MASS Preprocessor

Sean Wessels

Computing and Software Systems, University of Washington, Bothell

Table of Contents

INEFOTUCTION .ottt st et e s e s et e s b et e s b et e s ba e e sna e e snaeesneeesnnes 3
EXChangeBuUlk Optimization.... ..o e e e e e e s e s st eeeeeaeaeeesennnnrnnene 3
Reflection Optimization......cc..uuiieieieie e e s e e e e e e s s s s bbb rreeeaeeeeesennnnrraeee 3

EXECULING the IMASS PrePrOCESSON .o iiiiieitiiiieeeee e e e e eseeittreeee e e e e s e e s sbtarreeeeeaeeesesssassssseareeeaeesessasassnnssennneaees 5
Files generated by the MASS PreprOCESSOr.ttt it iiccctirieeeteee e e e e esesrrreeeeeeeeesssssasbrareeeaeeeeesasnsnssnnns 5

2 TUT1 Fo [T T~ Y T ad =T o o SRRSO 6
(010 T Y ¥ = T38 oI Vo Y= oS PPPPPPRN 6
CRaNEES 10 BIraMIMAT ..uiiiiiiiiie it i ittt e e e e e e e e e st e e e e e eeseesssaaaab e e eeeaeaeeesansssssasaeeeaeeeeesasassnssssnnenaeeseesannns 6

TaaY oY L= 0 =T o - 4 o T o PSPPI 7

LIMiITations @Nd ISSUBS ..ccouvviiiiiiiiiiie ittt et e s bt e sne e e e e sre e snees 7

TSt PrOgram EXECUTION c.vuuuiuiiiiiiiiiiiiiiis e e ettt e ettt ettt ettt e ee e sssaseseaeeeesseaeeaeeeeseeeseeeessesesnrenssnnnes 9
WAVE2ZD ..ttt e e 9
Computational FIuid DYNamICS (CFD)ueieiiciiieeeeiiiiee e ettt e e estreeeeesireeeeesatreeeessaareeeeesnbaeeseenseneesennnsenas 9

Files included in

MassPrePro (~/SensorGrid/MASS/PreproCeSSOr)ccuuiiiueeecirereeireeeiieeeeireeeereeesveeeennens 11

Introduction
Given a MASS program that contains an Agents or Places constructor, the preprocessor attempts to
perform two distinct optimizations which will result in a functional and efficient MASS program.

The following two constructor types are recognized:

1. Places (int handle, String classname, Object argument, int..
size)

2. Places (int handle, String primitiveType, String classname,
Object argument, int..size)

ExchangeBulk Optimization
The first optimization replaces exchangeBulk() method calls with exchangeAll()/callAll() pairs. Method
calls from a MASS variable with the following format:

exchangeBulk (handle, array, neighbors);

are replaced by calls with the following format:

exchangeAll (handle, "exchangeArray", neighbors);
callAll ("putArray");

If the exchangeArray() and putArray() methods do not exist in the code being optimized, simple stub
methods are created. As an example of the format of the methods being created, an exchangeBulk(1,
P, neighbors) results in the following accessors:

public Object exchangeP(Object src) {
return (Object)P.getBoundary((int[])src);

public Object putT(Object arg) {
T.putBoundary (inMessages) ;
return null;

Reflection Optimization

The second, reflection optimization, modifies the method calls from MASS variables to use constant
integer values corresponding to methods in place of string arguments which are resolved using Java
reflection. It will append a callMethod() method to map the integer values to their corresponding
methods. If no Agents or Places are recognized, the input program will be output unaltered.

The following methods are recognized and modified when called from a Places or Agents variable with

an appropriate String parameter:
callAll ()
callSome ()
exchangeAll ()
exchangeSome ()
exchangeBulk ()

Each string argument found in these methods at a position where a function is expected, is replaced
with an integer constant. These constants are unique for each function being replaced and take the
following form:

public static final int [functionName]_ = n;

In practice, the following method calls:

exchangeAll (handle, "exchangeArray", neighbors);
callAll ("putArray");

would be altered to:

cubicles.exchangeAll (1, exchangeP , neighbors);
cubicles.callAll (putP_);

and additional supporting code would be added to the end of the class:

public Object callMethod(int funcId, Object args) {
switch(funcId) {
case exchangeP : return exchangeP(args);
case putP_ : return putP(args);

}

return null;

public static final int exchangeP = 0;
public static final int putP_ = 1;

The actual return types of callMethod() is determined by the initial MASS constructor. Constructor #1
from the list above, will yield the preceding callMethod. If constructor #2 had been used with “int” as
the primitiveType, the following callMethod() would be generated:

public int callMethod(int funcId, int[] size, int[] index, int[]

wave, int arg) {
switch(funcId) {
case exchangeP : return (int)exchangeP(size, index,
wave, arg);
case putP : return (int)putP(size, index, wave, arg

) ;

return O;

Executing the MASS preprocessor

From a Linux or Windows command prompt:

java MassPrePro <inputFile >outputFile

where inputFile is the MASS program coded using reflection and outputFile is the translated
MASS program. Alternatively, the inputFile may be passed as a parameter:

java MassPrePro inputFile >outputFile
In both cases, code output is directed to stdout.

Execution adheres to the following sequence:

Source _ ExchangeBulk | Refl ecti on| _/ Opti mized
Code " Opti mizer " Opti mizer 4 Code
> Report

Files generated by the MASS preprocessor

The report and intermediate files generated by the preprocessor are located in the directory from which
the preprocessor was executed.

_prepro_debug.txt A report file which details the modifications made to the input
source code by the preprocessor. It also includes listings of
variables/fields recognized by the preprocessor by scope.

_prepro_stage_1.java A temporary file containing the output of the first pass of the
preprocessor.

Building MassPrePro

Changes to logic
If changes were only made to OptimizingVisitor, ScopeManager, MethodVar, MassVar, or MassPrePro,
then only the classes that have been modified need to be rebuilt. Compilation is straightforward:

javac MassPrePro.java

Changes to grammar
However, when changes must made to the Java grammar, additional tools are required to build the
MASS preprocessor. JavaCC 5.0 and JJTree are both available from the JavaCC website:

http://javacc.java.net

Building the executable from the source can be a multi-step process depending on the changes that
were made. Most files in the project have been auto-generated by JJTree or JavaCC. Do not attempt to
the change the auto-generated files directly. See below for a complete list of project files.

If changes have been made to Javal.l.jjt, the following steps must be taken to update the project:
1. Use "jjtree Javal.l.jjt" in Linux or "jjtree.bat Javal.l.jjt" in Windows to generate Javal.l.jj
2. Use "javacc Javal.l.jj" in Linux or "javacc.bat Javal.l.jj" in Windows to generate *.java files.

3. If new rules were added to Javal.l.jjt, the correspondingly methods must be added to
UnparseVisitor.java. Rules that have been removed from Javal.l.jjt should be removed from
UnparseVisitor.java.

4. Once the methods have been added to UnparseVisitor.java, they can be overridden in
ReflectionOptimizer.java or ExchangeBulkOptimizer if desired.

5. Remove existing *.class files and rebuild. (In Eclipse, select Project:Clean to rebuild the class
files.)

Implementation

The preprocessor performs its optimizations by running the input code through a Java parser. The
parser emits tokens in response to the input code. Actions act on specific tokens to check conditions,
set flags, modify output, etc.

A grammar (Javal.l.jjt) defines a roughly correct version of Java. The grammar has been modified to
create Abstract Syntax Trees. From the grammar, a parser is generated (UnparseVisitor) which by
default will output any input which matches the Java language as defined by the grammar.

The parser methods can be overridden with MASSOptimizer, ExchangeBulkOptimizer, or
ReflectionOptimizer to perform MASS optimizations. For example, when parsing a MethodDeclaration
token, a flag will be set to indicate that a new method is being parsed and that a new scope must be
placed on the stack. Subsequently, if a ResultType token is parsed while the MethodDeclaration flag
remains set, the return type of the method being parsed can be recorded.

Exchange Refl ecti o
Opti mizer Opti mizer
MASSOpti mizer

UnparseVisitor

Java Grammar

In general, flags are set in the various OptimizingParser.visit() methods. The logic to respond to those
conditions occurs in the OptimizingParser.find(Token) method.

Limitations and Issues
The preprocessor has been tested on a limited set of MASS programs that were manually converted
from their existing format to use Java reflection.

MASS programs that are to be preprocessed should not contain a method named “cal1Method” or

“ on

use a trailing underscore (“_") as part of a method name. The preprocessor will append an underscore

to method names as part of the callMethod() generation. If the preprocessor encounters any naming
conflict, it will report an error and halt.

All methods that are to be called as part of the MASS Agents or Places method must accept the same set
of parameters in the same order as defined by the MASS constructor.

It is not guaranteed that all MASS variables will be recognized as such. Straightforward variable
declarations will be identified, but variable assignment through casting or other classes may not be.
Additionally, it cannot be guaranteed that non-MASS method calls which are identical to MASS method
calls will not be altered by the optimizer.

The preprocessor has been tested against a very limited set of Java programs. When the parser
encounters a language construct that is not defined in its grammar file, it will crash.

More testing against valid Java programs should be done. Java programs for validating a Java compiler
can be found in the openjdk project at http://openjdk.java.net (openjdk/langtools/test/tools/javac)

Test Program Execution
Included as part of the MASS preprocessor are modified versions of Wave2D and CFD (Computational
Fluid Dynamics).

All tests were executed on a 64-bit Windows 7 machine with an Intel Core i5 M430@2.27GHz.

Wave2D
Compiled and executed with MASS-Thread.

javac —-cp MASS-Thread; Wave2DMass.java

java —-cp MASS-Thread.jar; Wave2DMass 100 1000 100 1 2

Original Program | Time (ms) exchangeAll (ms) callAll (ms)
1 10187 4728 1590

2 9719 4746 1384

3 9500 4321 1667

4 9516 4626 1381
Average 9730.5 4605.25 1505.5
Modified for Time (ms) exchangeAll (ms) callAll (ms)
preprocessor

1 10343 4371 1900

p 9578 4275 1683

3 9313 4302 1593

4 9906 4517 1647
Average 9785 4366.25 1705.75

Computational Fluid Dynamics (CFD)
Compiled and executed with MASS-Thread.

run.bat 10 10 2

Original Program | Time (ms)

1 16536
2 14618
3 14384
4 13587

Average 14781.25

Modified for Time (ms)
preprocessor

1 13552

p 15179

3 14134

4 15850
Average 14678.75

Files included in MassPrePro (~/SensorGrid/MASS/preprocessor)

Directory

Filename

Description

MASSPrePro

MassPrePro.java

Executable front-end that takes a MASS
program from stdin and outputs an
optimized version to stdout.

Javal.l.jjt

A grammar for the Java language.
Originally based on 1.1 and extended to
handle some newer Java syntax.

MassVar.java

Stores MASS variables (Agents, Places).

MethodData.java

Holds data related to the method
currently being parsed.

MASSOptimizer

Extends UnparseVisitor to provide
common functionality to other
optimizers.

ReflectionOptimizer.java

Extends MASSOptimizer to provide
preprocessor reflection functionality.
Creates callMethod() and all required
class constants. Provides the logic at
the parser token level. Controls output
based on parser tokens.

ExchangeOptimizer.java

Extends MASSOptimizer to substitute
exchangeBulk() calls into
exchangleAll()/callAll() pairs. Creates
get and put accessor function for the
array given as an argument in
exchangeBulk(). Provides the logic at
the parser token level. Controls output
based on parser tokens.

ScopeManager.java

Store the variables associated with a
particular scope. Adds and removes
scopes from the scope-stack.

UnparseVisitor.java

Provides basic functionality for all
parser tokens in the Javal.l.jj grammar.

SimpleNode.java

Implements Node

Javal.l.jj

Auto-generated by JJTree from
Javal.l.jjt.

ASTAdditiveExpression.java

Auto-generated by JJTree

ASTAllocationExpression.java

Auto-generated by JJTree

ASTAndExpression.java Auto-generated by JJTree
ASTArgumentList.java Auto-generated by JJTree
ASTArguments.java Auto-generated by JJTree

ASTArrayDimsAndInits.java

Auto-generated by JJTree

ASTArraylnitializer.java

Auto-generated by JJTree

ASTAssignmentOperator.java

Auto-generated by JJTree

ASTBlock.java

Auto-generated by JJTree

ASTBlockStatement.java

Auto-generated by JJTree

ASTBooleanlLiteral.java

Auto-generated by JJTree

ASTBreakStatement.java

Auto-generated by JJTree

ASTCastExpression.java

Auto-generated by JJTree

ASTCastLookahead.java

Auto-generated by JJTree

ASTClassBody.java

Auto-generated by JJTree

ASTClassBodyDeclaration.java

Auto-generated by JJTree

ASTClassDeclaration.java

Auto-generated by JJTree

ASTCompilationUnit.java

Auto-generated by JJTree

ASTConditionalAndExpression.java

Auto-generated by JJTree

ASTConditionalExpression.java

Auto-generated by JJTree

ASTConditionalOrExpression.java

Auto-generated by JJTree

ASTConstructorDeclaration.java

Auto-generated by JJTree

ASTContinueStatement.java

Auto-generated by JJTree

ASTDoStatement.java

Auto-generated by JJTree

ASTEmptyStatement.java

Auto-generated by JJTree

ASTEqualityExpression.java

Auto-generated by JJTree

ASTExclusiveOrExpression.java

Auto-generated by JJTree

ASTExplicitConstructorlinvocation.java

Auto-generated by JJTree

ASTExpression.java

Auto-generated by JJTree

ASTFieldDeclaration.java

Auto-generated by JJTree

ASTForEach.java

Auto-generated by JJTree

ASTForEachStatement.java

Auto-generated by JJTree

ASTForlnit.java

Auto-generated by JJTree

ASTFormalParameter.java

Auto-generated by JJTree

ASTFormalParameters.java

Auto-generated by JJTree

ASTForStatement.java Auto-generated by JJTree
ASTForTraditional.java Auto-generated by JJTree
ASTForUpdate.java Auto-generated by JJTree
ASTldentifier.java Auto-generated by JJTree
ASTIfStatement.java Auto-generated by JJTree

ASTImportDeclaration.java

Auto-generated by JJTree

ASTInclusiveOrExpression.java

Auto-generated by JJTree

ASTInitializer.java

Auto-generated by JJTree

ASTInstanceOfExpression.java

Auto-generated by JJTree

ASTInterfaceDeclaration.java

Auto-generated by JJTree

ASTInterfaceMemberDeclaration.java

Auto-generated by JJTree

ASTLabeledStatement.java

Auto-generated by JJTree

ASTLiteral.java

Auto-generated by JJTree

ASTLocalVariableDeclaration.java

Auto-generated by JJTree

ASTMethodDeclaration.java

Auto-generated by JJTree

ASTMethodDeclarationLookahead.java

Auto-generated by JJTree

ASTMethodDeclarator.java

Auto-generated by JJTree

ASTMultiplicativeExpression.java

Auto-generated by JJTree

ASTName.java

Auto-generated by JJTree

ASTNamelist.java

Auto-generated by JJTree

ASTNestedClassDeclaration.java

Auto-generated by JJTree

ASTNestedInterfaceDeclaration.java

Auto-generated by JJTree

ASTNullLiteral.java

Auto-generated by JJTree

ASTPackageDeclaration.java

Auto-generated by JJTree

ASTPostfixExpression.java

Auto-generated by JJTree

ASTPreDecrementExpression.java

Auto-generated by JJTree

ASTPrelncrementExpression.java

Auto-generated by JJTree

ASTPrimaryExpression.java

Auto-generated by JJTree

ASTPrimaryPrefix.java

Auto-generated by JJTree

ASTPrimarySuffix.java

Auto-generated by JJTree

ASTPrimitiveType.java

Auto-generated by JJTree

ASTRelationalExpression.java

Auto-generated by JJTree

ASTResultType.java

Auto-generated by JJTree

ASTReturnStatement.java

Auto-generated by JJTree

ASTShiftExpression.java

Auto-generated by JJTree

ASTStatement.java

Auto-generated by JJTree

ASTStatementExpression.java

Auto-generated by JJTree

ASTStatementExpressionList.java

Auto-generated by JJTree

ASTStringliteral.java

Auto-generated by JJTree

ASTSwitchLabel.java

Auto-generated by JJTree

ASTSwitchStatement.java

Auto-generated by JJTree

ASTSynchronizedStatement.java

Auto-generated by JJTree

ASTThrowStatement.java

Auto-generated by JJTree

ASTTryStatement.java Auto-generated by JJTree
ASTType.java Auto-generated by JJTree
ASTTypeDeclaration.java Auto-generated by JJTree

ASTUnaryExpression.java

Auto-generated by JJTree

ASTUnaryExpressionNotPlusMinus.java

Auto-generated by JJTree

ASTUnmodifiedClassDeclaration.java

Auto-generated by JJTree

ASTUnmodifiedInterfaceDeclaration.java

Auto-generated by JJTree

ASTVariableDeclarator.java

Auto-generated by JJTree

ASTVariableDeclaratorld.java

Auto-generated by JJTree

ASTVariablelnitializer.java

Auto-generated by JJTree

ASTWhileStatement.java

Auto-generated by JJTree

JavaCharStream.java

Auto-generated by JavaCC

JavaParser.java

Auto-generated by JavaCC

JavaParserConstants.java

Auto-generated by JavaCC

JavaParserTokenManager.java

Auto-generated by JavaCC

JavaParserTreeConstants.java

Auto-generated by JavaCC

JavaParserVisitor.java

Auto-generated by JavaCC

JJTJavaParserState.java

Auto-generated by JavaCC

Node.java Auto-generated by JJTree
ParseException.java Auto-generated by JavaCC
Token.java Auto-generated by JavaCC

TokenMgrError.java

Auto-generated by JavaCC

demo/CFD Flow.java changed to use modified Solver3D
MASS.jar unchanged
Mesh.java unchanged
compile.sh build on Linux
run.bat run on Windows
run.sh run on Linux
demo/CFD/FDM Basiclnfo.java unchanged
Global.java unchanged
Grid.java unchanged
MatrixBase.java unchanged
MatrixP.java unchanged
MatrixT.java unchanged
MatrixV.java unchanged
MatrixV3D.java unchanged
Solver3D.java Modified to include Cubicle.java and
use preprocessor
demo/Wave2D MASS-Thread.jar unchanged

Wave2DMass.java

output of preprocessor

Wave2DMassModified.java

modified to use preprocessor

Wave2DMassOrig.java

the original Wave2D

