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Computing and Software Systems

The Multi-Agent Spatial Simulation (MASS) library is a parallel programming library that

utilizes agent-based modeling (ABM) to parallelize big data analysis. In this research, we

aim to build on the previous research using MASS and extend the applicability of the library

to a computationally complex problem area – computational geometry. We have developed

agent based algorithms for four problems in this area – Closest pair of points, Voronoi dia-

gram, Convex hull, and Delaunay triangulation, which is a maiden effort using ABM for such

problems. This research presents parallel solutions to these four problems using two other

big data analysis platforms – Hadoop MapReduce and Apache Spark. We provide a com-

prehensive analysis of how MASS based implementations compare to the implementations

using the other two frameworks. Programmability and execution time are key criteria used

to evaluate the parallel solutions. This paper discusses design approaches and algorithm

specifications for four problems in all three parallel platforms and then proceeds to discuss

the results. Results showed that MASS library fares well in terms of providing a capability

to build intuitive parallel solutions and to perform multiple analyses in-memory on the input

data. Furthermore, we discovered potential areas of enhancement for the library, which can

situate the MASS library as a better contender for parallelizing data analysis in the future.
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Chapter 1

INTRODUCTION

The agent-based parallelization of computational geometry algorithms project aims to

leverage the key advantages of agent-based modeling to parallelize solutions to specific prob-

lems in computational geometry. Computational geometry has applications in the fields of

biology, computational physics, spatial cognition, image processing, and GIS (Geographic

Information Systems), and often involves analyzing big data. Efficient sequential algorithms

have been developed to solve these problems, which have achieved a theoretical limit on exe-

cution time possible on current processors. Thus, users currently seek better data scalability

instead of execution time, due to the increasing growth in data size and demand for real-time

responses from applications using computational geometry. Naturally, it is logical for users

to pursue the ability to parallelize these solutions. With the recent trend in parallel and dis-

tributed computing, and readily procurable commercial cloud infrastructure services, users

can avail compute clusters quickly. There is also the availability of parallelization frame-

works that allow end-users to seamlessly develop parallel data analysis solutions to run on a

cluster of multi-core computing nodes. However, not all problems can intuitively fit into the

programming models of the existing frameworks. Additionally, there is scope for frameworks

that provide the capability to run multiple analyses on data in the distributed memory. In

this project, we use three different parallel programming frameworks – Spark, MapReduce,

and MASS – to parallelize solutions for four computational geometry algorithms. We aim to

prove that the MASS library provides an intuitive way for parallelization and also provides

the capability to perform multiple data analyses on the distributed in-memory data.
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1.1 Parallel data streaming

Parallel data streaming allows applications to exploit a form of parallel processing. In frame-

works that implement parallel data streaming like Hadoop MapReduce (MR) [40], and Spark

[41], given a stream of data, a sequence of operations is applied to each element in the data

stream. The input data is streamed from data sources and is processed in parallel on a mul-

tithreaded multi-core computing cluster, after which the results are output to downstream

systems. Stream processing systems are designed to have a set of worker nodes, each of

which will run one or more operations on a certain partition of input data, one record at

a time. After the individual worker nodes have completed their tasks, intermediate results

are reduced to form the overall result at the main program. In the following subsections, we

briefly discuss the parallel programming execution model of data streaming based frameworks

– MapReduce and Spark.

1.1.1 MapReduce

Hadoop MapReduce is a programming framework that can be used to define distributed com-

putations on massive amounts of data. MapReduce works by breaking down the processing

into two phases: the map phase and the reduce phase. Key-value pairs are the basic data

structure in MapReduce. Keys and values can be primitives such as integers, floating-point

values, strings, etc. or they may be programmer-defined complex structures. The program-

mer defines a mapper and a reducer with signatures that look like the following:

map: (k1, v1)→ [(k2, v2)]

reduce: (k2, [v2])→ [(k3, v3)], where [] denotes a list.

Figure 1.1 shows the MapReduce execution model [22]. Mappers and reducers are objects

that implement the MAP and REDUCE methods, respectively. A mapper object is initial-

ized for each map task, and the MAP method called for each key-value pair in the input data.

Similarly, a reducer object is initialized for each reduce task, and the REDUCE method is

called once per intermediate key. In addition to this, there is a shuffle and sort operation

performed by the execution framework to aggregate values by keys after the map phase.
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Figure 1.1: MapReduce execution model

Partitioners and combiners are the two other important elements of MapReduce. Partition-

ers divide the intermediate keyspace and assign key-value pairs to reducers. Combiners are

an optimization in MapReduce that allows for local aggregation of values corresponding to

unique keys before the shuffle and sort phase in order to reduce the high communication

cost.

1.1.2 Spark

Apache Spark is a general-purpose cluster computing platform, which extends the MapRe-

duce model to efficiently support multiple types of computations, including interactive queries

and stream processing. The key programming element in Spark is the Resilient Distributed

Dataset (RDD), an abstraction representing an immutable collection of items distributed

across many nodes that can be operated in parallel. Input data will be represented as RDDs

in a Spark application, and each RDD is split into multiple partitions, which may be as-

signed to different nodes on the cluster. A driver program is responsible for launching various

parallel operations on the cluster. The nodes running parallel operations on the cluster are
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called the executors. Figure 1.2 shows the Spark execution model [6].

Two types of operations can be performed on an RDD. Transformations on RDD results in

the construction of a new RDD. Actions on an RDD compute a result based on the RDD

and return the result to the driver program or write to disk. Passing functions as parameters

form the crux of the programming model in Spark. Spark automatically takes the function

defined in the single driver program and ships it to the executor nodes, essentially running

parts of the program on multiple nodes.

Figure 1.2: Spark execution model

Although there are multiple advantages in using a data streaming framework to parallelize

data analysis, not all problems fit into this model of parallelization, including certain com-

putational geometry problems. Problems that involve the processing of structured datasets

become significantly time-consuming when implemented in MapReduce or Spark. For ex-

ample, in graph analysis, each unit of execution in both MapReduce and Spark serves as

a different graph vertex, and direct element-to-element communication is not supported by

both these frameworks. This drawback results in the implementation of iterative MapRe-

duce or repetitive RDD transformations to emulate inter-vertex communication in a graph,

thereby incurring additional communication overhead due to the need to shuffle excessive

amounts of data over the network of computing nodes. Furthermore, multiple analyses can-

not be performed on in-memory distributed data due to the execution model, which requires

data to be streamed from the disk for every new operation. Also, implementing compu-

tational geometry algorithms in Spark and MapReduce entails the design of complex data

structures [Appendix A] and often requires the use of complex divide and conquer algorithms
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to fit into the parallel programming model.

1.2 Parallel data discovery

Agent Based Models (ABM) are used to simulate the behavior of individual or collective

agents on a system. MASS, a parallel ABM library, populates reactive agents over structured

data, which is organized as distributed memory array elements over a cluster system, to

discover important attributes of the dataset.

1.2.1 MASS

MASS (Multi-Agent Spatial Simulation) [9] is a parallel computing library utilizing agent-

based modeling (ABM) of applications in physical, biological, social, and strategic domains

in a given virtual space. MASS library constitutes two key classes Places and Agents

which emulate distributed array of input data and the reactive entities that migrate within

the array respectively. Places are mapped to threads, and agents are mapped to individual

processes. Places are organized into small vertical stripes in the X-axis direction, which

are executed each by a different thread. Agents, on the other hand, are grouped into bags

which are allocated to different processes. Threads that are part of the same process that

has a bag of agents allocated to it can then operate on these agents by executing them.

The control of a MASS application is within the main program which executes one of the

following three functions to carry out a simulation: callAll() to invoke functionality on all

agents or places in parallel, exchangeAll() to communicate data among array elements or the

agents, and manageAll() to spawn, move, or terminate agents. In addition to these functions,

MASS provides an important feature, which is asynchronous agent migration through the

doAll() method. This feature allows users to design iterative simulations of callAll() and

manageAll() functions by eliminating the need for synchronization at the main program.

Using this feature, agents’ synchronization overhead can be reduced. Figure 1.3 shows how

the places and agents are structured and their operations over the cluster [12].
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Figure 1.3: MASS execution model

The strength from using a data discovery approach lies in the fact that multiple different

algorithms can be simulated using MASS, while data is still present on the distributed nodes.

This provides the advantage of not having to stream data into memory for each algorithm,

as required by a library using the data streaming approach. In addition to this, MASS

provides an intuitive parallelization capability which will aid end users from non-computing

background to get acquainted with the library easily.

1.3 Target domain

Computational geometry problems fall under the category of problems that need structured

data analysis. The MASS library provides an elegant approach to organizing data using

spatially distributed Places objects. This approach provides the ability for users to design

algorithms such as the closest pair of points, by mapping input points onto the spatial data

structure (Places) and having agents spawn and migrate to discover the attributes of the

input data points. Additionally, certain problems require the input datasets to be in memory

to support multiple analyses on the data. One such problem in the area of computational

geometry is the computation of the Voronoi diagram since the diagram possesses unique

properties. After the Voronoi diagram is computed for a set of generator points, the diagram
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can be used to construct the Delaunay triangulation of the same points more efficiently,

due to these unique properties. Furthermore, the convex hull problem can also be solved in

memory using the result of the Voronoi diagram, without having to stream data from the

disk for each operation. Our work aims to benchmark the MASS based implementations of

such computational geometry algorithms against implementations using two big data analysis

tools, MapReduce and Spark.

1.4 Research objective

The main objective of this thesis is to identify problems in the area of computational geom-

etry, for which solutions can be parallelized with more ease using the MASS library. The

main focus lies in proving that MASS provides an intuitive design capability and supports

multiple data analyses of distributed in-memory data. Being able to design intuitive par-

allel solutions to problems is necessary because end-users from non-computing background

need to be able to quickly adapt to using a parallelization framework without the need for

technical proficiency in using the framework. Focusing on utilizing a parallel data discovery

approach, specific goals for this research are:

1. applying different algorithms to the same structured dataset,

2. developing intuitive algorithms for computational geometry problems using agents,

and,

3. evaluating computation overheads incurred by agents and proposing potential solutions

as future work.

This thesis is organized as follows: Section 2 provides a review of relevant previous work

done in the area of parallelization of computational geometry applications. Section 3 outlines

a brief definition of the problems considered. Specific implementation details and design

approaches used for each algorithm in the different parallel programming frameworks – Spark,

MapReduce, and MASS are also discussed in Section 3. Section 4 presents specifications of

how input data is represented and key methods used for parallelizing the four computational

geometry algorithms discussed in section 3 across the three platforms. Section 5 presents



8

the benchmark results of parallelizing algorithms within the three platforms in terms of

programmability, execution time, and operability. Finally, Section 5 presents the conclusion

of this research and lays out potential future improvements that could be worked on.
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Chapter 2

RELATED WORK

A multitude of sequential algorithms exist currently for computational geometry prob-

lems. CGAL (Computational Geometry Algorithms Library) is a C++ library [2] of sequen-

tial geometric algorithms and data structures developed as part of the open-source CGAL

project. Such sequential algorithms are generally accepted to have achieved the theoretical

limit on computational complexity possible on existing processors. These solutions also often

rely on the computational capacity of the target computing node and thus are limited by

the current hardware capacities. Hence, users no longer pursue speed up in execution time.

With the increase in the availability of large datasets, users solicit the ability to build scal-

able data analysis algorithms. Thus, naturally, we would like to study parallel solutions to

these problems. In the sub-sections below, we survey the research done in parallelizing com-

putational geometry algorithms using shared memory and distributed memory paradigms.

We also discuss parallelization efforts in this problem area that use big-data analysis tools.

Finally, we present some related work done in the field of parallelization using the MASS

library.

2.1 General parallelization of computational geometry algorithms

Work on developing design paradigms for parallelizing computational geometry algorithms

has been in progress since the early 1980s. New parallel design paradigms are required

because the sequential algorithm design paradigm cannot be adapted easily to the parallel

processing environment. Different theoretical parallel computation models can be used to

develop parallel solutions. Two of the models that have been researched extensively are

shared memory and distributed memory models. Many theoretical parallel algorithms have

been proposed based on the above models. In this survey, we only consider research that
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includes implementations of algorithms and reports performance results.

2.1.1 Shared memory-based parallelization

In [4], Batista et al. present several parallel geometric algorithms built on top of the CGAL

[2] library, utilizing the shared memory parallelization model. The target architecture in

this research is shared memory parallel computers with multi-core CPUs that provide the

capability to execute multiple instructions on different cores simultaneously. Paudel et al.

utilize OpenMP (a programming interface that provides a set of compiler directives to allow

application programmers to parallelize existing C, C++, or Fortran code) to parallelize a

solution for Voronoi diagram [27]. The OpenMP-based solution is built on top of the CGAL

library and achieved a speedup of 2x compared to the sequential version of the algorithm

(Fortune’s plane sweep). Ray et al. present a GPU based parallel algorithm for the Voronoi

diagram in [34], which achieves an order of magnitude faster execution time compared to

parallel implementations available in CGAL. Wynters shows the use of a C++ template

library called Thrust [51] that supports parallel implementations of algorithms to interface

with CUDA and develop a parallel solution to the Voronoi diagram.

Although the shared memory-based parallelization achieves better performance compared

to sequential versions, there is a drawback in the fact that we cannot leverage distributed

computing. Additionally, for GPU (Graphics Processing Unit) based implementations, users

cannot use the common data structures to solve computational geometry problems. Instead,

users should modify their code to make use of the GPU shared memory concept and take

into account multiple factors with respect to optimal memory access by threads.

2.1.2 Distributed memory-based parallelization

Ghodsi et al. present a distributed memory-based library of basic primitives needed for the

implementation of computational geometry applications, called ParLeda in [13]. The library

is built on top of the existing computational geometry library called LEDA [25] to leverage its

data structures and computations. It uses MPI (Message Passing Interface) for communica-

tion in the parallel environment (a heterogeneous network of UNIX machines). Additionally,
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the library provides data partitioning methods for common cases encountered in computa-

tional geometry problems. Peterka et al. offer parallel algorithms to the Voronoi diagram

and Delaunay triangulation using a distributed memory-based programming library called

DIY [30], [29]. This library, built on top of MPI, provides configurable data partitioning

and scalable data exchange in a distributed memory HPC environment [28].

The drawback of using MPI based parallelization is that MPI collective communication,

in many cases, has the main program as a focal point. Computation results are often collected

to the main program for input/ output (I/O) or further processing unless MPI I/O is used.

Other key constraints include:

1. compiled native execution is not applicable to heterogeneous computing,

2. not fault-tolerant,

3. requires more programming changes to go from serial to parallel version, and,

4. performance is limited by the communication network between the nodes.

2.2 Parallelization with big-data computing tools

Big data computing tools such as Hadoop MapReduce, Apache Spark, Storm, etc. are

widely adopted to build parallel data analysis applications to analyze big data. The target

architecture for these tools is a distributed computing environment with multiple multi-core

computing nodes. In [21], Eldawy et al. present a suite of scalable and efficient MapReduce

algorithms for some of the key computational geometry problems such as convex hull, closest

pair of points, etc., called CG Hadoop. Their experiments on a 25-machine cluster show that

CG Hadoop achieves up to 14x and 115x better performance than traditional algorithms

when using Apache Hadoop and SpatialHadoop (a Hadoop based system more suitable for

spatial operations) systems respectively [8], [7]. Xia et al. provide MapReduce based imple-

mentations of the Voronoi diagram and Delaunay triangulation for SpatialHadoop system.

Their method uses an incremental insertion algorithm to construct Delaunay triangulation

and then transform it to the Voronoi diagram with the Quad-Edge structure (computer

representation of the topology of a 2D or 3D map).



12

Although MapReduce has its advantages in big data analysis, applications largely involve

disk-oriented computation, which is a major bottleneck for execution time. Furthermore,

developers are required to transform sequential D&C based solutions into map and reduce

phases, sometimes requiring multiple methods chained to achieve the program objective.

This can result in difficult-to-understand programs and increase the total number of lines of

code and boilerplate code percentage.

2.3 Agent based parallelization and previous work using MASS

Agent-Based Models (ABM) are used to simulate the behavior of individual or collective

agents on a system. MASS, a parallel ABM library, populates reactive agents over structured

data, which is organized as distributed memory array elements over a cluster system, to

discover important attributes of the dataset. Successful implementations of agent-based

simulations have been carried out in the areas of transport, ecology, and biology.

Woodring et al. [50] have worked on developing a parallel implementation for a global-

warming analysis based on NetCDF climate data [43]. Another application in the area of

biology is the biological network motif search by Kipps et al. [19]. Six benchmark programs

have been implemented using MASS to compare execution time and programmability with

Hadoop MapReduce and Apache Spark programs by Gordon et al. [10], [15], and [38].

The programs implemented are: Breadth-first search (BFS) and triangle counting (TC) in

graph problems, ant colony optimization (ACO) and particle swarm optimization (PCO) in

computational optimization, and k-means clustering and k-nearest neighbors in data sciences.

Per Fukuda et al. in [11], results have shown a few challenges in certain algorithms with

respect to programmability but revealed significant strengths in using the MASS library

for parallelization of these algorithms. A shortest path search algorithm using MASS was

simulated, which showed good results in intuitive programmability [38] and spatial scalability

beyond a single machine [11]. Furthermore, Fukuda et al. outline the strengths identified

as part of the above benchmarks in [11]. Their work provides a motivation to explore

application areas that MASS could be used in, to give a more intuitive way of developing

parallel solutions to problems in these areas.
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In this research, we aim to extend the investigation on applications built using the MASS

library to a new problem area: computational geometry. Agent-based modeling may have

strength in navigating structured datasets such as graphs and 2D/ 3D spatial input. Hence,

we feel that computational geometry is one of the good fit application areas for MASS-based

parallelization. Keeping in mind the strengths discovered as part of the previous work using

the MASS library, our goal is to identify strengths and weaknesses in using the library to

parallelize solutions for computational geometry problems. This study will discuss possible

improvements and performance enhancements to the MASS library based on the research

outcome.
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Chapter 3

IMPLEMENTATION

We have considered the following four computational geometry algorithms to be paral-

lelized using the MASS library and benchmarked against MapReduce and Spark implemen-

tations: (1) Closest pair of points, (2) Voronoi Diagram, (3) Convex Hull, and (4) Delaunay

Triangulation. The motivation to choose the closest pair of points problem was to imple-

ment an agent migration mechanism and 2D space management, which would then form

the basis for parallelizing solutions to other problems considered. Since the closest pair of

points problem is based on input data that is spatial in nature, discovering various attributes

(here, the Euclidean distance) of the data is an intuitive task using agents. The Voronoi di-

agram problem, on the other hand, was chosen because it possesses unique properties which

can lend itself to the computation of solutions to convex hull and Delaunay triangulation.

This problem is a best fit for MASS-based parallelization because we can perform multiple

analyses on distributed in-memory Voronoi diagram results to compute the convex hull and

Delaunay triangulation for the input points. In the sections that follow, we present the

problem definition, parallel design approach adopted, and other specifics of implementation

for all of the four problems chosen for the project.

3.1 Closest pair of points

Definition. Given N points in a plane, find two points whose mutual distance is the smallest

[49]. The closest pair of points problem is a fundamental problem in computational geometry.

It forms the basis of many complex computational geometry algorithms, such as the All

Nearest Neighbors problem. A real-time application of the closest pair of points problem is

in the air-traffic control system, to detect two closest aircraft that are at a greater danger of

collision.
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3.1.1 MASS closest pair of points implementation

The MASS implementation uses both Places and Agents classes. The input data points are

mapped to the Places matrix based on their coordinates since the point coordinates map

elegantly to Places indices. We then spawn and migrate agents using the Von Neumann and

Moore neighborhood patterns. Von Neumann neighborhood defines the neighborhood of a

cell as its four neighbors at a Manhattan distance of 1 [47]. Moore neighborhood is defined

on a two-dimensional square lattice and is composed of a central cell and the eight cells that

surround it [46].

Table 3.1: MASS closest pair of points algorithm

Algorithm 1: MASS Closest Pair of Points

1. Initialize MASS

2. Read input from file

3. rows, cols = maximum value of x and y coordinates in input

4. Create Places = dimension rows * cols

5. Create Agents = equal to number of input points

6. Closest pair1 = ComputePair(VonNeumann, 4)

7. Closest pair2 = ComputePair(Moore, 8)

8. Return one pair among closest pair1 and closest pair2 that has a minimum distance

between points.

Algorithm 2: ComputePair(neighborhood, neighbors)

1. REPEAT until closest pair found:

(a) Agents.callAll(SPAWN, neighbors)

(b) Agents.callAll(MIGRATE, neighborhood pattern)

(c) Closest pair results = Places.callAll(COLLECT AGENTS)

(d) Loop through all return objects and IF there are more than one non-null

objects, do an O(n) comparison to compute the closest pair. ELSE continue.
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Table 3.1 shows the closest pair of points algorithm which executes function calls on

Agents and Places instances iteratively until the closest pair is found. Within each iteration,

either four or eight agents are spawned at each place that has an agent assigned to it. Each

place also maintains a set of footprints of other agents that visited that place. Maintaining an

additional data structure within places provides the capability to check for collision between

agents at places where other agents have already visited and left. This reduces the number of

active agents in memory at any given point of time, thereby reducing the memory footprint.

Since agents traveling diagonally travel at a higher speed (
√

2 times faster) than that of

agents traveling in horizontal or vertical directions, we use two separate simulations using

the two migration patterns. This is due to the fact that if we use the Von-Neumann pattern

alone, points that are diagonally closer might take longer to get discovered compared to

points that are horizontally or vertically closer and vice versa with Moore migration. This

will produce incorrect results for certain inputs.

As shown in steps 5 and 6 of the algorithm in Table 3.1, we compute the closest pairs

by running one simulation using the Von-Neumann pattern and one using Moore pattern.

The ComputePair() routine is used to compute the closest pair using each of these migration

patterns. As shown in Table 3.1, we iteratively spawn and migrate agents to appropriate

neighborhood locations until an agent collision is discovered on any place. Upon discovering

a collision, the routine returns with the closest pair value to the driver program. At the

driver program, once the two simulations using different migration patterns are complete,

we return the pair that has the minimum distance between points among the two simulations

as the final closest pair. Figure 3.1 shows the Von Neumann and Moore migration patterns

followed by agents to compute the closest pair result.
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Figure 3.1: Von Neumann and Moore agent migration at time intervals 0, 1, and 2

3.1.2 MapReduce closest pair of points implementation

In the MR implementation, we have used three mappers and reducers chained together to

compute the closest pair. The input data is sorted in the x dimension, and points are split

into stripes of three points each. The first MR job takes care of the sorting, the second job

computes the local closest pair within each stripe using a brute force approach, and the third

job merges adjacent stripes together. The third MR job is run iteratively, merging stripes

two at a time until we are left with only one stripe. At this point, the closest pair of the last

stripe is the result of the entire input dataset.
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Table 3.2: MapReduce closest pair of points algorithm

Algorithm 3: MapReduce Closest Pair of Points

1. Read input from file

2. Execute first MapReduce job to sort input points in x dimension and write

output to disk.

3. Divide points into stripes of three points each and write output to disk.

4. Execute second MapReduce job to compute local closest pair for each stripe

(among three points) using brute-force approach.

5. REPEAT until left with only one stripe:

(a) Execute third MapReduce job to merge adjacent stripes

i. map() method: modify stripe number of adjacent stripes to have the

same value.

ii. reduce() method: combine stripes with same key (stripe number) into

one stripe. Compute closest pair of the combined stripe using the divide

and conquer approach for closest pair problem.

6. Return closest pair from the last stripe.

Table 3.2 shows the MapReduce implementation for the closest pair of points using the

Divide and Conquer (D&C) strategy proposed by Shamos and Hoey in [32]. In every MR

job, the output from the map() method is written to the local file system (disk) and the

reduce() method reads its input from this file. After each MR job is finished, intermediate

output is written to the Hadoop Distributed File System (HDFS) – underlying distributed file

system of the Hadoop ecosystem. The major performance overhead in this implementation

is due to these disk-based operations. This significantly increases the execution time of

the implementation. Figure 3.2 shows the closest pair computed using the D&C approach.

Figure 3.3 shows the MR execution flow for the closest pair implementation. Left hand side

of the diagram indicates the different MR jobs running at each step of the process. The steps
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included in the dotted rectangular box are the steps performed in the third MR job. This

job is run iteratively until there are no more stripes to merge, and we are left with only one

stripe, which will contain the final closest pair result.

Figure 3.2: MapReduce and Spark closest pair of points implementation using D&C approach

Figure 3.3: MapReduce and Spark closest pair of points algorithm
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3.1.3 Spark closest pair of points implementation

The Spark implementation follows a similar strategy as MapReduce implementation of the

closest pair of points. The only differentiating factor is that instead of using mappers and

reducers, we use a series of Spark transformations and actions on the input RDD. The Spark

algorithm is identical to the algorithm in Table 3.2. Figure 3.2 shows the Spark execution

flow for the closest pair of points implementation. Right hand side of the figure presents

different transformations and actions used in each step of the algorithm. For each of the

steps in the algorithm, we present the different RDDs created below:

1. Input points are stored in a JavaRDD〈Point〉, where Point is the data structure to

represent each point in terms of x and y coordinates.

2. The points are sorted using the sortBy() transformation and the results are stored in

a new JavaRDD〈Point〉.

3. The mapToPair() transformation is used to create a new JavaPairRDD〈Integer, Point〉,

where the key represents the stripe number and the value is the point mapped to it.

Also, in step 3 of the algorithm, we group the points by their respective stripe num-

bers. We use the groupByKey() transformation to create a new JavaPairRDD〈Integer,

Iterable〈Point〉〉.

4. We use a brute force approach to compute the local closest pair within each stripe using

the mapToPair() transformation. The results will be stored in a new RDD JavaPair-

RDD〈Integer, ClosestPair〉, where the ClosestPair data structure contains information

about the closest pair within the stripe, list of points in the stripe, etc.

5. In step 5, we use mapValues() transformation to modify the stripe numbers so that

every two adjacent stripes have the same number to facilitate reduction based on the

key (merge step). We create a new JavaPairRDD〈Integer, ClosestPair〉. We then use

the reduceByKey() transformation to merge two stripes with the same key and store

the results in a new JavaPairRDD〈Integer, ClosestPair〉.

After merging all the stripes, the final stripe will contain the closest pair result. The
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major advantage of Spark implementation compared to MapReduce implementation is that

all operations on RDDs are performed in-memory, and hence the execution is faster.

3.1.4 Design decisions

In this section, we present some of the key design decisions made for the closest pair imple-

mentations in the three platforms. The MASS closest pair of points implementation has the

following design decisions:

1. X and y coordinates of input points are integers.

2. Rows and columns for the places matrix dimension will be calculated based on the

largest value in x and y dimensions.

3. Both Von Neumann and Moore migration patterns will be used for agent migration

because agents travel at different speeds diagonally vs. horizontally and vertically.

The MapReduce and Spark closest pair of points implementations have the following

design decisions:

1. Choice of divide and conquer approach, because it fits both the programming models.

2. X and y coordinates of input points are integers.

3.2 Voronoi diagram

Definition. Given a set S of N points in the plane, for each point pi in S, the locus of points

closer to pi than to any other point, denoted by V(i), is a convex polygonal region having

no more than 8 N-1 sides. V(i) is called the Voronoi Polygon associated with pi. These N

regions partition the plane into a convex net, which is referred to as the Voronoi diagram

[48].

Voronoi diagrams are widely used in applications belonging to the areas of natural sci-

ences, health, engineering, informatics, etc. For example, in networking, Voronoi diagrams

can be used to derive the capacity of a wireless network [48]. Voronoi diagram possesses

multiple unique properties which can help solve other computational geometry problems
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efficiently. Some of the problems include convex hull, closest pair of points, Delaunay trian-

gulation, etc. [32].

3.2.1 MASS Voronoi diagram implementation

The MASS implementation of the Voronoi diagram follows a similar strategy as that of

MASS closest pair of points. We read the input data points and map them to the Places

matrix utilizing the correspondence between point coordinates and the Places indices. We

spawn and migrate Agents from each of the points representing a Voronoi site following an

alternating Von Neumann [47] and Moore [46] migration patterns. Figure 3.4 shows the agent

migration pattern and agent ripple collisions. With the use of this kind of migration, we tried

to emulate agents migrating in the form of a ripple originating from each Voronoi site. When

agents meet at the mid-point of any two points, a perpendicular bisector is constructed, and

the edge is inserted into the Voronoi region of both the sites. The Voronoi edges are tracked

as a Java HashMap with the key being a parametric form of the line, containing slope and

intercept information and the value as the edge itself. This data structure helps us store a

single entry for an edge with the same slope and intercept for cases where multiple collisions

cause the same edge to be computed. We also check for collisions of three agents to compute

Voronoi vertices. In addition to this, each place will contain a set of points that belongs to

agents that visited it, called the Agent Footprints. We use this list of points to check for

collisions among agents that might have traveled to a place in any of the previous iterations

and left.
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Figure 3.4: Alternating agent migration in Von Neumann and Moore pattern, and agent

ripple collisions

Table 3.3: MASS Voronoi diagram algorithm

Algorithm 4: MASS Voronoi diagram algorithm

1. Initialize MASS

2. Read input from file

3. rows, cols = maximum value of x and y coordinates in input

4. Create Places = dimension rows * cols

5. Create Agents = equal to number of input points

6. REPEAT for user specified number of iterations:

(a) Agents.callAll(SPAWN, neighbors)
(b) Agents.callAll(MIGRATE)
(c) Agents.callAll(CHECK COLLISION)
(d) Agents.callAll(MIGRATE TO SOURCE)
(e) Agents.callAll(UPDATE VORONOI EDGES)
(f) Agents.callAll(UPDATE VORONOI VERTICES)

7. Voronoi Results = Places.callAll(COLLECT AGENTS)

8. Loop through the returned objects from Places and construct the final Voronoi

diagram.

Table 3.3 presents the MASS Voronoi diagram algorithm. Step 5 in the Table 3.3 spawns

neighbors number of agents in every iteration. This number is four for Von Neumann
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migration and eight for Moore migration. Once the agents are spawned (step 6.i)), we mi-

grate the agents to appropriate neighbor locations based on the current iteration’s migration

pattern (step 6.ii)). We then check for collisions at all places to identify agents colliding at

midpoints of any two points and also check for agents colliding at centers of circles passing

through three different Voronoi sites (step 6.iii)). Agents that are part of a collision migrate

to their source locations (the point mapped to the current agent), carrying the information

they discovered at the collision site (perpendicular bisector or Voronoi vertex) (step 6.iv)).

This information is then updated at the source Voronoi sites in terms of either adding a

Voronoi edge (perpendicular bisector) or Voronoi vertex (steps 6.v and 6.vi)). After the

user-specified number of iterations are completed, we collect the information from each of

the Voronoi site (step 7) and construct the final Voronoi diagram (step 8).

The number of times step 6 in the algorithm runs is determined by user input. The

other alternative to this is to run the simulation until all active agents get killed due to the

inability to migrate beyond the Places boundary. This alternative proved to be a performance

bottleneck. Also, the maximum iterations required by agents to collide is given by the

maximum distance between any two points in the input. Given this fact, we do not have

to run the simulation until all active agents die; we only need to run as many iterations as

required to construct an accurate Voronoi diagram. An accurate Voronoi diagram should

satisfy the following conditions:

1. Two agents mapped to points that must have a perpendicular bisector in the final

Voronoi diagram, should collide.

2. Three agents mapped to points between which there is a Voronoi vertex in the final

Voronoi diagram, should collide.

Thus, we expect input from the user for the number of iterations of agent migration

required. Based on a trial-and-error method (by visualizing the computed Voronoi diagram

and checking for the presence of either of these: infinite edges where the intersection is not

detected or undetected Voronoi vertices), users can determine the appropriate number of

iterations for the current input. This could be improved in the future in terms of reducing
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user intervention by computing the following:

1. Two neighboring points that have the farthest distance among other pairs in the input

– distance1.

2. Circle with the largest radius with three points on its circumference – the distance

between any one of the three points and the center of the circle is the distance needed

for the three points to collide – distance2.

The maximum of distance1 and distance2 will give us the appropriate number of iterations

required.

3.2.2 MapReduce Voronoi diagram implementation

The MapReduce implementation for the Voronoi diagram is based on the D&C algorithm

proposed by Shamos et al. in [32]. Table 3.4 presents the overview of steps followed by

the MapReduce implementation. We execute a sequence of three MR jobs to compute the

Voronoi diagram. In step 1, input points are sorted in the x dimension, and in step 2, we split

the sorted points into stripes of two points each, similar to the strategy used in the closest

pair of points implementation. This Voronoi diagram algorithm requires that the convex

hull of the input points be computed as a prerequisite. So, in step 3, we construct local

convex hulls for the points in each stripe. Following this, we also construct local Voronoi

diagrams for points within each stripe (which includes adding a perpendicular bisector for the

points within the stripe). We use the Doubly Connected Edge List (DCEL) data structure to

represent the boundary of each of the Voronoi regions in the final output. This data structure

will consist of the Voronoi edges and vertices that demarcate the current Voronoi site from

other sites. Figure 3.5 shows MR execution flow for the convex hull, Voronoi diagram, and

Delaunay triangulation implementations.
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Figure 3.5: MapReduce & Spark convex hull, Voronoi diagram, and Delaunay triangulation

algorithm
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Table 3.4: MapReduce Voronoi diagram algorithm

Algorithm 5: MapReduce Voronoi Diagram

1. Read input from file

2. Execute first MapReduce job to sort input points in x dimension and write

output to disk.

3. Divide points into stripes of three points each and write output to disk.

4. Execute second MapReduce job to compute local Voronoi diagram for each stripe

(among two points) using brute-force approach.

5. REPEAT until left with only one stripe:

(a) Execute third MapReduce job to merge adjacent stripes

i. map() method: modify stripe number of adjacent stripes to have the

same value.

ii. reduce() method: combine stripes with same key (stripe number) into

one stripe. Compute Voronoi diagram of the combined stripe using the

divide

and conquer approach for the closest pair of points problem.

6. Return final Voronoi diagram from the last stripe.

Figure 3.6 shows the construction of the dividing chain while merging two stripes to

compute the unified Voronoi diagram using the D&C algorithm [18]. In step 4 of the algo-

rithm in Table 3.4, the third job is run iteratively, combining adjacent stripes two at a time

until we are finally left with one stripe. During the merge phase, we first merge the convex

hulls into a unified hull and use the two points that form the upper tangent (Figure 3.8)

of the unified hull as the starting point to construct the Voronoi diagram. The left point

becomes the left Voronoi site, and the right point becomes the right Voronoi site. We start

by constructing a perpendicular bisector (dividing chain, shown in the blue line in Figure

3.6) between these two points. We then traverse the left Voronoi site clockwise and the right
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Figure 3.6: Construction of dividing chain and the unified Voronoi diagram during the merge

step of MapReduce and Spark implementations

Voronoi site counterclockwise to find the closest edge that intersects the dividing chain. If an

edge from the left Voronoi site is chosen, we change the left site to be the other endpoint of

the chosen edge that is not the current site. If an edge from the right Voronoi site is chosen,

we do the same for the right site. In step 5, after the end of iterations, we will be left with

one final stripe with the final Voronoi diagram result. Although this implementation is able

to handle large input size, there are multiple disadvantages:

1. Due to the disk-oriented operations in each map-reduce phase, there is a tangible effect

on execution time. In addition to this, since the convex hull of points is a prerequisite

for the Voronoi diagram D&C algorithm, we had to design complex data structures to

implement this algorithm.

2. The input and output formats available in the library allow users to specify what

format the mappers and reducers should use for reading and writing data on the.

Finding an appropriate input and output format for the complex data structures was

a challenge. Due to the inability to perform in-memory operations, and the need for

the Voronoi diagram algorithm to run iteratively and modify the constructed diagram

from previous iterations, we had to serialize the Voronoi diagram object to write it

to disk. One solution was to use the MapReduce Writable interface and manually
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designate which fields should be serialized within each of the application classes. This

process seemed tedious for the complex data structures we had for the Voronoi diagram

implementation. Instead, we opted to serialize the intermediate Voronoi diagram object

to file using Google’s Gson serialization library [16]. The Voronoi diagram java object

will be serialized to a text format, which we then write to file using the standard text

output format in MapReduce. We then read it from file for subsequent MR jobs and

deserialize it to a java object using the Gson library.

3. The data structures used in this implementation contain references to objects of the

same class within each object (cyclic references), which Gson was not able to serialize

and deserialize. Due to this drawback, we had to convert the references and store it

in an additional data structure (list) to enable serialization. During deserialization,

appropriate references will be built manually, which increased the development effort

and time.

Drawbacks like these and the enormous learning curve for the MapReduce framework were

major setbacks in application development time for the Voronoi diagram using MapReduce.

3.2.3 Spark Voronoi diagram implementation

The Spark implementation follows a similar approach to the MapReduce implementation.

The algorithm used is the same D&C algorithm outlined in Table 3.4. We sort the input

points in the x dimension, split them into stripes of two points each. We then iteratively

merge adjacent stripes by applying a sequence of transformations and actions on the RDDs

until we are left with only one stripe.

The Spark implementation also required complex data structures to represent and con-

struct the Voronoi diagram. This led to significant effort and time for design and imple-

mentation. Additionally, due to a large number of application-level instances in memory

during execution, this implementation fails to run for points above size 128. We encounter

an OutOfMemory exception for java heap space. This is due to the fact that all of the output

is collected to the driver program to construct the final Voronoi diagram. This bottleneck
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can be alleviated if we write the output to disk from all of the distributed computing nodes.

However, the advantage of the Spark implementation over MapReduce implementation is

that we did not have to handle serialization and deserialization at the application level. This

is due to the fact that all operations in Spark are performed in-memory.

3.2.4 Design decisions

In this section, we present some of the key design decisions made for the Voronoi diagram

implementations in the three platforms. The MASS Voronoi diagram implementation has

the following design decisions:

1. The x and y coordinates of input points are integers.

2. Number of rows and columns for the Places matrix dimension will be calculated based

on the largest value in x and y dimensions.

3. Every two integers will have ten intervals between them to accommodate the mid-

points of two points on the Places matrix. Hence, we created a finer mesh for the

Places matrix.

4. Both Von Neumann and Moore migration patterns will be used for agent migration.

5. We used asynchronous agent migration to improve application performance. With this

feature, the control doesn’t come back to the main program during the construction of

the Voronoi diagram. We invoke the doAll() method on the agents and pass it a list

of methods to invoke on each iteration.

The MapReduce and Spark closest pair of points implementations have the following

design decisions:

1. Choice of divide and conquer approach, because it fits both the programming models.

2. X and y coordinates of input points are integers.
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3.3 Convex hull

Definition. Given an arbitrary subset L of points in the Euclidean space Ed, the Convex

Hull Conv(L) of L, is the smallest convex set containing L. Where convex set is a subset C

of Ed, in which for all x and y in C, the line segment connecting x and y is included in C

[49].

Convex hulls have applications in pattern recognition, image processing, statistics, geo-

graphic information system, etc. [49].

3.3.1 MASS convex hull implementation

The MASS convex hull implementation uses agent-migration techniques to construct the

convex hull. We supplement this with Graham’s scan algorithm [32] to detect concavities in

the convex hull and eliminate points that create them. A prerequisite for this implementation

is that the Voronoi diagram for the input points is computed and be present in the distributed

memory. This enables us to do multiple analyses on the same input data in memory without

having to read the intermediate data from disk. We start by instantiating one agent at the

lowest point of the input data. We migrate this agent along the unbounded regions of the

Voronoi diagram and add points along the route to the convex hull points. Every time we add

a point, we check for concavities formed by the last three points added to the list of points in

the convex hull. Say the last three points are p1, p2, and p3. If the angle(p1p2p3) is concave,

we remove point p2 from the list (an example point shown in red in Figure 3.7). When we

find a concavity, we keep running this check until we find three points that form a convex

angle in the list. This algorithm saves a lot of time compared to just using Graham’s scan

algorithm because we limit the sites that the agent visits only those that have an unbounded

Voronoi region in the Voronoi diagram. We stop when the agent comes back to the place of

origin and output the final convex hull. Figure 3.7 shows the construction of the convex hull

with a Voronoi diagram as the base.
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Figure 3.7: Convex hull construction using the Voronoi diagram output and traversing un-

bounded regions using a single agent

Table 3.5: MASS convex hull algorithm

Algorithm 6: Convex Hull

1. Create Agents: one agent that will traverse the unbounded regions of the Voronoi

diagram

2. INITIAL POINT = compute the point with lowest y coordinate in the input points

3. REPEAT while the convex hull agent is alive:

(a) Agents.callAll(COMPUTE NEXT POINT)
(b) Agents.callAll(MIGRATE)

4. Loop through the returned objects from Places and construct the final convex hull.

Table 3.5 shows the MASS algorithm for the convex hull. We iteratively call functions

on the convex hull agent in step 3 to compute the next point and migrate the agent to

that location. The method to compute next point loops through all the edges that are

part of the current site’s Voronoi region from the Voronoi diagram and checks if there are

any infinite edges. Voronoi regions that contain at least one infinite edge is treated as an

unbounded region and will be considered as the next target location for the convex hull agent

to migrate to. Additionally, when an agent migrates to a Voronoi site if the site is found to
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be unbounded, we add it to the list of convex hull points. In step 4, we collect results from

Places and construct the final convex hull.

3.3.2 MapReduce convex hull implementation

The MapReduce convex hull implementation follows the algorithm presented in Table 3.4 for

MapReduce Voronoi diagram implementation. Since computing the convex hull is a prereq-

uisite for the implementation of the Voronoi diagram, we have designed the Voronoi diagram

data structure to include the data structure for the convex hull. Using the ’composition’ java

language feature, we have implemented the Voronoi diagram class to include an instance of

the convex hull object. The implementation starts by sorting the input points in x dimension

and splitting them into stripes of two points each. Each stripe is represented by a key – the

stripe number and value – the Voronoi diagram instance. The Voronoi diagram instance

contains the list of points that are part of the current stripe and also contains a reference to

the convex hull for the stripe. When we iteratively merge stripes using the D&C strategy,

in step 5 of Table 3.4, we first merge the convex hulls for two adjacent stripes. Following

this, we use the unified convex hull as the base to merge the Voronoi diagrams belonging

to the adjacent stripes into one. Figure 3.8 shows the construction of the convex hull while

merging two stripes using the D&C approach.

Figure 3.8: Merging two stripes to construct a unified convex hull
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During the merge phase, we start by finding the rightmost point in the left stripe and the

leftmost point in the right stripe. We compute the upper and lower tangents that connects

the local convex hulls from the two stripes. The upper tangent is computed by determining

two points, one on the left hull and one on the right hull. To compute the right point, we

keep the left point constant and keep changing the right point to be its clockwise neighbor

until the edge formed by the left and right points don’t cut the right convex hull. We then

keep the right point constant and keep changing the left point to be its counterclockwise

neighbor until the edge formed by the left and right points don’t cut the left convex hull.

Similarly, we compute the two points that form the lower tangent. The iterative process

of computing upper and lower tangents is shown by the dotted lines in Figure 3.8. At the

end of the iterative merge phase, the final stripe will contain the unified hull for all of the

input points. A similar argument as that of the Voronoi diagram implementation can be

made for the convex hull implementation with respect to the complexity of data structures.

The execution time is poor as well when compared to the Spark implementation due to the

disk-oriented operations and requirement to serialize and deserialize intermediate convex hull

information.

3.3.3 Spark convex hull implementation

The Spark convex hull implementation follows the algorithm in Table 3.4. As explained

in section 3.3.2, the Voronoi diagram instance will contain a reference for the convex hull

corresponding to the points in every stripe. We merge the adjacent stripes by applying

multiple transformations and actions on the RDDs to compute the final convex hull.

3.3.4 Design decisions

In this section, we present some of the key design decisions made for the convex hull im-

plementation in MASS. The MASS convex hull implementation has the following design

decisions:

1. X and y coordinates of input points are integers.
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2. The decision to use Graham’s scan algorithm to detect concavities – there might be

few regions in the Voronoi diagram that, even though should be bounded, will be un-

bounded because of the restriction that agents cannot travel beyond place boundaries.

This results in the need to perform additional checks to see if a point should be in

the convex hull. We tried to check if edges in the region have intersections and then

exclude such regions from the convex hull, but some unbounded regions that shouldn’t

be part of the convex hull did not have any intersecting edges, and we did not have a

way to differentiate between these. So, we opted to use Graham’s scan algorithm to

check for concavities and eliminate non-convex hull points.

3.4 Delaunay Triangulation

Definition. Given a set P of points in Ed, a Delaunay triangulation is a triangulation

Delaunay triangulation(P) such that no point in P is inside the circumcircle of any triangle in

Delaunay triangulation(P) [45]. The Delaunay triangulation of a set of points P corresponds

to the dual graph of the Voronoi diagram of P. Hence, the Delaunay triangulation can

be constructed using the Voronoi diagram. Applications of this problem include terrain

modeling using a set of sample points, path planning in automated driving, etc. [45].

For the Delaunay triangulation implementation, a similar strategy was used in all three

of the platforms, MASS, MapReduce, and Spark. During the design for Voronoi diagram

implementation, we factored in additional data structures and methods to compute the

Delaunay triangulation while the Voronoi diagram is being constructed. Voronoi vertices are

discovered either by means of three agents colliding in MASS or by the detection of edge

collision during the merge phase in MapReduce and Spark. When a new Voronoi vertex is

detected, we identify the three sites of which the Voronoi vertex is a part of and record these

three sites within the Voronoi diagram. Once the Voronoi diagram computation is complete,

we get the Voronoi vertices information stored in the Voronoi diagram instance to construct

the Delaunay triangulation. For each Voronoi vertex, we read the points that it is a part of

and construct edges between each pair of points in the combination. Figure 3.9 shows the

Delaunay triangulation constructed using the Voronoi diagram as the base.
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Figure 3.9: Delaunay triangulation constructed using Voronoi diagram as the base
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Chapter 4

PARALLELIZATION

In this section, we present specifications of how input data is represented for parallelizing

the four computational geometry algorithms discussed in section 3 across the three platforms.

We also discuss the key methods used to implement the four algorithms in MASS, MR, and

Spark.

4.1 MASS

The MASS closest pair of points, Voronoi diagram, convex hull, and Delaunay triangulation

implementations, are centered around the Place and Agent classes. Methods are invoked on

each of these instances iteratively to discover attributes of the input dataset. The Place

parent class defines the attributes and functionality required to create and maintain a dis-

tributed array of elements across the nodes in the computing cluster. Each element is pointed

to by a set of network-independent matrix indices. The Agent parent class similarly defines

the attributes and functionality required to create, migrate, and execute methods on agents.

Each agent is an execution instance that can reside on a place, migrate to any other place

with matrix indices, and interact with other agents as well as places. Table 4.1 indicates key

data structures and classes used to represent the input within MASS implementations for

all four applications.
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Table 4.1: Input dataset construction using MASS

Closest pair of

points

Voronoi dia-

gram

Convex hull Delaunay trian-

gulation

1. A 2D space represented with 2D Places

2. Point class

3. ClosestPair class

– closest pair of

points and their

distance

Voronoi diagram

represented by a

Hashtable, main-

tained at Place (=

point)

convex hull rep-

resented by an

ArrayList, main-

tained at Place (=

point)

Delaunay tri-

angulation rep-

resented by

an HashSet of

Voronoi vertices,

at Place (=

point)

4. - Edge class, Para-

metricLine class

- VoronoiVertex

class

From Table 4.1, we can observe that for the four MASS implementations, we represent

the input data as a point (Point class) attribute that each place contains. For the closest pair

of points, we need an additional class to represent the closest pair and the distance between

them. For Voronoi diagram implementation, we represent the Voronoi diagram using a Java

Hashtable with keys as the parametric form (ParametricLine class) of Voronoi edge and

the value as a set of edges in the region (Edge class). We represent the convex hull as a

Java ArrayList of points within places that have points mapped to them. We represent the

Delaunay triangulation as a Java HashSet of Voronoi vertices (VoronoiVertex class). This

class contains information about the three sites that are on the circumference of the circle

with the center as the Voronoi vertex point. Table 4.2 indicates the algorithm parallelization

approaches used for each of the applications.
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Table 4.2: Agent algorithm for parallelization

Closest pair of

points

Voronoi dia-

gram

Convex hull Delaunay trian-

gulation

Agent propaga-

tion using Von

Neumann pattern

first, followed by

Moore pattern

Agent propaga-

tion using Von

Neumann pattern

in odd itera-

tions and Moore

pattern in even

iterations

Agent walk on

the unbounded

regions of Voronoi

diagram

Collect Voronoi

vertices from

Voronoi dia-

gram, no agents

involved

In the subsections below, we briefly discuss how the Places and Agents data structures

are constructed and details about the key methods used in each of the algorithms.

4.1.1 MASS Place data structure and key functionality

In our closest pair of points application, we have a class Plane2D that inherits from the Place

base class. This class represents the 2D plane that will be partitioned and distributed across

nodes in the cluster. Listing 4.1 shows the code snippet used to instantiate the Plane2D

object. This function will create the Places matrix, with each element being an instance of

the class Plane2D.

Places plane2D = new Places(1, Plane2D.class.getName(), null, rowsAndCols[0]

, rowsAndCols[1]);

Listing 4.1: Code to create Place instances

The Places constructor takes five arguments including:

1. int handle – A unique identifier that designates a group of places. Must be unique over

all machines.
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2. String className – Name of the user-implemented class Places are constructed from.

3. Object argument – Arguments for user-defined Place constructor.

4. int... size – Size of the matrix the user wants to create (the three dots indicate that

field accepts a variable number of arguments depending on the dimensions of the Places

matrix to be created). Since the target dimensionality is two, we use two arguments

to specify the number of rows and columns of the matrix.

The matrix dimensions are calculated based on the input point coordinates. We loop

through the input points and identify the maximum value in both x and y dimensions and

use these values as the dimensions. For example, if the input points have the maximum x

coordinate as 20 and the maximum y coordinate as 30, the dimensions of the Places matrix

will be 20x30. We then call the initializePlane() method to map the input points to the

matrix. Each point will be mapped to an index based on its x and y coordinates. For

example, the point (10,10) will be mapped to the Places matrix index (10,10).

In the list below we present key Place functionality. Methods 1 through 5 are used in

the closest pair of points implementation, and methods 1 through 10, except method 5 are

used in the Voronoi diagram implementation.

1. callMethod() – facilitates invoking appropriate methods on each place. This method

is called when the main program invokes the Places.callAll() method. The method to

be invoked is passed as an argument from the calling program.

2. initializePlane() – initializes the initial point locations and invokes methods 3 and 4

below.

3. initializeVonNeumanNeighbors() – initializes indices for the Von Neumann neighbors

for each place in a vector.

4. initializeMooreNeigbors() – initializes indices for the Moore neighbors for each place

in a vector.

5. collectAgents() – used in closest pair of points implementation. Returns the closest

pair information from all places upon collision of two or more agents, null otherwise.
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6. collectVoronoiRegions() – returns a java hashtable containing a list of edges with a

parametric form of the edge as the key and the edge itself as the value.

7. removeNonVoronoiEdges() – removes edges that do not have either one of the endpoints

as a Voronoi vertex contained in the current Voronoi site. This method is called during

the post-processing step of the Voronoi diagram implementation.

8. removeNonVoronoiVertices() – removes Voronoi vertices that are not contained in all of

the three sites that form the Voronoi vertex. During the Voronoi diagram construction,

some Voronoi vertices will be removed, and this information is updated only in the

corresponding Voronoi site. The other two sites that are part of this vertex are not

updated due to the inability of agents to access the place instance of a location other

than its own. This method is called during the post-processing step of the Voronoi

diagram implementation.

9. collectConvexHullPoints() – returns the final convex hull points.

10. collectVoronoiVertices() – returns the final Voronoi vertices list to construct the De-

launay triangulation.

For the Voronoi diagram implementation, the creation of the Places matrix is slightly

different than that of the closest pair of points. In order to capture the midpoint between

any two points in the input, we need to have corresponding indices within the Places matrix

as the point coordinates. Since we have considered the point coordinates to be integers only

for this implementation, we can expect midpoints to be decimals and have at most one digit

followed by the decimal point. To capture such coordinates, we have divided the Places

matrix into a fine mesh, by allowing ten intervals between every single integer interval. For

example, in order to have ten intervals between the digits 1 and 2, we multiply these digits

by a factor of 10. By doing so, the Places matrix will have indices ranging from 10, 11,

12, up to 20. We then map each point to the appropriate place index by multiplying its

coordinates by 10 as well.
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4.1.2 Agent data structure and key functionality

In the closest pair of points, Voronoi diagram, and convex hull applications, we have agent

classes that inherit from the Agent base class. This class represents the execution instances

that we will be using to compute the closest pair of points, Voronoi diagram, and convex

hull. Listing 4.2 shows the code snippet used to instantiate the ClosestPairAgent object for

example. Similar syntax is used to create initial Voronoi diagram agents as well, but with a

different class for the Voronoi diagram agent. This function will create a specific number of

agents, each of which is an instance of the class ClosestPairAgent.

Agents closestPairAgents = new Agents(2, ClosestPairAgent.class.getName(),

null, plane2D, initPopulation);

Listing 4.2: Code to create Agent instances

The Agents constructor takes five arguments including:

1. int handle – A unique identifier that designates a group of Agent objects. Must be

unique over all machines

2. String className – The name of the user-defined class to instantiate

3. Object argument – The argument to pass to each Agent as it is being instantiated

4. Places places – The Places instance that will contain the Agents

5. int initPopulation – The number of Agent Objects to create.

The number of agents to create corresponds to the number of points we have in the input

dataset. All of the agents created in this step will reside in the Places matrix at index (0,0).

We migrate these agents to indices in the matrix where input points are mapped. After the

agents are at their respective initial locations, we start the respective computations for each

application by iteratively spawning, migrating, and executing methods on agents.

In the list below we present key Agent functionality. Methods 1 through 4 are used in

the closest pair of points implementation. Methods 1 through 8 are used in Voronoi diagram

implementation, and methods 9 through 12 are used in the convex hull implementation.



43

1. callMethod() – facilitates invoking appropriate methods on each active agent. This

method is called when the main program invokes the Agents.callAll() method. The

method to be invoked is passed as an argument from the calling program.

2. migrate() – migrates agent to the next target neighborhood location based on the

arguments passed.

3. spawnAgents() – spawns a specific number of agents indicated by the arguments, for

each active agent. The new agents reside initially at the same place as their par-

ent agents. We then use a migrate() call to migrate them to different neighborhood

locations.

4. killDuplicateAgents() – there is a possibility that after spawning agents one or more

agents mapped to the same input point might migrate to the places that have already

been visited by another agent with the same point. This method looks at the Agent-

FootPrints list at the destination place on agent arrival and kills the agent if the list

contains the point mapped to it.

5. checkCollision() – checks for collisions at each place with an agent. Two types of

information can be discovered on collision – Voronoi edge or Voronoi vertex. This

method checks for the collision of two agents first to compute Voronoi edges and then

checks for the collision of three agents to compute Voronoi vertices.

6. updateVoronoiEdges() – inserts a new perpendicular bisector at both the source Voronoi

sites.

7. updateVoronoiVertices() – inserts a new Voronoi vertex at three Voronoi sites that are

part of this.

8. evaluateEdges() – upon collision of three agents, this method is called to compute the

center of the circle formed by the three points mapped to these agents. This is returned

as the Voronoi vertex.

9. initializeConvexHull() – computes the initial point location to migrate to before starting

the convex hull computation, which is the point with lowest y coordinate. This method

initializes the next target location for the agent to migrate to once the starting point

is found.
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10. computeNextPointIntConvexHull – computes the next point to migrate to based on

the infinite edges in the current Voronoi region. This method picks the next infinite

edge, which should be an edge between the current Voronoi site and an adjacent site,

and sets the agent to migrate to the adjacent site in the next iteration.

11. evaluateAngle() – calculates the angle between three points. This method is called

every time a new point is added to the convex hull points to check if the last three

points in the list form a concavity.

12. killAgentAndStopExecution() – stops execution of the convex hull simulation by ter-

minating the convex hull agent. This method is invoked when the agent reaches back

to the starting point.

4.2 MapReduce and Spark

Table 4.3 indicates key data structures and classes used to represent the input within MR

and Spark implementations for all four applications.

Table 4.3: Input dataset construction using MapReduce and Spark

Closest pair of

points

Voronoi dia-

gram

Convex hull Delaunay trian-

gulation

1. Point class

2. ClosestPair class

– closest pair of

points and their

distance

ConvexHull class VoronoiDiagram,

DCEL, Directed-

Edge, and Edge

classes

VoronoiVertex

class

From Table 4.3, we can notice that all four algorithms implemented using MR and Spark

represent the input point using the Point class. The closest pair of points implementation uses

the ClosestPair class similar to that of MASS implementation to represent the closest pair.

The Voronoi diagram is represented using the VoronoiDiagram class, which contains a Java
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HashMap with key as the Voronoi site and value as the DCEL data structure, representing

the Voronoi regions. Additionally, the Voronoi diagram object contains a list of Voronoi

vertices of this region, a reference to the incident edge, which is the edge last inserted into

the region, and the direction of edges in this region. The incident edge of a region can be

used to find either the next edge or the previous edge within the region. The direction of

a region is set to clockwise or counterclockwise (edges will be traversed in this direction

during the Voronoi diagram merge phase). The DirectedEdge class represents an edge in

the Voronoi diagram with direction information. Adjacent Voronoi sites will share the same

directed edges but with opposite directions. This instance will contain a reference to the

directed edge twin, which will point to the edge in the adjacent Voronoi region to facilitate

jumping from one region to another during the merge phase. The ConvexHull class contains

the list of points that lie on the convex hull for a particular stripe and contains references

to the upper and lower segments that connect two convex hulls from adjacent stripes after

merging. The VoronoiVertex class represents Voronoi vertices in the Voronoi diagram and

also contains references to the three points that the Voronoi vertex is between. The Delaunay

triangulation is constructed based on the set of Voronoi vertices that the Voronoi diagram

contains.

Table 4.4 shows the algorithm parallelization approaches used for each of the applications

in MR and Spark.

Table 4.4: Divide and Conquer algorithms for parallelization

Closest pair of points Voronoi diagram, Convex hull, and

Delaunay triangulation

Divide input into stripes of three points

each and merge adjacent stripes together

and find closest pair of merged stripe, until

left with one stripe

Divide input into stripes of two points

each and merge adjacent stripes together

and create unified convex hull, Voronoi di-

agram, and Delaunay triangulation, until

left with one stripe
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Now, we present the key methods used in each of the implementations using MR and

Spark. The MR and Spark closest pair of points implementations use two classes to represent

the points and the closest pair result. The ClosestPair class represents a pair of points that

are the closest to each other in a given stripe. The class defines the two Point objects, the

distance between them and other key attributes used in the D&C algorithm. In the iterative

merging of stripes in both the platforms, we use important methods to compute the closest

pair of the new combined stripe. The methods are:

1. constructPointSetWithinDelta() – constructs a list of points that are at a distance delta

(argument) from the line that divides the two stripes, that belong to both stripes.

2. computeDistanceAlongStrip() – checks for points within the list of points from the

above method to check if the distance is smaller than delta.

In the iterative merging of stripes step in both MapReduce and Spark of Voronoi diagram

implementation, we use important methods to compute the convex hull, Voronoi diagram,

and Delaunay triangulation of the new combined stripe. Key Voronoi diagram methods are:

1. mergeDiagrams() – called during the reduce phase of both MapReduce and Spark

implementations. Invokes method to merge convex hulls of the two stripes first and

then invokes the method to merge Voronoi diagrams of the two stripes.

2. mergeVoronoiDiagrams() – merges the Voronoi diagrams of the two stripes using the

D&C approach.

Key convex hull methods are:

1. mergeConvexHulls() – merges the convex hulls of the two stripes using a D&C ap-

proach.

2. computeUpperTangent() – computes the upper tangent that connects the hulls from

both stripes, as shown in Figure 3.8.

3. computeLowerTangent() – computes the lower tangent that connects the hulls from

both stripes, as shown in Figure 3.8.
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Chapter 5

RESULTS

We evaluated implementations for the four computational geometry algorithms in MASS,

Spark, and MapReduce using three metrics: programmability, and execution time. In the

sections that follow, we first present the environment and supporting software used to test

the implementations. We then present data for the three metrics and analysis of the outcome.

5.1 Evaluation environment and procedures

The subsections below highlight some of the crucial elements, important considerations and

assumptions that were used in the research.

5.1.1 Population

Since the problem area that we are focusing on is computational geometry, all input data

will be in the form of 2D points representing multiple points on a cartesian coordinate plane.

We have implemented a generator program that randomly produces the required number

of data points based on the input number. Some of the constraints used for generating a

random set of points include:

1. Point coordinates will be positive integer values,

2. No two points will have the same x and y coordinates (duplicates),

3. No three points will lie on the same line (co-linear), and

4. No four points will lie on the circumference of the same circle (co-circular).

The reason for having these constraints is that it tremendously reduces the time required

to implement solutions for the algorithms considered. This allows us the choice of not having

to handle edge cases created by the input data in case these constraints were not in place. For
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example, having point coordinates as decimals instead of integers will require additional logic

to handle mapping the points onto the Places matrix in MASS implementations. Also, we

would have to create a finer mesh to incorporate decimals, which would increase the number of

iterations that agents need to collide in the Voronoi diagram implementation. Thus, having

the first constraint helps us focus on building an initial solution. More importantly, the

second and third constraints help avoid generating input data that constitute a degenerate

case for certain algorithms such as convex hull and Voronoi diagram. A degenerate case

for the convex hull is when the input points contain three points that are collinear. A

degenerate case for the Voronoi diagram is when the input points contain four points that lie

on the circumference of the same circle (co-circular). The current implementations for these

problems will not handle the degenerate cases as part of this research since it requires more

involved and complex logic. Having these constraints directs focus towards the important

question that this research is aiming to answer, which is that of comparison of execution time

and programmability of implementations that use the three different frameworks. Handling

edge cases like the ones mentioned above will not necessarily make any impact on the results.

5.1.2 Operational definition

The performance will be measured using the below-mentioned variables for MASS implemen-

tations versus MapReduce and Spark implementations. Variables to be used are i. Execution

time, and ii. Programmability.

1. Execution time: The metric used to measure the execution time of different implemen-

tations is the total run time of each of the programs, which includes the time taken to

perform disk reads and writes.

2. Programmability: Programmability of the solutions using the three different parallel

programming models is measured by computing the following metrics:

(a) Boilerplate code – number of lines of code required to set up the parallel program-

ming environment

(b) LOC – total number of lines of code
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(c) Number of classes – number of classes or number of RDDs (Resilient Distributed

Dataset) for Spark, that are created for the implementations.

(d) Number of methods - number of unique system defined methods invoked by im-

plementations in each platform.

The development lifecycle phases include: i. Design implementations using MapReduce,

Spark, and MASS ii. Implementation, iii. Test, and iv. Benchmark implementations.

5.1.3 Materials used

To test the implementations, a cluster of multi-core Linux based machines made available

by the University of Washington (UW), was used. The cluster is physically located at the

UW, Seattle campus. The size of the cluster is currently eight nodes that can be used for

parallelization efforts.

5.1.4 Supporting software used

A java process profiling tool developed by Sedlacek et al. [35], was used to identify perfor-

mance bottlenecks of the java implementations using MapReduce, Spark, and MASS. Metrics

such as method invocation counts, CPU runtime of each method in the implementation were

identified using the profiler, which aided in fine-tuning the implementations to achieve bet-

ter performance. To compute programmability metrics such as the number of lines of code

for each implementation, we used a plugin developed by Topinka et al. for IntelliJ IDEA

IDE (Integrated Development Environment) in [42]. Hadoop MapReduce distribution ver-

sion 0.20.0 [40], Apache Spark distribution version 2.4.3 [41], and MASS Java release version

1.2.1 was used to test the implementations using the respective frameworks. In addition to

this, we developed two supplemental programs below:

1. A program to generate input points: this java program was used to generate input

points for the computational geometry applications. This implementation includes the

constraints mentioned in section 5.1.1 to eliminate duplicates and degenerate cases in
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the generated points. Users are expected to specify the number of points required and

the maximum value to use in x and y dimensions as program arguments.

2. A program to visualize convex hull, Voronoi diagram and Delaunay triangulation out-

put: this java program uses the JFrame and JComponent classes from the Java AWT

(Abstract Window Toolkit) package to visualize the computed convex hull, Voronoi

diagram and Delaunay triangulation using components such as points and lines.

5.2 Programmability

Programmability for the three parallel programming frameworks – MASS, MapReduce, and

Spark – refers to the ease of using each framework to implement applications. We measure

programmability using the three metrics stated in 5.1.2.ii. In the subsections below, we

present measured values for each of the programmability metrics and analyze the results.

5.2.1 Boilerplate code

Table 5.1 shows the boilerplate code percentage for the MASS, Spark, and MapReduce im-

plementations of the closest pair of points, Voronoi diagram, convex hull, and Delaunay

triangulation. We have grouped the Voronoi diagram, convex hull, and Delaunay triangu-

lation metric into one column because all three implementations are part of a single java

package, and it would be reasonable to report metrics this way instead of individually.
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Table 5.1: Boilerplate code percentage for all implementations

Parallel Frame-

work

Closest pair of

points(%)

Voronoi dia-

gram, Convex

hull, and De-

launay triangu-

lation(%)

Average(%) Total LoC

MASS 1.02 0.33 0.68 2,382

Spark 1.04 0.23 0.64 1,539

MapReduce 5.08 2.08 3.58 2,369

The boilerplate code percentage is calculated by dividing the number of lines of code

required within each implementation to set up the parallel execution framework, by the total

number of lines of code. For MASS, the boilerplate code could include reading the nodes.xml

file, setting up the logging level, initializing the MASS execution framework, etc. For Spark,

the boilerplate code could constitute creating the JavaSparkContext instance using which

the workers interact with the driver, setting parameters for the jobs such as application

name, etc., and stopping the spark context at the end of the program. For MapReduce, it

could include code to create JobConf instances for each of the MR job that we define in

the application, define the file system path (HDFS), setup mapper and reducer classes for

each job, setup input and output formats for each job etc. From the table, we can infer that

MASS and Spark have comparable results for average boilerplate code percentage among

all the implementations. Whereas the MR implementation has a higher percentage of code

required to set up its parallel execution environment. Even though MASS and MapReduce

have approximately close values for the total number of lines of code across all four apps, MR

requires additional lines of boilerplate code compared to MASS. This is due to the fact that

for MR implementation, we have to specify input/ output formats and paths, input/output

key and value classes, mapper and reducer classes, etc. But MASS does not have the need for

most of these parameters. The input/output paths are accepted as program command-line
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arguments, and all of the setup information related to master and worker nodes are obtained

from the nodes.xml file. This eliminates the amount of work the application developer has

to do in terms of setting up the execution environment and allows them to focus on the

application logic instead.

5.2.2 Lines of Code

Table 5.2 shows the total number of lines of code for the MASS, Spark, and MapReduce

implementations of the closest pair of points, Voronoi diagram, convex hull, and Delaunay

triangulation.

Table 5.2: Lines of code for all implementations

Parallel Framework Closest pair of points Voronoi diagram,

Convex hull, and

Delaunay triangula-

tion

Total LoC

MASS 585 1,797 2,382

Spark 286 1,253 1,539

MapReduce 688 1,681 2,369

The total number of lines of code is determined using a plugin called Statistic within the

IntelliJ IDE [42]. We have considered only the code lines for the above metrics and eliminated

comments and empty lines. We can observe from the table that MASS implementations

required approximately as many lines of code as that of the MR implementations. Even

though the closest pair of points MASS implementation has fewer LoC compared to MR, the

Voronoi diagram, convex hull, and Delaunay triangulation LoC is higher than that of MR

implementation. This is because of the MASS Voronoi diagram implementation:

1. defines 2D space management as part of the application. This includes logic to create

a fine mesh for the Places matrix-based, mapping input points to each place, initiating
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and migrating agents equal to number of input points and migrating them to the places

that have a point mapped, and

2. has defined the logic for agent migration to Von Neumann and Moore neighborhoods.

Since these operations are common to any application using 2D points, in future, if the

library provides these operations as part of its API, we could reduce the total LoC required

for MASS implementations.

5.2.3 Number of classes

Table 5.3 shows the total number of classes defined for the MASS, Spark, and MapReduce

implementations of the closest pair of points, Voronoi diagram, convex hull, and Delaunay

triangulation.

Table 5.3: Number of classes for all implementations

Parallel Framework Closest pair of points Voronoi diagram, Convex

hull, and Delaunay trian-

gulation

MASS 10 14

Spark 11 10

MapReduce 12 18

We have considered the number of java classes that were required for each of the im-

plementations in the three frameworks for this metric. We can observe from Table 5.3 that

MASS implementations required fewer classes compared to that MapReduce. This is due

to the fact that MR implementation for the Voronoi diagram required the creation of com-

plex data structures to represent it in memory and define the functionality required by the

D&C algorithm. However, the MASS Voronoi diagram implementation maintains all of the

required data structures in static entities called Places in terms of java collections, thereby
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eliminating the need to define such complex data structures. Furthermore, MR implementa-

tion defines one mapper, and one reducer class for each of the MR job run in the application.

The closest pair of points and Voronoi diagram, convex hull, and Delaunay triangulation im-

plementations each run a chain of three MR jobs, thereby requiring a total of 6 classes each

just to define the mappers and reducers. Clearly, MASS implementations have an advantage

in this aspect compared to MR implementations.

5.2.4 Number of methods

Table 5.4 shows the number of unique methods invoked by the closest pair of points, Voronoi

diagram, convex hull, and Delaunay triangulation implementations in MASS, Spark, and

MapReduce. We have included all library methods invoked that is not part of any boilerplate

code. Only methods that launch parallel operations on each of the data partitions are

considered.

Table 5.4: Number of methods for all implementations

Parallel Framework Closest pair of points Voronoi diagram, Convex

hull, and Delaunay trian-

gulation

MASS 2 3

Spark 9 10

MapReduce 2 2

We can note from Table 5.4 that MASS and MapReduce have comparable values for the

number of methods invoked during the application execution. This is mainly because for

MASS parallel operations are executed either on the distributed static entities (Places) or on

the dynamic entities (Agents). Various operations can be performed on both these entities

using the callAll() method and barrier synchronization is performed using the manageAll()

method. In addition to these two methods, in the Voronoi diagram implementation, we use
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the doAll() method for asynchronous agent migration. For MapReduce, we use the map()

and reduce() methods to perform parallel operations across data partitions. On the other

hand, Spark has a larger number of method invocations. This is because of the parallel

programming model of the framework, which requires data to be transformed iteratively

until the final result is obtained. Thus with respect to the number of methods, MASS has

better programmability compared to Spark.

5.3 Execution time

In this section, we present the measurements taken for execution time by running each of

the implementations for the three platforms. We also present an analysis of these different

execution times. We have used different node configurations (1, 2, 4, and 8 nodes and 1

thread per node) for the parallel computing cluster to measure the performance of each of

the implementations across the three parallel platforms. We were not able to test the MASS

implementations with more than 1 thread per node due to an exception in multi-threaded

configuration with MASS. Thus to provide a level ground, we have configured the MapReduce

and Spark platforms to use 1 thread per node while measuring the execution time required

for the implementations.

5.3.1 Closest pair of points

Figure 5.1 shows the closest pair of points execution performance of the three implementa-

tions with two different inputs.
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(a) Input points = 32,768 and distance = 1 (b) Input points = 2 and distance = 424.26

Figure 5.1: Performance trends for closest pair of points implementations

Figure 5.1(a) shows the trend for an input size of 32,768 points on different node config-

urations. The closest pair in this input had a Euclidean distance value of 1. We can observe

from the graph that MASS and Spark implementations have comparable performances with

such a large input size. But MapReduce implementation performs poorly due to a large

number of input points. Figure 5.1(b) shows the trend for an input size of 2 points on differ-

ent node configurations. However, this time the Euclidean distance between the two points

is 424.26, which is much higher (threshold case for MASS, at which the execution time is

no longer better than MapReduce). In both scenarios, Spark implementation outperforms

MASS and MR implementations. Additionally, in the second scenario, as expected, with

the reduction in the input size (number of points), the MR implementation takes less time

compared to that of the first run with 32,768 points. But the MASS implementation has a

tangible increase in time compared to the previous run. This is due to the fact that we use

agent migration to discover the closest pair of points. As the distance between the closest

pair increase in the input data, the agents have to travel further to be able to collide with

other agents. This causes the program to run more iterations of agent spawn and migrate

compared to when the input points have a closest pair with a shorter Euclidean distance.

This is a drawback for the current MASS implementation. This performance bottleneck

can be alleviated in the future with a more compact and efficient approach to 2D space
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management in MASS closest pair of points implementation.

5.3.2 Voronoi diagram

Figure 5.2 shows the Voronoi diagram execution performance of the three implementations.

Figure 5.2: Performance trends for Voronoi diagram implementations

Since we were unable to test Spark and MapReduce implementations on 11 node config-

uration, the graph does not include data points for these implementations on 11 nodes. We

can observe from the above graph that the MASS Voronoi diagram implementation takes

longer to execute compared to Spark and MapReduce implementations. Multiple perfor-

mance enhancements were made to the MASS Voronoi diagram implementation, including:

1. monitoring time spent by the application within each method in the code and adding

in performance tweaks,

2. switching synchronous agent migration with asynchronous agent migration with the use

of doAll(), thereby giving complete control to agents to spawn, migrate and execute

functionality on their own. This eliminates the synchronization that happens when

control returns to the main program while using callAll() and manageAll() functions

instead, and,

3. eliminating multiple collision checks for the same set of points by maintaining a common
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data structure among places to store information about three-point combinations for

which collision has already been checked and a Voronoi vertex is identified etc.

We observed reduction in execution time after the addition of the above performance

tweaks, but not so much that it would surpass the execution time of implementations in

the other two platforms. Some of the areas for improvement for the current MASS Voronoi

diagram implementation are presented below:

1. Allowing multi-threaded configuration for the MASS implementation could improve the

execution performance of the MASS Voronoi diagram implementation, by leveraging

the increase in parallelism.

2. The current implementation spends a significant amount of time checking for collisions

of two or three agents in each iteration. This is one of the reasons for the longer

execution time. Since agents migrate in the form of a ripple for the Voronoi diagram

implementation, there could be multiple places where collisions between the same set of

two or three points will be checked. But once a vertex is computed and recorded in its

respective Voronoi region, further checks for collision for the same set of points need not

be performed. In our current implementation, only places that have a point mapped

to them will have information about the Voronoi, which cannot be accessed by other

agents or places. Thus, in order to eliminate such duplicate checks, we created a static

variable that contains all Voronoi vertices discovered so far. But since static variables

are tied to the Java JVM (Java Virtual Machine) context, there will be independent

copies of these variables on each of the nodes in the cluster. So, if a Voronoi vertex

is discovered in say, for example, node 3, node 1 will not have this information in its

copy and hence will still perform collision checks for the same set of points.

3. 2D space management is an issue because, as the distance between points in the input

grows larger, the agents need longer to collide with other agents to gather information

about potential Voronoi edges and vertices.

4. Input points are mapped to Places matrix based on the correspondence between their

coordinates and the place indices. The Places matrix is partitioned by calculating the
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total number of place objects (rows * columns) and dividing it by the number of nodes

available on the cluster. So, for example, if we have a 4x4 matrix, there are a total of

16 places, and if we have 4 nodes on the cluster, each node will be assigned 16/4 =

4 places. If the first four places contain all of the input points, then the other three

nodes will not be participating in the computation. Thus, load balancing is another

issue with the current implementation.

Although we have used input data of small size (64 points) for the Voronoi diagram

implementations, we expect to test these applications in the future with larger input size.

When MASS implementation is no longer behind MapReduce and Spark (as shown in Figure

5.2) with smaller input data, we could increase the data size and test for a higher number

of points.

5.3.3 Convex hull

Figure 5.3 shows the convex hull execution performance of the three implementations.

Figure 5.3: Performance trends for convex hull implementations

We can observe from the above graph that the MASS convex hull implementation out-

performs Spark and MR implementations in terms of execution time. This is due to the fact

that the convex hull implementation uses a single agent to traverse the unbounded regions

of the Voronoi diagram to compute the convex hull. Leveraging the unique features that the
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Voronoi diagram of an input dataset possesses, our implementation uses an efficient algo-

rithm to compute the convex hull. The Spark & MR implementations use a D&C approach

to construct the convex hull of the input points. Since we merge two stripes at a time within

these parallel implementations, we end up processing all of the input points before finding

the final convex hull. However, in MASS implementation, the convex hull agent starts from

the point with the lowest y coordinate and traverses the Voronoi region of this point to find

the next unbounded region to migrate to. It continues migration until it reaches its starting

point. With this implementation, the agent hits only the points that lie on the convex hull

and few others that have an unbounded Voronoi region even though they should be bounded.

We discussed the reason for such cases in previous sections and will skip the discussion here.

Due to this fact, the MASS convex hull implementation runs faster than the Spark and MR

implementations.

5.3.4 Delaunay triangulation

Figure 5.4 shows the Delaunay triangulation execution performance of the three implemen-

tations. Since we were unable to test Spark and MapReduce implementations on 11 node

configuration, the graph does not include data points for these implementations on 11 nodes.

The Delaunay triangulation implementations in all of the three platforms follow the same

strategy. We maintain information about the Voronoi sites that are part of each Voronoi

vertex discovered during the program execution in additional data structures. We then use

these data structures to construct the dual of the Voronoi diagram, which is the Delaunay

triangulation. Due to the fact that we should complete the execution of the Voronoi diagram

program to obtain the Delaunay triangulation results, we have a similar performance trend

for the Delaunay triangulation implementations as that of Voronoi diagram. Similar argu-

ments as that of MASS Voronoi diagram implementation can be made to account for the fact

that the current MASS Delaunay triangulation implementation performs poorly compared

to that of Spark and MR. There is scope for improvement in the future in the areas of 2D

space management and agent migration support.
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Figure 5.4: Performance trends for Delaunay triangulation implementations

5.4 Operability

In this section, we discuss how we were able to apply different algorithms to the same

data structure in the implementations for the Voronoi diagram, convex hull, and Delaunay

triangulation. Since the Voronoi diagram has multiple important properties, we were able

to leverage them to perform multiple analyses on the same input data.

5.4.1 MASS

The MASS Voronoi diagram implementation uses agents to spawn, migrate, and collide with

other agents to construct the Voronoi diagram of the input dataset. The Places contains

all data structures required to represent and record all of the information for the Voronoi

diagram. Since Places are static entities within the distributed cluster, we maintain the bulk

of the data structures within these entities instead of within the dynamic Agents entities.

With the MASS library, we have the advantage of creating the 2D space with the input points

mapped to it in terms of Places and then reuse this to apply multiple analyses. For all of

the three implementations – Voronoi diagram, convex hull, and Delaunay triangulation – we

only read the input data once and map it to places. After the Voronoi diagram is computed,

we terminate all of the Voronoi diagram agents, which marks the completion of the first

analysis on the input data. Now the Places that have points mapped to them will contain

the final Voronoi diagram as a Java HashMap with the keys as the Voronoi sites and values
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as a Java HashSet of edges within this Voronoi region. Additionally, each place will also

contain information about the Voronoi vertices in their respective regions as a Java HashSet.

We use the Voronoi diagram HashMap as the base to compute the convex hull, without

having to read any intermediate data from disk. Following this, we use the Voronoi vertices

HashSet to construct the Delaunay triangulation of the input dataset. Finally, when all three

analyses are complete, we output all of the results to disk and terminate the program. Thus,

the advantage of using the MASS library for these types of analyses is that it eliminates

the need for disk input/output for intermediate data, thereby reducing execution time to a

certain level.

5.4.2 MapReduce & Spark

The MapReduce and Spark implementations, on the other hand, use a D&C approach to

compute the Voronoi diagram, convex hull, and Delaunay triangulation for the input dataset.

In these implementations, we construct the convex hull, Voronoi diagram, and Delaunay

triangulation in tandem. But within each iteration of the merging adjacent stripes, we first

merge the convex hulls of the stripes and then use this to construct the Voronoi diagram

for the combined stripes. We have designed data structures to support the construction

of the Voronoi diagram based on the unified convex hull in each iteration. Spark provides

the capability to perform multiple analyses on in-memory data similar to MASS. Although

we were able to implement appropriate data structures to leverage the properties of the

Voronoi diagram and convex hull to perform multiple analyses on the input data, the MR

implementation heavily relies on disk input/ output for each MR job. This introduces the

need to read/ write intermediate data from and to disk, respectively. As a result of which,

we cannot perform multiple analyses on in-memory data using MapReduce.

5.5 MASS library strengths and challenges

One of the key goals of this research was to assess the strengths of using the MASS library for

parallelizing applications using 2D spatial data. MASS implementations exhibited strengths

in certain aspects but presented challenges in certain others that needed focus. As mentioned
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by Fukuda et al. in [11], the addition of features such as asynchronous agent migration to

the MASS Java library, has relieved the performance bottlenecks for applications built using

the library. Our experiments demonstrated the following strengths of the MASS library and

also presented a few challenges that are summarized below.

Programmability: The Lines of Code (LoC) required to set up the parallel execution

environment in MASS implementations was generally comparable to that of MapReduce.

The MASS program logic in all of the four implementations are compact and intuitive com-

pared to the other two platforms and does not require complex data structures and D&C

logic. Moreover, MASS implementations require a smaller percentage of boilerplate code

on an average and fewer classes in each application, compared to that of MR implementa-

tions. However, there were certain challenges with respect to programmability. Collective/

reductive operations in order to construct the final results are currently controlled by the

main program, which is an overhead. In addition to that, MASS needs more LoC than

Spark when constructing distributed data structures with MASS Places [11]. Furthermore,

since we have implemented 2D space management and added support for agent migration to

different neighborhoods within the Places matrix, the LoC for MASS based implementations

are on the higher side.

Execution time: A significant speedup was achieved with the use of the automatic agent

migration feature in MASS Voronoi diagram implementation. Additionally, the convex hull

implementation outperformed the Spark and MR implementations. However, With respect

to execution time, there were some challenges that we faced with MASS implementations.

When the distance between the closest pair increases, we saw the MASS closest pair of

points program take longer to compute the results due to agents taking more iterations of

spawn and migrate to discover the closest pair. The MASS Voronoi diagram and Delaunay

triangulation implementations have a similar drawback with respect to space management.

When the distance between points increases in the input dataset, it takes longer for the

agents to identify Voronoi edges and vertices, which directly affects the execution time. In

addition to this, there is another bottleneck on execution time stemming from the fact that

we create a fine mesh (every adjacent integer has ten intervals between them to capture
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mid-points) for the Places matrix.

5.6 MASS performance with increase in cluster nodes

All of the implementations were tested on a cluster of eight nodes (hermes cluster). How-

ever, towards the end of this research, we were able to test the MASS implementations

on a different cluster with eleven nodes (cssmpi cluster). As expected, with the addition

of nodes MASS implementations performed better compared to the previous executions on

eight nodes. Figure 5.6 shows the performance trend for three applications - Voronoi dia-

gram, convex hull, and Delaunay triangulation for the two clusters with eight and eleven

nodes.

Figure 5.5: Performance trends for MASS implementations on hermes and cssmpi clusters

From the above graph, we can observe that with addition of nodes, the Voronoi diagram

execution time reduced by 50%. We can see a similar drop in execution time for Delaunay

triangulation, since the time it takes to compute it is the same as the Voronoi diagram. We

were not able to compare the execution time of MASS applications against MapReduce and

Spark due to setup issues on the new cluster. But the fact that MASS implementations’

execution time decreases with increase in number of nodes is promising. Also, currently the

input points generated have integer x and y co-ordinates. The constraints we have added to

eliminate some input points that create degenerate cases for convex hull and Voronoi diagram,
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restrict the number of points that can be created for a given range of x and y dimensions. In

future, after 2D space management is added to the MASS library, the capability to handle

decimals will be available. Using this feature, we could generate larger number of points to

test the implementations on.
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Chapter 6

CONCLUSION

In order to identify the application areas where the MASS library can be a better par-

allelization framework, our work explored the problem area of computational geometry. Al-

though there is some research done in this area using the MapReduce framework, there is no

work done using Spark and MASS. Furthermore, benchmarks for the parallelized solutions

in these three platforms are not available. This research is a steppingstone to parallelizing

computational geometry solutions using ABM. The major contribution of this research is:

1. We have provided ABM solutions for four computational geometry problems using the

MASS library, which has not been worked on previously,

2. We have compared and analyzed the performance of MASS implementations against

big data analysis tools such as Spark and MapReduce,

3. This research established that using MASS library users can develop applications in-

tuitively which is an advantage for people from non-computing backgrounds, and

4. We proved that multiple analyses could be performed using MASS, without having to

construct the Places matrix again for each analysis. Also, we do not have to depend

on disk-based operations, and we need not develop complex data structures and D&C

algorithms for MASS based parallelization.

In the sections below, we discuss the potential areas where future work can be done based

on the outcome of this research.

6.0.1 Future Work

Multiple research opportunities have presented themselves as an outcome of this research.

Following areas are some of the most significant ones, where further research could address
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the current challenges facing the MASS based computational geometry implementations:

1. Support for 2D and 3D space management: the MASS library currently does not offer

support for space management. Adding this support could tremendously reduce the ap-

plication development time and enhance programmability by reducing the application

LoC.

2. Support for agent migration: support could be added to the MASS core library for

agent migration to different neighborhood locations using patterns for migration such

as Von Neumann, Moore, etc.

3. Support for shared data structures among Places and Agents : Adding support for

storing a shared variable among places will eliminate overhead caused by duplicate

collision checks as discussed in section 5.3.2 and improve the execution performance.

4. Support for handling decimals: Support could be added to MASS closest pair of points,

Voronoi diagram, convex hull, and Delaunay triangulation applications to handle dec-

imal inputs, which will enhance the applicability to a wider type of input data.

5. Use of parallel input/ output: In future, the four MASS based implementations could

be tested with parallel input/ output to check if performance improves.

6. Utilizing multiple threads per node: In future, the MASS based implementations could

be tested with more than one thread per node to utilize the computing capability

provided by all cores on a node. This could increase the performance of MASS closest

pair of points, Voronoi diagram, and Delaunay triangulation implementations.

We believe that with the availability of benchmarks provided by this research, scientists

from non-computing backgrounds will have the benefit of choice with respect to parallel

programming libraries. While there are some challenges in using the MASS library, the

advantages in intuitive programming capability and ability to perform multiple analyses on

in-memory distributed data, prove to outweigh them. Furthermore, with the addition of 2D

space management and support for agent migration within the MASS library in the future,

MASS can become a better contender for big data analysis.
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Appendix A

UML DIAGRAMS

I: MASS closest pair of points key classes

II: MASS Voronoi diagram, convex hull, and Delaunay triangulation key classes
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III: MapReduce & Spark closest pair of points key classes

IV: MapReduce & Spark Voronoi diagram, convex hull, and Delaunay triangulation key

classes
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Appendix B

OUTPUT SCREENSHOTS

I: Closest pair of points output

II: Voronoi diagram output
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III: Convex hull output

IV: Delaunay triangulation output


