib Execution Output

Spark Execution Output

MASS Execution Output

46

APPENDIX C

MASS execution results with increased computing nodes. This appendix section compares the

MASS execution results using 11 (cssmpiNh) and 20 computing nodes (cssmpiNh and hermes0N)

against results using 8 computing nodes (hermes0N) discussed in chapter 5. 11 computing nodes

testing in cssmpiNh machines excluded cssmpi9h machine due to the reverse DNS lookup issue

(which was resolved later).

Table 1. MASS speedup with increased computing nodes for real networks.

Graphs Motif

Size

Subgraphs MASS Execution Time (sec) 11 Nodes

Speedup

20 Nodes

Speedup 8 Nodes 11 Nodes 20 Nodes

Dolphin 7 550,428 18.042 4.589 15.86 3.932 1.138

Dolphin 8 2,683,740 35.548 14.062 27.458 2.528 1.295

Dolphin 9 12,495,833 129.185 63.315 48.29 2.04 2.675

Dolphin 10 55,824,707 * 354.017 215.918 - -

Power 5 268,694 20.798 5.69 14.922 3.655 1.394

Power 6 1,260,958 27.657 11.149 15.235 2.481 1.815

Power 7 6,340,413 69.367 25.362 22.251 2.735 3.117

Power 8 33,494,650 246.977 115.124 95.775 2.145 2.579

DIP 3 1,859,101 59.702 21.112 25.614 2.828 2.331

DIP 4 89,371,477 * * 557.156 - -

Yeast 3 13,150 12.377 1.649 6.76 7.506 1.831

Yeast 4 183,174 19.167 2.99 10.995 6.41 1.743

Yeast 5 2,508,149 39.434 15.081 14.766 2.615 2.671

Yeast 6 32,883,898 399.557 198.537 171.033 2.013 2.336

P2P 3 341,267 23.689 7.266 6.584 3.26 3.598

P2P 4 10,031,003 77.027 29.571 35.488 2.605 2.171

 * Execution terminated due to the memory exhaustion.

Table 1 depicts MASS gained 2x speedup with increased computing nodes from 8 to 11 and 20

machines. Highlighted rows in the table indicate 8 nodes MASS execution faced memory

exhaustion, and at max, it can enumerate up to 33.4 million subgraphs. But, with 11 computing

nodes, the MASS version can enumerate up to 55.8 million subgraphs, and using 20 computing

nodes it can enumerate up to 89.3 million subgraphs. Consequently, additional computing nodes

improved MASS execution speed and enhanced scalability.

47

 Table 2. MASS Initialization and Enumeration Time.

Graphs Motif

Size

Initialization Time Enumeration Time

11 Nodes 20 Nodes 11 Nodes 20 Nodes

Dolphin 7 0.271 10.4 3.394 4.562

Dolphin 8 0.258 14.4 11.15 10.988

Dolphin 9 0.265 0.292 45.717 33.254

Dolphin 10 0.267 8.434 262.148 215.918

Power 5 3.387 12.486 1.661 1.833

Power 6 4.343 8.336 5.571 5.409

Power 7 4.475 3.515 18.657 16.42

Power 8 4.351 12.49 96.461 72.43

DIP 3 11.619 14.156 8.494 10.574

DIP 4 * 14.526 * 541.145

Yeast 3 0.942 5.844 0.538 0.76

Yeast 4 0.952 8.807 1.845 2.003

Yeast 5 0.938 0.748 13.706 13.636

Yeast 6 0.922 9.027 196.433 160.73

P2P 3 5.007 3.8 1.709 2.388

P2P 4 5.062 7.841 23.35 26.453

 * Execution terminated due to the memory exhaustion.

Table 1 illustrates for small motif

size MASS performance improved

from 8 nodes to 11 nodes. But,

further addition of nodes (11 nodes

to 20 nodes), impacts performance

negatively due to the time incurred

for the network communication.

Table 2 indicates that enumeration

in 20 nodes execution faster or

comparable to the 11 nodes

execution, but initialization in 20

nodes execution takes longer time

than 11 nodes execution in most

cases.

 Table 3. Sequential tools and Spark Execution Time.

Graphs Motif Size Subgraphs FANMOD NemoLib Spark

Dolphin 7 550,428 0.786 1.347 9.942

Dolphin 8 2,683,740 3.648 5.994 12.195

Dolphin 9 12,495,833 * 26.756 25.135

Dolphin 10 55,824,707 * 133.011 126.395

Power 5 268,694 0.259 0.767 10.558

Power 6 1,260,958 1.383 2.865 10.899

Power 7 6,340,413 7.151 8.426 14.399

Power 8 33,494,650 42.283 46.784 24.91

DIP 3 1,859,101 1.296 2.916 15.745

DIP 4 89,371,477 73.913 61.731 31.807

Yeast 3 13,150 0.016 0.464 8.416

Yeast 4 183,174 0.291 0.711 8.492

Yeast 5 2,508,149 3.934 3.747 11.364

Yeast 6 32,883,898 96.26 33.063 42.637

P2P 3 341,267 0.26 1.048 13.437

P2P 4 10,031,003 6.935 10.348 16.773

 * Infeasible due to FANMOD’s motif size limitation (≤ 8).

Table 3 lists the execution time for

sequential tools (FANMOD,

NemoLib) and Spark version (using

8 nodes) depicted in Figure 5.2 and

Figure 5.3 (Results chapter).

Although extra computing nodes

improved MASS performance,

Table 1 and Table 3 reveals MASS

performance (with 11 & 20 nodes)

still lags behind sequential tools and

Spark performance (with 8 nodes).

