
Agent-Based Computational Geometry | Satine Paronyan

 1

AGENT-BASED COMPUTATIONAL GEOMETRY

Satine Paronyan

Term Report

Part of CSS 595: Capstone Project

Master of Science in Computer Science & Software Engineering

University of Washington Bothell

Autumn 2020

Committee:

Munehiro Fukuda, Chair

Michael Stiber, Member

Min Chen, Member

Agent-Based Computational Geometry | Satine Paronyan

 2

Table of Contents

CHAPTER 1: INTRODUCTION .. 3

CHAPTER 2: CURRENT STATUS ... 4

CHAPTER 3: RESULTS ... 5

3.1 RANGE SEARCH .. 6
3.1.1 PROGRAMMABILITY .. 6
3.1.2 EXECUTION PERFORMANCE .. 7
3.2 POINT LOCATION .. 8
3.2.1 PROGRAMMABILITY .. 8
3.2.2 EXECUTION PERFORMANCE .. 10
3.3 LARGEST EMPTY CIRCLE .. 11
3.3.1 PROGRAMMABILITY .. 11
3.3.2 EXECUTION PERFORMANCE .. 12
3.4 PROJECT SOURCE CODE .. 12

CHAPTER 4: CONCLUSION ... 13

REFERENCES ... 14

Agent-Based Computational Geometry | Satine Paronyan

 3

Chapter 1: INTRODUCTION

 The agent-based computational geometry research project explores the applicability of agent-

based modeling to designing efficient parallel solutions to computational geometry problems. The

computational geometry applications are computationally complex and involve large datasets. The

four computational geometry problems to be solved by agent-based algorithms using the MASS

library. The MASS based applications will be compared against MapReduce and Spark

implementations. The selected computational geometry problems are Range Search, Point

Location, Largest Empty Circle, and Euclidian Shortest Path (Obstacle Avoiding Path). A great

number of O(n log n) efficient sequential algorithms have been designed to solve geometric

problems [1][2]. However, the sequential algorithms are bound to one machine, which limits the

amount of data being processed. Distributed memory addresses the scalability concerns [3]. Spatial

scalability enables to analyze large datasets more efficiently.

Multi-Agent Spatial Simulation (MASS) [4] is a parallel computing library based on multi-agents

that behave as a simulation on a given virtual space. The collective and emergent group behavior

of agents such as propagation, colliding, and occasional repelling makes it easier to discover

attributes of structured and geometric datasets. In addition, the MASS library provides an ability

to initialize data with different types of data structures such as 2D/3D space or graph over

distributed memory. The data structure remains unchanged in memory while mobile agents

collaboratively find the solution. This approach enables us to design more intuitive algorithms that

provide competitive execution performance and programmability. In comparison with MapReduce

and Spark big-data parallelization tools [3][5], MASS is better suited to computational geometry

algorithms.

Several static problems are implemented for the MASS library by Distributed System Laboratory

(DSL) at the University of Washington Bothell. Agent-based computational Geometry capstone

project expands the work on agent-based computational geometry by parallelizing four additional

geometric problems listed at the beginning of this section.

Agent-Based Computational Geometry | Satine Paronyan

 4

Chapter 2: CURRENT STATUS

 In the Spring 2020 quarter as part of CSS 600, I completed the design and implementation of

the parallel algorithms for Range Search [6] problem utilizing MASS, Spark, and MapReduce.

This quarter I worked on two other problems: Point Location and Largest Empty Circle [7][8]. I

completed the design and implementation of the algorithms for these two computational geometry

problems (see Table 1).

 Implementation and testing completed
 Implementation completed, testing in progress
 To be implemented and tested

 Spark MapReduce MASS

Range Search Complete,
Tested
(10k points)

Complete,
Tested
(10k points)

Complete,
Tested
(10k points)

Point Location Complete,
Tested
(500k trapezoids)

Complete,
Tested
(500k trapezoids)

Complete,
Tested
(500k trapezoids)

Largest Empty Circle Complete,
Tested
(500k points)

Complete,
Tested
(500k points)

Complete,
Testing
(500k points)

Euclidian Shortest Path
Winter 2020 Winter 2020 Winter 2020

Table 1: Current Status and Winter 2020 plan

Table 1 shows the current status of my capstone project. The programs that are fully completed,

specifically implemented and tested, shown with status in green. The programs that are

implemented but still need comprehensive testing with large input data shown in orange. The status

of the program in blue notes that the program will be implemented and tested in the next quarter.

Agent-Based Computational Geometry | Satine Paronyan

 5

Point Location program is fully implemented and tested with 500k input points. The collected

results are presented in the next Results section. Largest Empty Circle (LEC) program is

implemented and partially tested. I conducted execution performance tests for MapReduce and

Spark versions of the program, but still need to finish tests for the MASS version. We are facing

some issues with running the MASS version of LEC on a cluster while it runs successfully on a

single computing node. We are troubleshooting this issue to determine the root of the problem to

fix it. Next quarter, I plan to design a parallelized algorithm for my last application - the Euclidian

Shortest Path problem [9]. The implementation and testing of the application are also planned for

the next Winter 2021 quarter.

Chapter 3: RESULTS

 The implementation of algorithms for the four computational geometry problems will be

measured by programmability and execution performance metrics.

Programmability includes:

 o Boilerplate code – number of lines of code required to set up the environment

 o Lines of code – total number of lines of code in the implementation

 o Number of classes – total number of classes in the implementation

 o Cyclomatic complexity – number of linearly independent paths through an algorithm.

Execution Performance:

 o Execution Performance of the applications will be measured by their run time.

This section presents the performance results for Range Search, Point Location, and Largest Empty

Circle parallel applications. For the Point Location problem, I collected results in full:

Agent-Based Computational Geometry | Satine Paronyan

 6

programmability and execution performance. Yet, for the Largest Empty Circle, I present only

programmability results, since execution performance tests are not complete.

3.1 Range Search

 The range searching [6] problem consists of preprocessing a set of N points in the plane to

determine which points reside within a query rectangle (range). The query range includes four

values: x- minimum, maximum and y- minimum, maximum coordinates in a plane. The baseline

of the range searching algorithms is the construction of a multidimensional binary tree (KD tree)

[1][7]. KD tree for two-dimensional points is a modified two-dimensional binary search tree

(BST), which alternates x- and y- coordinates as a key for inserting elements. The alternating

sequence starts with the x-coordinate. The construction of KD tree consists of recursively

partitioning the plane into two halfplanes, where the point positioned at the bisection line is the

next point to be inserted into the tree with respect to x and y dimensions. Each bisection line is

determined after sorting the points by x or y coordinate depending on the next dimension of the

KD tree level. The bisection line is determined by dividing the number of points by two.

3.1.1 Programmability

 Table 2 presents the programmability metrics for the Range Search implementation utilizing
MASS, Spark, and MapReduce.

Parallel
Framework

Boilerplate
code

Lines of code Number of
classes

Cyclomatic
complexity
(algorithms)

MapReduce 25 450 6 3

Spark 4 350 3 3

MASS 3 490 6 4

Table 2: Programmability metrics for Range Search

The comparison of three different implementations of Range Search shows that MASS requires

the fewest number of boilerplate code to set up the environment in contrast to MapReduce and

Spark. This boilerplate code consists of initializing MASS, setting up a debugging level, and

shutting down MASS when the computation is finished. The total number of lines in MapReduce

Agent-Based Computational Geometry | Satine Paronyan

 7

and MASS implementations are relatively compatible. Yet, due to the needed custom agent and

vertex place classes, the total number of lines is slightly higher than MapReduce implementation.

Finally, the fewest number of classes is required by Spark implementation, whereas MapReduce

and MASS implementations require more classes.

Cyclomatic complexity is used to measure the complexity of the algorithms based on three

parallelization tools, such as MASS, MapReduce, and Spark. Spark and MapReduce use the same

algorithms to performs range search, and the cyclomatic complexity is equal to three for both.

MASS uses vertex and agents in its algorithms, and the cyclomatic complexity of this algorithm

equals four. The cyclomatic complexity measurements show that algorithms designed for MASS

provide very similar complexity in comparison to algorithms designed for MapReduce or Spark.

The metrics (see table 2) prove that MASS is a better programming tool in terms of the required

steps needed to set up the environment, and Spark is a better programming tool in terms of the

fewer number of classes and lines of code required for the implementation.

3.1.2 Execution Performance

 We conducted execution performance tests for range search using 10,000 input points. Figure 1

shows execution performance results of range search.

Figure 1: Execution performance for Range Search

Agent-Based Computational Geometry | Satine Paronyan

 8

Figure 1 shows the performance for an input size of 10,000 points. We can see that MASS

implementation produces better execution performance results in comparison with MapReduce

and Spark applications. According to the performance results gathered during multiple tests, the

performance of MASS implementation increases by increasing the number of cluster nodes.

Further, MapReduce produced better performance results using two and three worker nodes in

comparison with Spark implementation. Yet, in contrast to Spark implementation, the execution

performance of MapReduce implementation does not improve when the number of worker nodes

is higher than three. MapReduce implementation has the overall best time. However, we can see

that adding more computing notes to the cluster do not decrease execution time of the MapReduce

program. On the contrary, Spark implementation shows that additional computing nodes decreased

execution time.

The Range Search implementation with the MASS library benefits from the fact that MASS allows

maintaining the original dataset structure for the duration of computation. The data is not copied

continuously or moved as in MapReduce and Spark. The same graph containing points on its

vertices is used throughout the entire computation.

3.2 Point Location

 The most used point location [9] application is a location query. Given a map and a query point

specified by its coordinates find the region of the map containing the query point. A map is nothing

more than a subdivision of the plane into regions, a planar subdivision. The trapezoidal map is

usually used to create a planar subdivision [2]. To create a trapezoidal map vertical line is drawn

from each point going upward and downward. The implemented applications that solve point

location problems use a preprocessed trapezoidal map that is presented as an input file contacting

trapezoids. The application receives the input file, query point x, and y coordinates. The output is

the trapezoid details that contains the query point.

3.2.1 Programmability

 Table 3 presents the programmability metrics for the Point Location implementation utilizing

MASS, Spark, and MapReduce.

Agent-Based Computational Geometry | Satine Paronyan

 9

Parallel
Framework

Boilerplate
code

Lines of code Number of
classes

Cyclomatic
complexity
(algorithms)

MapReduce 23 283 8 2

Spark 4 236 3 2

MASS 3 322 7 4

Table 3: Programmability metrics for Point Location

Spark implementation of the Point Location has the fewest number of lines of code and number of

classes in comparison with MASS and MapReduce. Yet, MASS implementation has the best

results in the number of boilerplate code lines metric. It also has a better result than MapReduce

in terms of the number of classes needed to implement the algorithms. The cyclomatic complexity

of MASS algorithms is higher in comparison to Spark and MapReduce algorithms due to using

doWhile() loop which is needed to do agent simulations. We do simulations if at least one agent

is alive.

MASS implementation has the highest number of lines of code. This is due to the fact that the

algorithm implementation needs more code. In order to initialize each Place with trapezoid, we

extended Places class and customized to the needs of the algorithms. We also have a class

Trapezoid, which describes the Trapezoid object for each Place. In order for the agent to perform

point location search we extended Agent class to describe the behavior of each agent. Also, we

have one more additional class that is used to pass arguments to each created (spawned) agent.

Even though MASS implementation has the highest number of lines of code in this benchmark we

significantly decreased the number of lines of code in comparison to using the traditional

programming approach of the MASS library. This improvement is due to utilizing event-oriented

programming using annotations [12] feature of the MASS library. MASS library traditionally uses

barrier synchronization of agent upon executing callAll(), manageAll(), or doAll(), which users

repeatedly invoke from the main() function [12]. The event-programming with annotations

automatically invokes such functions when the corresponding event occurs. Thus, we eliminated

Agent-Based Computational Geometry | Satine Paronyan

 10

the need of writing additional lines of code to manually synchronize agents in Point Location

implementation.

3.2.2 Execution Performance

 To conduct execution performance tests for all three versions of Point Location applications we

used a considerably large dataset of 500k trapezoids. Figure 1 shows the execution performance

results of the Point Location application with MASS, MapReduce, and Spark.

Figure 2: Execution performance of Point Location

Overall, the execution performance of the MASS implementation of Point Location is better than

the MapReduce implementation. MapReduce takes a longer execution time due to the overhead of

intermediate input/output operations between MapReduce jobs. We can see in Figure 1 that when

the number of computing nodes in a cluster is less or equal four Point Location MASS performed

better than both Spark and MapReduce implementations. After adding more computing nodes to

the cluster Point Location MASS execution time starts increasing. The reason for such increase in

execution time is due to the fact that we use agent migration and Hazelcast [8]. MASS uses

Hazelcast as underlying in-memory data grid (IMDG). MASS uses Hazelcast to distribute data

evenly among computing nodes in the cluster. Hazelcast has a disadvantage of using transmission

control protocol (TCP), which is known to be slower than user data protocol UDP. MapReduce

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 10

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of worker nodes

Execution Performance: Point Pocation

Mass Spark MapReduce

Agent-Based Computational Geometry | Satine Paronyan

 11

implementation has the overall best time. However, we can see that adding more computing notes

to the cluster do not decrease execution time of the MapReduce program. On the contrary, Spark

implementation shows that additional computing nodes decreased execution time.

3.3 Largest Empty Circle

 The largest empty circle problem states, given a set of S site points determine the largest empty

circle whose interior does not overlap with any other obstacle [9]. It has been proven that the center

of the largest empty circle must lie on the Voronoi vertex. Our Largest Empty Circle (LEC)

program receives two input files: one consisting of site points and the other consisting of Voronoi

vertices points. The output of the program is the radius of the largest empty circle as well as the

center point and the point on the circle.

3.3.1 Programmability

 Table 4 presents the programmability metrics for the Largest Empty Circle implementation

utilizing MASS, Spark, and MapReduce.

Parallel
Framework

Boilerplate
code

Lines of code Number of
classes

Cyclomatic
complexity
(algorithms)

MapReduce 76 549 10 2

Spark 2 320 5 2

MASS 3 211 6 2

Table 4: Programmability metrics for Largest Empty Circle

The metrics in Table 3 indicate the results of the programmability analysis for LEC programs in

all three platforms MASS, Spark, and MapReduce. MapReduce implementation has the worst

programmability results among the three programs. As the metric indicates MapReduce

implementation requires the highest number of boilerplate code, lines of code, and classes. These

high numbers are due to the need of setting up the environment and multiple MapReduce jobs. On

the contrary, LEC Spark implementation requires the fewest number of lines of boilerplate code

to set up the environment. Also, Spark implementation has the advantage of having the fewest

Agent-Based Computational Geometry | Satine Paronyan

 12

number of classes. Spark benefits from its programming model that has resilient distributed

datasets (RDDs), which overall shortens the required number of lines and number of classes. The

decrease in the number of boilerplate code for LEC Spark implementation in comparison with

PointLocation Spark implementation is because we do not broadcast any variables to Spark context

as it is the case for PointLocation Spark implementation where we have to broadcast two additional

variables x and y coordinates of the query point.

Largest empty circle (LEC) MASS implementation outperforms Spark and MapReduce

implementations in terms of a total number of lines of code. It also outperforms MapReduce by

having the fewest number of boilerplate code lines and the number of classes. The good

programmability performance of LEC MASS is due to embedded SpacePlace and SpaceAgent

classes into the MASS library. The algorithm for LEC MASS does not override the SpacePlace

and SpaceAgent classes, thus, simplifies the overall implementation and increases

programmability performance. However, small changes are made in the SpaceAgent, which

locates directly in the MASS library. These changes are needed for computing the furthest pair of

points instead of computing the closest pair of points that is coded into the original implementation.

3.3.2 Execution Performance

 I conducted execution performance tests for LEC MapReduce and Spark programs with a

different number of computing nodes in the cluster. However, the execution performance testing

for LEC MASS implementation is not complete. We are having some issues running the program

on the cluster while it successfully runs on one node. We are troubleshooting the issue to determine

the root of the issue. I will include the execution performance comparison across three platforms

for LEC implementations in the next quarter.

3.4 Project Source Code

 The implementations of the above applications are located in the satine_develop branch in

mass_java_app bitbucket repository under the Applications directory. The link to source code:

https://bitbucket.org/mass_application_developers/mass_java_appl/src/satine_develop/Applicati

ons/

Agent-Based Computational Geometry | Satine Paronyan

 13

Chapter 4: CONCLUSION

 The results for the point location algorithm showed that MASS implementations have better

execution performance results than MapReduce implementation. MASS requires the fewest

number of lines of boilerplate code to set up the environment. The MASS program also

outperforms the MapReduce program in terms of the number of classes in the implementation. The

point location program with MASS utilizes event-driven programming with an annotations feature,

which reduced the overall number of lines of code. This feature eliminates the need for manually

synchronizing mobile agents migration by replacing callAll() and manageAll() with doWhile and

annotated methods @OnCreation, @OnArraival, and @OnMessage.

The execution performance of the MASS program is the best among all three platforms when the

number of computing nodes in a cluster is less than five. The need for agents to migrate between

computing nodes and the message broadcasting increases the execution performance of the MASS

program. MASS implementation of the point location algorithm increases execution time as the

number of computing nodes in the cluster increases. This increase in time is due to Hazelcast,

which is in-memory data grid used by MASS library. Hazelcast uses TCP that is relatively slow

for over the network communications. The potential solution to mitigate this overhead in the future

by switching from Hazelcast to our own implementation.

The next for my capstone project is to finish the execution performance tests of the LEC MASS

program on a cluster and make the comparison of the execution performance within three

platforms. As the final and fourth application, I will design and implement a parallel algorithm for

solving the Euclidean Shortest Path problem. Once the fourth algorithm is implemented, I will

conduct the programmability and execution performance tests. I plan to finish all implementations

in Winter 2021 quarter.

Agent-Based Computational Geometry | Satine Paronyan

 14

REFERENCES

[1] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. 1993

[2] M. Berg, O. Cheong, M. Kreveld, M. Overmars, Computational Geometry: Algorithms and

 Applications. 2008

[3] T. Whire, Hadoop: The Definitive Guide. 2012

[4] M.Fukuda, Parallel-Computing Library for Multi-Agent Spatial Simulation in Java, 2010

[5] H.Karau, A. Konwinski, P.Wendell, M. Zaharia, Learning Spark. 2015

[6] Wikipedia.org. Range searching – Wikipedia.

[7] H. M. Kakde, “Range Searching using Kd Tree.” 2005

[8] Hazelcast.org. Hazelcast open-source projects.

[9] Wikipedia.org. Point location – Wikipedia.

[10] Wikipedia.org. Largest empty circle – Wikipedia.

[11] Wikipedia.org. Euclidian shortest path – Wikipedia.

[12] Matthew Sell, Munehiro Fukuda, Agent Programmability Enhancement for Rambling over

 Scientific Dataset, 2020

