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Chapter 1: INTRODUCTION 
 

    The agent-based computational geometry research project explores the applicability of agent-

based modeling to designing efficient parallel solutions to computational geometry problems. The 

computational geometry applications are computationally complex and involve large datasets. The 

four computational geometry problems to be solved by agent-based algorithms using the MASS 

library. The MASS based applications will be compared against MapReduce and Spark 

implementations. The selected computational geometry problems are Range Search, Point 

Location, Largest Empty Circle, and Euclidian Shortest Path (Obstacle Avoiding Path). A great 

number of O(n log n) efficient sequential algorithms have been designed to solve geometric 

problems [1][2]. However, the sequential algorithms are bound to one machine, which limits the 

amount of data being processed. Distributed memory addresses the scalability concerns [3]. Spatial 

scalability enables to analyze large datasets more efficiently.  

Multi-Agent Spatial Simulation (MASS) [4] is a parallel computing library based on multi-agents 

that behave as a simulation on a given virtual space. The collective and emergent group behavior 

of agents such as propagation, colliding, and occasional repelling makes it easier to discover 

attributes of structured and geometric datasets. In addition, the MASS library provides an ability 

to initialize data with different types of data structures such as 2D/3D space or graph over 

distributed memory. The data structure remains unchanged in memory while mobile agents 

collaboratively find the solution. This approach enables us to design more intuitive algorithms that 

provide competitive execution performance and programmability. In comparison with MapReduce 

and Spark big-data parallelization tools [3][5], MASS is better suited to computational geometry 

algorithms. 

Several static problems are implemented for the MASS library by Distributed System Laboratory 

(DSL) at the University of Washington Bothell. Agent-based computational Geometry capstone 

project expands the work on agent-based computational geometry by parallelizing four additional 

geometric problems listed at the beginning of this section.  



Agent-Based Computational Geometry | Satine Paronyan 

 4 

 

Chapter 2: CURRENT STATUS 
 

    In the Spring 2020 quarter as part of CSS 600, I completed the design and implementation of 

the parallel algorithms for Range Search [6] problem utilizing MASS, Spark, and MapReduce. 

This quarter I worked on two other problems: Point Location and Largest Empty Circle [7][8]. I 

completed the design and implementation of the algorithms for these two computational geometry 

problems (see Table 1).  

 
                                     Implementation and testing completed 
             Implementation completed, testing in progress 
                                        To be implemented and tested 
         
 Spark  MapReduce MASS 

Range Search Complete,  
Tested 
(10k points) 

Complete,  
Tested  
(10k points) 

Complete,  
Tested  
(10k points) 

Point Location Complete,  
Tested 
(500k trapezoids) 

Complete,  
Tested 
(500k trapezoids) 

Complete,  
Tested 
(500k trapezoids) 

Largest Empty Circle Complete,  
Tested 
(500k points) 

Complete,  
Tested 
(500k points) 

Complete,  
Testing 
(500k points) 

Euclidian Shortest Path 
Winter 2020 Winter 2020 Winter 2020 

Table 1: Current Status and Winter 2020 plan 

 

Table 1 shows the current status of my capstone project. The programs that are fully completed, 

specifically implemented and tested, shown with status in green. The programs that are 

implemented but still need comprehensive testing with large input data shown in orange. The status 

of the program in blue notes that the program will be implemented and tested in the next quarter. 
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Point Location program is fully implemented and tested with 500k input points. The collected 

results are presented in the next Results section. Largest Empty Circle (LEC) program is 

implemented and partially tested. I conducted execution performance tests for MapReduce and 

Spark versions of the program, but still need to finish tests for the MASS version. We are facing 

some issues with running the MASS version of LEC on a cluster while it runs successfully on a 

single computing node. We are troubleshooting this issue to determine the root of the problem to 

fix it. Next quarter, I plan to design a parallelized algorithm for my last application - the Euclidian 

Shortest Path problem [9]. The implementation and testing of the application are also planned for 

the next Winter 2021 quarter. 

 
 
 
 

Chapter 3: RESULTS 
 

    The implementation of algorithms for the four computational geometry problems will be 

measured by programmability and execution performance metrics.  

 

Programmability includes:  

    o Boilerplate code – number of lines of code required to set up the environment 

    o Lines of code – total number of lines of code in the implementation 

    o Number of classes – total number of classes in the implementation 

    o Cyclomatic complexity – number of linearly independent paths through an algorithm.  

 

Execution Performance: 

         o Execution Performance of the applications will be measured by their run time. 

 

This section presents the performance results for Range Search, Point Location, and Largest Empty 

Circle parallel applications. For the Point Location problem, I collected results in full: 
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programmability and execution performance. Yet, for the Largest Empty Circle, I present only 

programmability results, since execution performance tests are not complete. 

 

3.1 Range Search 

    The range searching [6] problem consists of preprocessing a set of N points in the plane to 

determine which points reside within a query rectangle (range). The query range includes four 

values: x- minimum, maximum and y- minimum, maximum coordinates in a plane. The baseline 

of the range searching algorithms is the construction of a multidimensional binary tree (KD tree) 

[1][7]. KD tree for two-dimensional points is a modified two-dimensional binary search tree 

(BST), which alternates x- and y- coordinates as a key for inserting elements. The alternating 

sequence starts with the x-coordinate. The construction of KD tree consists of recursively 

partitioning the plane into two halfplanes, where the point positioned at the bisection line is the 

next point to be inserted into the tree with respect to x and y dimensions. Each bisection line is 

determined after sorting the points by x or y coordinate depending on the next dimension of the 

KD tree level. The bisection line is determined by dividing the number of points by two.  

 

3.1.1 Programmability 

    Table 2 presents the programmability metrics for the Range Search implementation utilizing 
MASS, Spark, and MapReduce. 
 
Parallel 
Framework 

Boilerplate 
code 

Lines of code Number of 
classes 

Cyclomatic 
complexity 
(algorithms) 

MapReduce 25 450 6 3 

Spark 4 350 3 3 

MASS 3 490 6 4 

Table 2: Programmability metrics for Range Search 

The comparison of three different implementations of Range Search shows that MASS requires 

the fewest number of boilerplate code to set up the environment in contrast to MapReduce and 

Spark. This boilerplate code consists of initializing MASS, setting up a debugging level, and 

shutting down MASS when the computation is finished. The total number of lines in MapReduce 
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and MASS implementations are relatively compatible. Yet, due to the needed custom agent and 

vertex place classes, the total number of lines is slightly higher than MapReduce implementation. 

Finally, the fewest number of classes is required by Spark implementation, whereas MapReduce 

and MASS implementations require more classes.  

Cyclomatic complexity is used to measure the complexity of the algorithms based on three 

parallelization tools, such as MASS, MapReduce, and Spark. Spark and MapReduce use the same 

algorithms to performs range search, and the cyclomatic complexity is equal to three for both. 

MASS uses vertex and agents in its algorithms, and the cyclomatic complexity of this algorithm 

equals four. The cyclomatic complexity measurements show that algorithms designed for MASS 

provide very similar complexity in comparison to algorithms designed for MapReduce or Spark. 

The metrics (see table 2) prove that MASS is a better programming tool in terms of the required 

steps needed to set up the environment, and Spark is a better programming tool in terms of the 

fewer number of classes and lines of code required for the implementation.  

 

3.1.2 Execution Performance 

    We conducted execution performance tests for range search using 10,000 input points. Figure 1 

shows execution performance results of range search.  

 

 

Figure 1: Execution performance for Range Search 
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Figure 1 shows the performance for an input size of 10,000 points. We can see that MASS 

implementation produces better execution performance results in comparison with MapReduce 

and Spark applications. According to the performance results gathered during multiple tests, the 

performance of MASS implementation increases by increasing the number of cluster nodes. 

Further, MapReduce produced better performance results using two and three worker nodes in 

comparison with Spark implementation. Yet, in contrast to Spark implementation, the execution 

performance of MapReduce implementation does not improve when the number of worker nodes 

is higher than three. MapReduce implementation has the overall best time. However, we can see 

that adding more computing notes to the cluster do not decrease execution time of the MapReduce 

program. On the contrary, Spark implementation shows that additional computing nodes decreased 

execution time.  

The Range Search implementation with the MASS library benefits from the fact that MASS allows 

maintaining the original dataset structure for the duration of computation. The data is not copied 

continuously or moved as in MapReduce and Spark. The same graph containing points on its 

vertices is used throughout the entire computation.  

 
3.2 Point Location 

    The most used point location [9] application is a location query. Given a map and a query point 

specified by its coordinates find the region of the map containing the query point. A map is nothing 

more than a subdivision of the plane into regions, a planar subdivision. The trapezoidal map is 

usually used to create a planar subdivision [2]. To create a trapezoidal map vertical line is drawn 

from each point going upward and downward. The implemented applications that solve point 

location problems use a preprocessed trapezoidal map that is presented as an input file contacting 

trapezoids. The application receives the input file, query point x, and y coordinates. The output is 

the trapezoid details that contains the query point. 

 
3.2.1 Programmability 

   Table 3 presents the programmability metrics for the Point Location implementation utilizing 

MASS, Spark, and MapReduce. 
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Parallel 
Framework 

Boilerplate 
code 

Lines of code Number of 
classes 

Cyclomatic 
complexity 
(algorithms) 

MapReduce 23 283 8 2 

Spark 4 236 3 2 

MASS 3 322 7 4 

Table 3: Programmability metrics for Point Location 

 

Spark implementation of the Point Location has the fewest number of lines of code and number of 

classes in comparison with MASS and MapReduce. Yet, MASS implementation has the best 

results in the number of boilerplate code lines metric. It also has a better result than MapReduce 

in terms of the number of classes needed to implement the algorithms. The cyclomatic complexity 

of MASS algorithms is higher in comparison to Spark and MapReduce algorithms due to using 

doWhile() loop which is needed to do agent simulations. We do simulations if at least one agent 

is alive. 

 

MASS implementation has the highest number of lines of code. This is due to the fact that the 

algorithm implementation needs more code. In order to initialize each Place with trapezoid, we 

extended Places class and customized to the needs of the algorithms. We also have a class 

Trapezoid, which describes the Trapezoid object for each Place. In order for the agent to perform 

point location search we extended Agent class to describe the behavior of each agent. Also, we 

have one more additional class that is used to pass arguments to each created (spawned) agent.  

 

Even though MASS implementation has the highest number of lines of code in this benchmark we 

significantly decreased the number of lines of code in comparison to using the traditional 

programming approach of the MASS library. This improvement is due to utilizing event-oriented 

programming using annotations [12] feature of the MASS library. MASS library traditionally uses 

barrier synchronization of agent upon executing callAll(), manageAll(), or doAll(), which users 

repeatedly invoke from the main() function [12]. The event-programming with annotations 

automatically invokes such functions when the corresponding event occurs. Thus, we eliminated 
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the need of writing additional lines of code to manually synchronize agents in Point Location 

implementation. 

 

3.2.2 Execution Performance 

    To conduct execution performance tests for all three versions of Point Location applications we 

used a considerably large dataset of 500k trapezoids. Figure 1 shows the execution performance 

results of the Point Location application with MASS, MapReduce, and Spark. 

 

 
Figure 2: Execution performance of Point Location 

 

Overall, the execution performance of the MASS implementation of Point Location is better than 

the MapReduce implementation. MapReduce takes a longer execution time due to the overhead of 

intermediate input/output operations between MapReduce jobs. We can see in Figure 1 that when 

the number of computing nodes in a cluster is less or equal four Point Location MASS performed 

better than both Spark and MapReduce implementations. After adding more computing nodes to 

the cluster Point Location MASS execution time starts increasing. The reason for such increase in 

execution time is due to the fact that we use agent migration and Hazelcast [8]. MASS uses 

Hazelcast as underlying in-memory data grid (IMDG). MASS uses Hazelcast to distribute data 

evenly among computing nodes in the cluster. Hazelcast has a disadvantage of using transmission 

control protocol (TCP), which is known to be slower than user data protocol UDP. MapReduce 
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implementation has the overall best time. However, we can see that adding more computing notes 

to the cluster do not decrease execution time of the MapReduce program. On the contrary, Spark 

implementation shows that additional computing nodes decreased execution time. 

 

3.3 Largest Empty Circle 

    The largest empty circle problem states, given a set of S site points determine the largest empty 

circle whose interior does not overlap with any other obstacle [9]. It has been proven that the center 

of the largest empty circle must lie on the Voronoi vertex. Our Largest Empty Circle (LEC) 

program receives two input files: one consisting of site points and the other consisting of Voronoi 

vertices points. The output of the program is the radius of the largest empty circle as well as the 

center point and the point on the circle. 

 
3.3.1 Programmability 

    Table 4 presents the programmability metrics for the Largest Empty Circle implementation 

utilizing MASS, Spark, and MapReduce. 

 
 
Parallel 
Framework 

Boilerplate 
code 

Lines of code Number of 
classes 

Cyclomatic 
complexity 
(algorithms) 

MapReduce 76 549 10 2 

Spark 2 320 5 2 

MASS 3 211 6 2 

Table 4: Programmability metrics for Largest Empty Circle 

The metrics in Table 3 indicate the results of the programmability analysis for LEC programs in 

all three platforms MASS, Spark, and MapReduce. MapReduce implementation has the worst 

programmability results among the three programs. As the metric indicates MapReduce 

implementation requires the highest number of boilerplate code, lines of code, and classes. These 

high numbers are due to the need of setting up the environment and multiple MapReduce jobs. On 

the contrary, LEC Spark implementation requires the fewest number of lines of boilerplate code 

to set up the environment. Also, Spark implementation has the advantage of having the fewest 
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number of classes. Spark benefits from its programming model that has resilient distributed 

datasets (RDDs), which overall shortens the required number of lines and number of classes. The 

decrease in the number of boilerplate code for LEC Spark implementation in comparison with 

PointLocation Spark implementation is because we do not broadcast any variables to Spark context 

as it is the case for PointLocation Spark implementation where we have to broadcast two additional 

variables x and y coordinates of the query point. 

Largest empty circle (LEC) MASS implementation outperforms Spark and MapReduce 

implementations in terms of a total number of lines of code. It also outperforms MapReduce by 

having the fewest number of boilerplate code lines and the number of classes. The good 

programmability performance of LEC MASS is due to embedded SpacePlace and SpaceAgent 

classes into the MASS library. The algorithm for LEC MASS does not override the SpacePlace 

and SpaceAgent classes, thus, simplifies the overall implementation and increases 

programmability performance. However, small changes are made in the SpaceAgent, which 

locates directly in the MASS library. These changes are needed for computing the furthest pair of 

points instead of computing the closest pair of points that is coded into the original implementation. 

 

3.3.2 Execution Performance 

    I conducted execution performance tests for LEC MapReduce and Spark programs with a 

different number of computing nodes in the cluster. However, the execution performance testing 

for LEC MASS implementation is not complete. We are having some issues running the program 

on the cluster while it successfully runs on one node. We are troubleshooting the issue to determine 

the root of the issue. I will include the execution performance comparison across three platforms 

for LEC implementations in the next quarter. 

 
3.4 Project Source Code 

    The implementations of the above applications are located in the satine_develop branch in 

mass_java_app bitbucket repository under the Applications directory. The link to source code: 

https://bitbucket.org/mass_application_developers/mass_java_appl/src/satine_develop/Applicati

ons/ 
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Chapter 4: CONCLUSION 
 

    The results for the point location algorithm showed that MASS implementations have better 

execution performance results than MapReduce implementation. MASS requires the fewest 

number of lines of boilerplate code to set up the environment. The MASS program also 

outperforms the MapReduce program in terms of the number of classes in the implementation. The 

point location program with MASS utilizes event-driven programming with an annotations feature, 

which reduced the overall number of lines of code. This feature eliminates the need for manually 

synchronizing mobile agents migration by replacing callAll() and manageAll() with doWhile and 

annotated methods @OnCreation, @OnArraival, and @OnMessage. 

 

The execution performance of the MASS program is the best among all three platforms when the 

number of computing nodes in a cluster is less than five. The need for agents to migrate between 

computing nodes and the message broadcasting increases the execution performance of the MASS 

program. MASS implementation of the point location algorithm increases execution time as the 

number of computing nodes in the cluster increases. This increase in time is due to Hazelcast, 

which is in-memory data grid used by MASS library. Hazelcast uses TCP that is relatively slow 

for over the network communications. The potential solution to mitigate this overhead in the future 

by switching from Hazelcast to our own implementation. 

 

The next for my capstone project is to finish the execution performance tests of the LEC MASS 

program on a cluster and make the comparison of the execution performance within three 

platforms. As the final and fourth application, I will design and implement a parallel algorithm for 

solving the Euclidean Shortest Path problem. Once the fourth algorithm is implemented, I will 

conduct the programmability and execution performance tests. I plan to finish all implementations 

in Winter 2021 quarter. 

 
 



Agent-Based Computational Geometry | Satine Paronyan 

 14 

 

REFERENCES 

 

[1] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. 1993 

[2] M. Berg, O. Cheong, M. Kreveld, M. Overmars, Computational Geometry: Algorithms and     

      Applications. 2008 

[3] T. Whire, Hadoop: The Definitive Guide. 2012 

[4] M.Fukuda, Parallel-Computing Library for Multi-Agent Spatial Simulation in Java, 2010 

[5] H.Karau, A. Konwinski, P.Wendell, M. Zaharia, Learning Spark. 2015 

[6] Wikipedia.org. Range searching – Wikipedia. 

[7] H. M. Kakde, “Range Searching using Kd Tree.” 2005 

[8] Hazelcast.org. Hazelcast open-source projects. 

[9] Wikipedia.org. Point location – Wikipedia. 

[10] Wikipedia.org. Largest empty circle – Wikipedia. 

[11] Wikipedia.org. Euclidian shortest path – Wikipedia. 

[12] Matthew Sell, Munehiro Fukuda, Agent Programmability Enhancement for Rambling over   

        Scientific Dataset, 2020 

 

 

 


