

© Copyright 2024

Shahruz Mannan

Analysis and Improvement of MASS-based GIS

Shahruz Mannan

A white paper

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2024

Reading Committee:

Dr. Munehiro Fukuda, Chair

Dr. Michael Stiber

Dr. Dong Si

Program Authorized to Offer Degree:

Computer Science & Software Engineering

University of Washington

Abstract

 Analysis and Improvement of MASS-based GIS

Shahruz Mannan

Chair of the Supervisory Committee:

Dr. Munehiro Fukuda

Computer Science

Geographical Information Systems (GIS) are important in several fields due to their ability to

perform the functions needed to capture, manage, analyze, and visualize geographic data.

However, the increasing complexity and volume of the geospatial data throws a challenge to

traditional GIS processing techniques. Therefore, enhanced computational strategies should be

investigated to meet demanding requirements for CPU and spatial scalability. This project focuses

on improving the existing integration of the Multi-Agent Spatial Simulation (MASS) library with

GIS, particularly computational geometry problems used within queries. The work includes a

comprehensive analysis of the existing MASS-based GIS system identifying the inefficiencies. It

proposes strategies for improvement, implementations, and benchmarks of existing and new

computational geometry problems including Range Search, Convex Hull, Largest Empty Circle,

and Euclidean Shortest Path using both Message Passing Interface (MPI) and MASS for parallel

processing, and conducting performance evaluations assessing CPU scalability, spatial scalability,

and programmability between MASS and MPI. The findings revealed that MASS implementations

have enhanced the organization and execution of spatial queries. Evaluations showed that MASS

requires less boilerplate code and has a lower code complexity than MPI. The MASS

implementations generally demonstrated better spatial scalability by effectively handling larger

datasets. For two of four computational geometry problems, MASS outperformed MPI as more

computing nodes were used. The evaluations identified potential optimizations to further improve

the performance and applicability of the MASS-based GIS system.

 i

TABLE OF CONTENTS

List of Figures .. iii

List of Tables ... iv

Chapter 1. Introduction ... 1

Chapter 2. Background ... 4

2.1 Multi-Agent Spatial Simulation (MASS) ... 4

2.2 Previous Work .. 5

Chapter 3. Related Work... 10

3.1 Agent-Based Frameworks Integrated with GIS .. 10

3.2 Parallelization of Computational Geometry Problems ... 13

3.3 Differentiate Our Approach from Related Works .. 15

Chapter 4. Implementation.. 17

4.1 MPI Implementations.. 17

4.1.1 Range Search .. 18

4.1.2 Convex Hull .. 19

4.1.3 Largest Empty Circle .. 22

4.1.4 Euclidean Shortest Path .. 25

4.2 Mass Implementations .. 27

4.2.1 Range Search .. 27

4.2.2 Convex Hull .. 29

 ii

4.2.3 Largest Empty Circle .. 32

4.2.4 Euclidean Shortest Path .. 34

Chapter 5. Results ... 36

5.1 Benchmarking Process .. 36

5.2 Execution Performance ... 38

5.3 Programmability Comparison ... 44

5.4 Discussions ... 47

Chapter 6. Conclusions ... 49

6.1 Overview ... 49

6.2 Future Work .. 50

Bibliography ... 52

Appendix ... 56

 iii

LIST OF FIGURES

Figure 1: MASS Model [7]. .. 5

Figure 2: Previous GIS queries implemented in MASS-based GIS [13]............................ 7

Figure 3: NetLogo simulation environment [24]. ... 11

Figure 4: Pedestrian modelling in retail [25]. ... 12

Figure 5: Avian Flu propagation and persistence simulation with GAMA [27]. 13

Figure 6: Range Search ... 18

Figure 7: Example of a kd-tree [39]. ... 19

Figure 8: Convex Hull .. 20

Figure 9: Tangent lines for partial Convex Hulls ... 22

Figure 10: Largest Empty Circle ... 23

Figure 11: Voronoi Diagram ... 24

Figure 12: Largest Empty Circle where the centroid is on a Voronoi vertex. 25

Figure 13: Visibility Graph ... 26

Figure 14: Euclidean Shortest Path ... 27

Figure 15: Map displaying spatial GIS query with Range Search. 29

Figure 16: Map displaying spatial GIS query execution using Convex Hull. 30

Figure 17: Agent propagation finding outer hull points. .. 31

Figure 18: Map visualizing spatial GIS query execution using Largest Empty Circle. ... 33

Figure 19: Map visualizing spatial GIS query execution using Euclidean Shortest Path. 35

Figure 20: Range Search execution performance of MASS and MPI. 38

Figure 21: Convex Hull execution performance of MASS and MPI................................ 40

Figure 22: Largest Empty Circle execution performance of MASS and MPI. 42

Figure 23: Euclidean Shortest Path execution performance of MASS and MPI. 43

 iv

LIST OF TABLES

Table 1: Benchmarking environment.. 36

Table 2: Benchmarking Datasets .. 37

Table 3: Programmability comparison: Range Search ... 45

Table 4: Programmability comparison: Convex Hull ... 45

Table 5: Programmability comparison: Largest Empty Circle ... 46

Table 6: Programmability comparison: Euclidean Shortest Path 46

1

Chapter 1. INTRODUCTION

Geographical Information Systems (GIS) [1] are software systems containing tools for

storing, managing, analyzing, and visualizing geographical data. Geographical data [2] refers to

attribute information that is associated with specific geographic locations on the Earth's surface.

Essentially, GIS is a solution integrating hardware, software, and information to enable users to

transform and present data that demonstrates correlations, patterns, and trends through maps,

reports, and charts. GIS does not only help in the conversion of large amounts of data into more

understandable information but also facilitates data utilization and interpretation in various fields

such as urban planning, environmental management, and transportation.

One of the challenges with GIS is the system being resource intensive. Using large datasets

of geographical data can slow down analyzing and visualizing the data significantly [3]. Therefore,

enhanced computational strategies should be investigated to meet demanding requirements for

time and spatial scalability. Parallelization of GIS is an appropriate approach which can address

the challenges regarding time and spatial scalability. CPU scalability essentially refers to GIS's

capacity to process decisions swiftly regardless of the volume of data. For real-time systems such

as emergency response or navigation assistance, reducing response times as data continues to grow

is critical. On the other hand, spatial scalability is imperative as the scope and detail of GIS

applications increase, necessitating systems that can handle larger datasets without compromising

the accuracy and performance.

Agent-based Modeling (ABM) [4] is a simulation modeling technique that consists of a

population autonomous of agents. ABM is used to explore the behavior of agents in an attempt to

understand the outcome of their interactions. These agents are entities with the ability to make

2

decisions and the power to act independently. An agent may interact with other agents and the

environment based on a set of predefined rules. ABMs are especially advantageous to GIS because

it helps to simulate social and environmental processes by simulating interactions and their

implications on geographical space. As each agent can be modeled with unique characteristics and

decision rules, the agents can show the diversity found in real-world scenarios [5].

Although ABMs show potential with GIS, using ABMs also has drawbacks. One of the

drawbacks of using ABMs is that simulations can become computationally intensive as the number

of agents and the complexity of their interactions increase. Another challenge is whether the

models accurately represent the systems they are intended to simulate. Thus, the internal logic of

the model, the parameters for the model and the accuracy of the model need to be constantly

verified. Lastly, ABMs integrated with GIS might need to manage data from different sources and

format types which can make data synchronization and data processing more complex [6].

This capstone builds on an existing GIS system integrated with an ABM framework, Multi-

Agent Spatial Simulation (MASS) [7], with the objective of analysis and improvement of the

system. We add various contributions to the existing MASS-based GIS system.

• Conduct a comprehensive analysis of the existing system to determine areas that need

improvement. Based on the analysis, spatial queries using computational geometry [8]

problems were notably inefficient.

• Improve existing and implement new computational geometry problems using Message

Passing Interface (MPI) Java [9] to form a baseline for comparison.

• Based on how implementations with MPI behave, implement the computational geometry

problems with MASS library focusing on improving CPU scalability or spatial scalability

or both.

3

• Integrate the computational geometry implementations with MASS to the MASS-based

GIS system to be used with spatial queries.

• Identify performance bottlenecks by performance evaluations assessing CPU scalability

and spatial scalability.

• Draw insights on code complexity and maintainability by conducting a programmability

comparison including Cyclomatic Complexity and Lines of Code (LoC) between MPI and

MASS implementations.

Following this introduction, the report is organized as follows: Chapter 2 introduces the

background of MASS library and existing MASS-based GIS system. Chapter 3 overviews known

ABMs integrated with GIS and computational geometry libraries. Chapter 4 describes the

implementation of this project. Evaluations are discussed in Chapter 5 and lastly, Chapter 6

concludes the project and presents directions for future work.

4

Chapter 2. BACKGROUND

This chapter introduces the reader to the key components that form the basis of this project.

The chapter starts by introducing the MASS library. Next, the previous work and its challenges

are reviewed. The section concludes with an introduction of MPI and discussing its role in parallel

computing and in this project.

2.1 MULTI-AGENT SPATIAL SIMULATION (MASS)

The Multi-Agent Spatial Simulation (MASS) [7] is an agent-based parallel computing library

for spatial simulation over a cluster of computing nodes. Development was initiated by Distributed

Systems Lab (DSLab) at University of Washington Bothell in 2010. MASS is an intuitive

programming framework to simulate real-world problems consisting of big data processes such as

bioinformatics, social networks, and geographic Information system [10]. Remote nodes for a

process at each node and the processes communicate with each other via TCP connection.

The MASS library has two key components: Places and Agents [7]. Places represent a

distributed array of place elements over a cluster of computing nodes. The distributed array is

managed by global indices and each place element can be distinguished with a unique index. Each

place can save data which can also be exchanged between other places. Agents are a set of

executable instances that can reside in places and migrate to other places through the cluster. Each

agent can interact with other agents and multiple places. Figure 1 shows the MASS model. The

places are assigned to threads and the agents are grouped in bags in each process.

5

Figure 1: MASS Model [7].

2.2 PREVIOUS WORK

The current development of MASS-based GIS systems has been greatly influenced by the

early work of prior students concentrating on integrating MASS with GIS. These projects have

used MASS’s robust parallel processing and agent-based modeling abilities to address some of the

challenges of traditional GIS.

M. Sieling [11] extended the capabilities of GIS by developing an agent-based approach to

GIS databases that could effectively distribute and manage GIS data across multiple computing

nodes. This approach reduced resource consumption and enhanced the overall performance

through the parallel interaction between the computing nodes. Another of Sieling’s approaches

was agent-based rendering of GIS data. Essentially, the GIS data was handled in fragments by the

agents. Agents would process independent fragments of a large dataset in different nodes, and then

the entire dataset would be recompiled into an integrated image of the map. This was particularly

6

effective in ensuring high resolution and quality when interacting with the map. Furthermore,

integrating the MASS-based GIS system with an open-source GIS toolkit, GeoTools [12] made it

possible to perform complex spatial operations more efficiently.

S. Panduragi’s [13] project was about parallelizing GIS queries to enhance the system’s

performance and scalability. She upgraded the GIS system to use distributed computing nodes.

Previously the system used AWS cloud-based servers but later shifted to computational clusters in

the University of Washington Bothell. This shifting enhanced better partitioning and distribution

of spatial data across the multiple computing nodes promoting spatial scalability. Panduragi was

also responsible for integrating GIS queries with computational geometry problems using the

MASS library. This integration brought spatial analysis tools, including Closest Pair of Points

(CPP) [15], Range Search (RS) [16], and Minimum Spanning Tree (MST) [17] directly into GIS.

Lastly, Panduragi integrated Contextual Query Language (CQL) [14] from GeoTools. Particularly,

CQL is a query language used to query information from the GIS system that involves spatial data

or attribute data. Figure 2 shows the two categories of the parallelization of GIS queries.

7

Figure 2: Previous GIS queries implemented in MASS-based GIS [13].

Both Sieling and Pandurangi’s works offer improvements in computational efficiency,

scalability, and performance for the MASS-based GIS system. However, several key challenges

were identified as the previous work was reviewed, specifically related to the parallel GIS queries

using computational geometry and MASS. The implementations of computational geometry

problems with MASS encountered issues with CPU scalability and spatial scalability. As more

computing nodes were used, the execution speed for Range Search and Minimum Spanning tree

increased.

The Range Search problem also displayed issues with spatial scalability too. Previous

performance evaluations showed RS had issues executing very large GIS datasets and the

executions had to be stopped for taking extremely large amounts of time. Thus, indicating that

parallelization had not improved the performance of this computational geometry problem. The

Minimum Spanning Tree showed minimal CPU scalability but increasing the number of

computing nodes further slowed down the execution performance. This computational geometry

8

problem was also implemented with MASS in C. Tsui’s project [18]. The performance evaluations

conducted by Tsui showed that this behavior is because of the memory overhead and the

communication time between the computing nodes. These observations determined that MST

might not be parallelizable with MASS and another approach was needed.

Another issue with the existing system was the scarcity of computational geometry problems.

Although, three computational geometry problems have been integrated to be used with spatial

queries, there is a lack of more advanced and complex computational geometry implementations

in the system. This scarcity limits the applicability of the MASS-based GIS system in scenarios

requiring in-depth spatial analysis and decision-making such as spatial pattern recognition and

predictive spatial modeling.

Based on the observed challenges, we decided to focus on computational geometry problems

with MASS portion of the system. This project will try to overcome these challenges by improving

the existing and implementing new computational geometry problems to be used by the MASS-

based GIS system. The selected computational geometry problems for further development are

Range Search (RS), Convex Hull (CH) [19], Largest Empty Circle (LEC) [20], and Euclidean

Shortest Path (ESP) [21]. The Range Search was chosen because the previous implementation

was inefficient, and the MASS-based GIS needs an improved version of RS. CH and LEC were

selected because these can be used for complex GIS queries and expand the applicability of

existing system. The last computational geometry problem, ESP, can be used to solve similar

problems as Minimum Spanning Tree. As MST is not parallelizable with MASS, Euclidean

Shortest Path was chosen as a new approach potentially replace MST in the existing system. We

implement these computational geometry problems with MPI first to observe the CPU and spatial

9

scalability. This approach will make the decision on what to focus on with the MASS

implementations easier.

10

Chapter 3. RELATED WORK

This section covers agent-based models integrated with GIS and computational geometry

libraries. At the end, it differentiates these related works from our approach.

3.1 AGENT-BASED FRAMEWORKS INTEGRATED WITH GIS

NetLogo [22] is a free, open-source, agent-based modelling system. It was developed with

the aim of analyzing social and natural behaviors. The biggest advantage of NetLogo is its

programming language which is a modified version of Logo programming language. Because of

its simplicity, it allows beginners to create models with little programming skills. The ABM has a

GIS extension which allows the users to import geographic data into NetLogo projects [23].

A study demonstrated a simulation of urban sprawl in the Waterloo region, Ontario, Canada

[24]. The project utilized NetLogo to simulate the residential movement behavior of students based

on their preferences on how far the housing locations are from necessary amenities and

infrastructure. The agents made decisions on where to settle based on the time it would take to

walk these locations. This study showed how NetLogo integrated with GIS offers a powerful

system to analyze urban development patterns. Figure 3 shows the simulation environment created

in NetLogo. The brown areas represent unsuitable locations for settlement, while the green areas

indicate suitable locations where students can potentially settle.

11

Figure 3: NetLogo simulation environment [24].

Repast Simphony [25] is a Java open-source framework which is designed for analyzing and

building agent-based simulations. This ABM is a part of Repast Suite which is a family of ABM

platforms. This framework uses geography projections for geographic referencing. This correlates

to associating agents with specific positions in space. The agents in this space correspond to a

particular geographical feature such as points or polygons. This geography projection relates to a

connection with a coordinate referencing system (CRS) which can be used to execute Spatial and

Attribute queries based on the agents’ features. A study conducted by researchers at the Centre of

Advanced Spatial Analysis (CASA) at University College London utilized Repast Simphony for

simulating pedestrian movement patterns in a retail environment. Figure 4 demonstrates the

simulation environment created for this study. The red dots represent the primary routes the agents

have taken, highlighting the most frequently taken paths in the simulation environment.

Repast HPC [26] is an open-source, C++ based multi-agent simulation tool which enables

parallel processing by using MPI and therefore making large-scale processes possible. In Repast

12

HPC, the agents are implemented as C++ classes, which allows the user to use C++ high

performance libraries.

Figure 4: Pedestrian modelling in retail [25].

A more recent agent-based model framework that emphasizes the integration of GIS into

simulation environments is GAMA [27]. This framework has similar GIS capabilities to Repast

Simphony. GAMA treats every geographic object as an agent. This feature enables the dynamic

management of geographic elements in the simulation. To simplify the process of including GIS

data to simulations, a user-friendly modeling language GAML (GAMA modeling language) is

provided.

A study used GAMA for a simulation of the local propagation and the persistence of avian

flu in North Vietnam [27]. The simulation modeled the movement and the interactions between

poultry populations from different farm types and landscapes. The agents represented the poultry

populations. The interactions between the agents were guided by geographical features and human

13

management practices. Figure 5 shows the simulation model implemented with GAMA. The red

dots represent the poultry flock agents within the simulation. The green areas indicate reachable

rice fields which are the potential destinations for poultry flock agents.

Figure 5: Avian Flu propagation and persistence simulation with GAMA [27].

Each of these ABMs has their advantages but also their challenges. NetLogo can have

performance and scalability issues with larger or complex simulations due to its sequential

execution. NetLogo also has a limited amount of debugging functionalities which might hinder the

development process. Repast Suite has a steep learning curve which does not make it accessible

for everybody. Repast HPC has outdated documentation, and the installation process is complex.

For GAMA, its own modeling language GAML needs to be used which can be a learning curve

and complicate the implementation of more complex simulation scenarios [28].

3.2 PARALLELIZATION OF COMPUTATIONAL GEOMETRY PROBLEMS

The Computational Geometry Algorithms Library (CGAL) [29] is a C++ library of

computational geometry algorithms. This library has algorithms for solutions such as 2D and 3D

triangulations and surface mesh generations, searching neighbors for points and many other

14

geometric operations. This library is used in various fields such as medical imaging, CAD/CAM,

and computer graphics. However, CGAL supports both commercial and open-source uses, thus

making this library versatile.

ParGeo [30] is a multicore C++ library with parallel algorithms for computational geometry

problems. This library is suitable for applications which require a large amount of data to be

proessed on multicore machines. ParGeo contains modules for different tasks such as Kd-tree

spatial search, spatial graph generation, and a collection of parallel geometric algorithms. In

addition, ParGeo contains novel parallel algorithms for problems such as Convex Hull and batch-

dynamic Kd-tree.

ParLeda [31] is a C++ library to make parallel implementations easier for computational

geometry applications. This library integrates MPI (Message Passing Interface) for

communication over distributed systems (a heterogeneous network of UNIX machines).

Additionally, this library is utilizing data structures and algorithms from the existing computational

geometry library LEDA. The MPI library enables the ParLeda to dynamically partition the data

across the distributed system making this library suitable for environments where the computing

power differs among the machines.

While these libraries make using computational geometry problems easier, they have

limitations that can hinder the broader application. CGAL offers a wide range of algorithms, but

only some of them are implemented in parallel. This limitation can restrict the library’s

effectiveness for real-time GIS applications. On the other hand, ParGeo is optimized for multicore

systems but only for single machines. ParLeda presents a different set of issues. As this library

uses MPI for communicating over the distributed system, the library inherits limitations associated

with MPI such as lack fault tolerance and its low-level nature. In addition, ParLeda does not have

15

robust documentation which makes it challenging for developers to fully utilize the capabilities of

this library.

3.3 DIFFERENTIATE OUR APPROACH FROM RELATED WORKS

The differences between our approach to other agent-based models integrated with GIS and

computational geometry libraries are as follows:

• The ABM frameworks integrated with GIS don’t use computational geometry algorithms

for spatial queries. However, with MASS-based GIS, spatial queries can be executed by

taking advantage of computational geometry problems such as Range Search, Convex Hull,

Largest Empty Circle, and Euclidean Shortest Path.

• The sequential ABM, NetLogo, does not support parallel processing. Also, most of the

CGAL library’s algorithms are sequential. Our approach, parallel computational geometry

algorithms with MASS which leverages parallel computing, specifically for distributed

systems is a better approach for GIS applications which require manipulating and analyzing

a large amount of spatial data.

• With GAMA, for model development purposes, GAML language needs to be used. This

framework is better suited for quick prototyping because GAML being a simple and easy

to learn modeling language. For more complex models and queries, MASS-based GIS is a

better option. It can manage complex spatial data structures across multiple computing

nodes which makes querying effective with large amounts of data.

• With MPI-based Repast HPC and ParLeda library, significant limitations include the lack

of fault tolerance and synchronization challenges MASS-based GIS provides a better

alternative. It uses low-level system calls and offers better fault tolerance and scalability,

making it a more reliable choice for large-scale distributed GIS applications.

16

• The ParGeo library is designed for parallel computation within a single multicore machine.

The library takes advantage of parallel schedulers like OpenMP [32], Cilk [33], or

ParlayLib [34] which are used to manage and optimize parallel tasks on shared memory

instead of in a distributed system. Our approach parallelizes computational geometry

problems with MASS which assumes a cluster of multi-core computing nodes as the

environment.

17

Chapter 4. IMPLEMENTATION

This section is organized to provide a detailed look at the implementation of four

computational geometry problems: Range Search, Convex Hull, Largest Empty Circle, and

Euclidean Shortest Path. The MPI implementations are explained first and then the MASS

implementations. These computational geometry problems were selected based on the

observations and limitations identified in the previous work section. Range Search can find

features within a specific range which is a common requirement in geospatial analysis. Adding

Convex Hull and Largest Empty Circle to MASS-based GIS will enable the existing system to be

used for spatial pattern recognition and predictive spatial modeling. Lastly, Euclidean Shortest

Path can be used in similar spatial queries as Minimum Spanning Tree for finding the shortest path

between two coordinates.

4.1 MPI IMPLEMENTATIONS

The general process for implementing the computational geometry problems using MPI Java

is first selecting what algorithm suits the best for these problems. After choosing the algorithm,

the next part is splitting these algorithms into smaller tasks and identifying the specific tasks which

can be executed in parallel. Then, these specific tasks are distributed to the other computing nodes

using MPI, including the necessary data. Each node executes the task concurrently, which reduces

the time spent on the computation. Lastly, the results from each computing node are collected to

form the final solution for the original problem. The goal for implementing these computational

geometry problems with MPI java is to observe their CPU and spatial scalability in order to form

a baseline to compare with the MASS implementations. All these MPI implementations are

implemented from scratch.

18

4.1.1 Range Search

Range Search (RS) is used to identify all points within a specified spatial boundary from a set

of points. Figure 6 illustrates Range Search with a rectangular boundary. The red points are the

output points which are in range. Several efficient data structures can be used for Range Searching

including kd-trees [35], R-Trees [36], and Quadtrees [37]. The previous MASS implementation of

RS used the kd-tree data structure to organize the points and query the tree for the points that fall

in the specified boundary. We decided to use kd-trees for their simplicity and effectiveness in

organizing and querying points in k-dimensional spaces.

Figure 6: Range Search

This implementation follows the general process mentioned above. First, data points are read

from a CSV input file and partitioning the data points equally to all the computing nodes. Each

computing node constructs its own kd-tree and queries these trees to find the points in range. Kd-

trees are binary trees where every node is a k-dimensional point (in our case, a 2-dimensional

19

point). The tree is built recursively by selecting a dimension, sorting the points with Quicksort [38]

based on the selected dimension, and assigning the middle point as the node. The rest of the points

are split into the node’s left and right subtrees where smaller values go to left subtree and larger

values to the right subtree. In this scenario, for every even layer (root being layer 0), the x

coordinate was the dominating dimension and in every odd layer, the y coordinate was the

dominating dimension. Figure 7 shows an example of how a kd-tree is constructed from a set of

points. Every kd-tree is queried to find the points that are in the specified boundary. Once all the

computing nodes have completed querying the trees, “Gather” MPI routine is called to gather all

the points that are in range of the specified boundary back to the master node.

Figure 7: Example of a kd-tree [39].

4.1.2 Convex Hull

Convex Hull (CH) is a classic computational geometry problem that involves finding the

smallest convex set containing all the points. As Figure 8 illustrates, the goal is to identify the least

number of outermost points (red points) that form a convex polygon containing all the points. CH

can be solved with many different algorithms such as Quickhull [19], Graham scan [40], and

Monotone chain algorithm [41]. We chose to implement Monotone Chain algorithm because of

two reasons. One is that all the algorithms above have the same time complexity as O(NlogN)

where the N is the number of points. The second reason is that the other two algorithms are more

20

complex to implement. In the MASS-based GIS system, these two algorithms might complicate

the execution of the spatial queries as coordinates (latitude, longitude) are introduced with spatial

data.

Figure 8: Convex Hull

The approach starts similarly by reading data points from an input file. However, before

partitioning the data evenly for all the computing nodes, the data need preprocessing. The points

are sorted based on the x coordinate. Now, partitioning the data and distributing the subsets to the

computing nodes will result in the subsets having data points which are near each other. The data

distribution can visualize as having the plane sliced into M vertical slices where M is the number

of computing nodes.

Next, the Monotone Chain algorithm is used to compute the Convex Hull points in each

computing node. The algorithm constructs the upper hull and the lower hull separately.

Construction of the upper hull starts from the leftmost point and then checks iteratively for each

point if the last two upper hull points and the current point make a left turn. If this left turn occurs,

the second last point in the upper hull points is not an outermost point and needs to be removed.

Once, no more left turns are found with the current point, this point is added to the upper hull

points. The lower hull is computed in a similar manner but starting from the rightmost point and a

21

check for a right turn happens instead for a left turn. After both hull parts are constructed, the upper

and the lower hulls are combined creating a complete convex hull. The right and left turns between

three points are computed by calculating the determinant of the 3x3 matrix shown in Equation 1.

Li and Li-1 refer to the last two hull points and the p refers to the current point.

𝑐𝑝 = |

𝐿𝑖−1. 𝑥 𝐿𝑖−1. 𝑦 1
𝐿𝑖 . 𝑥 𝐿𝑖 . 𝑦 1
𝑝. 𝑥 𝑝. 𝑦 1

|

𝑐𝑝 = (𝐿𝑖 . 𝑥 − 𝐿𝑖−1. 𝑥)(𝑝. 𝑦 − 𝐿𝑖−1. 𝑦) − (𝐿𝑖. 𝑦 − 𝐿𝑖−1. 𝑦)(𝑝. 𝑥 − 𝐿𝑖−1. 𝑥)

Equation 1: Determinant formula [42].

After creating the partial hulls in every computing node, “MPI_Send” and “MPI_Recv”

routines are called to send and receive hull points from other ranks to combine the hulls in a divide-

and-conquer-like manner until the final global Convex Hull is in the master rank. Two partial

convex hulls are merged by finding the upper and lower tangent lines. These tangent lines are

calculated in a similar manner by checking for right and left turns until the outermost tangents that

do not intersect the hulls are found. The data points between these tangent lines get removed.

Figure 9 displays finding the two tangent lines between two different Convex Hulls.

22

Figure 9: Tangent lines for partial Convex Hulls

4.1.3 Largest Empty Circle

This computational geometry problem, Largest Empty Circle (LEC), identifies the largest

circle within a set of points that does not hold any of these points inside. Figure 10 visualizes a

Largest Empty Circle from a set of points. The red point refers to the centroid of the Largest Empty

Circle. For our approach, we decided to use a Voronoi Diagram to compute the LEC. The reason

behind this decision is that LEC’s centroid is either a Voronoi vertex or an intersection point

between the input points’ Convex Hull and a Voronoi Edge [20]. Creating a Voronoi Diagram will

provide the vertices and the edges, and we have already implemented CH which can be used for

this approach too, providing all the building blocks to retrieving every potential centroid for LEC.

23

Figure 10: Largest Empty Circle

This approach starts similarly as Range Search MPI and Convex Hull MPI implementations

by reading the data points from an input file. Next, a Voronoi Diagram from the input points is

created using the Fortune Sweep algorithm [43] sequentially in the master rank. This algorithm is

an efficient O(NlogN) algorithm where a sweep line progresses through the plane while

maintaining an evolving beach line. While the beach line evolves, it creates the Voronoi vertices

and edges. Once the sweep line has visited all the points, the Voronoi Diagram is completed. Figure

11 displays a complete Voronoi Diagram. A Voronoi Diagram represents partitioning of the plane

into regions based on the distance to input points. Each region contains one input point and every

point inside the region is closer to that input point than to any other.

24

Figure 11: Voronoi Diagram

Once the Voronoi diagram is constructed, the Convex Hull points from the input points are

computed with the Monotone chain algorithm we previously implemented. Next, the Voronoi

vertices, Voronoi edges, and the Convex Hull points, are split into partitions and sent with MPI to

the computing nodes. These nodes compute the intersection points between the subsets of Voronoi

Edges and the Convex Hull edges to calculate the remaining potential center points. Next, the

computing nodes iterate through these potential center points including Voronoi vertices and the

intersection points to calculate the radius to their closest original data point. Finally, information

of local LECs (radius and center point) are sent back to the master rank where the final LEC is

selected. This part is the most computationally intensive part which is the reason the focus is on

parallelizing this segment of the implementation. Figure 12 shows the Largest Empty Circle with

Convex Hull and Voronoi Diagram constructed. The red dot refers to a Voronoi Vertex which is

the centroid of LEC.

25

Figure 12: Largest Empty Circle where the centroid is on a Voronoi vertex.

4.1.4 Euclidean Shortest Path

The Euclidean Shortest Path (ESP) problem is one of the oldest and the most popular problems

in computational geometry. This problem involves finding the shortest path between a start and

destination point through polygon obstacles. This path must have the shortest traversal distance

between these points without going through any of the obstacles. One of the common approaches

for this problem is the visibility graph method where a visibility graph is constructed from the set

of points and then running a graph traversal algorithm such as Dijkstra’s algorithm [46] for finding

the shortest path. This is the approach we chose to use for solving the ESP problem.

Input points for this implementation are the obstacle corners, source point and destination

point. The data points are partitioned to the other computing nodes where visibility graphs are

created from the subsets. A visibility graph is a graph of intervisible locations for a set of points.

In other words, the vertices represent the data points, and the edges represent visible connections

between the vertices which do not intersect obstacles. Figure 13 visualizes a visibility graph with

two obstacles, source, and destination point. We implement the visibility graph with the naïve

26

approach [44]. This approach compares every pair of points from the input points whether a line

segment between the pair of points intersects with obstacle edges. If a line segment does not

intersect with any obstacle edge and does not go through an obstacle, the pair has a visibility edge.

Figure 13: Visibility Graph

Once the visibility graphs are constructed, the information is saved as a HashMap, where the

key is a vertex, and the value is a list of the vertices which can create a visibility edge with this

specific vertex. Next, all the partial visibility graphs are sent back to the master rank and combined

into complete visibility graph of all the data points. Lastly, Dijkstra’s algorithm is used for finding

the shortest path. Figure 14 shows the shortest path between the source point and the destination

point with two obstacles.

27

Figure 14: Euclidean Shortest Path

4.2 MASS IMPLEMENTATIONS

The general process for implementing computational geometry problems with MASS

includes leveraging the library’s capabilities for parallel processing and agent-based modelling.

The MASS implementation has two differences compared to MPI implementations. The first

difference is that MASS enables partitioning and distributing the data across the computing nodes

by using Places. The agents operate and interact by performing computational tasks in these places.

The other difference is that GIS functionalities are added to these MASS implementations so that

they would be compatible with the MASS-based GIS system to be used in spatial queries.

4.2.1 Range Search

Similarly to the Range Search MPI implementation, this approach uses the kd-tree data

structure to organize the points and query the trees for the points which are in specified range. This

implementation starts by reading the data points from a shapefile (.shp). Shapefiles offer a

nontopological format to store the geometric location of geographic features. In addition to points,

28

shapefiles can store other complex geometries such as lines and polygons. Another reason for

using shapefiles is because these can be easily visualized on maps. The next step is partitioning

the data into subsets corresponding to the number of MASS Places. This ensures each subset is of

a manageable size, thereby reducing the workload for every computing node. MASS gets

initialized, and the Places and Agents are created. Each subset is assigned to a place where kd-

trees are constructed from these points. In this implementation, the same recursive kd-tree

construction algorithm is applied as in the MPI implementation. The previous MASS

implementation created only one kd-tree with GraphPlaces, which is an extended class of Places.

The vertices in the graph are distributed across the computing nodes and agents are spawned to

query this single kd-tree. As this approach was not CPU and spatially scalable, creating multiple

smaller kd-trees was a more appealing approach.

Once the kd-trees are constructed, the agents are responsible for querying the trees for the

points in range. Each agent is associated with a Place and collects the points in range from that

specific kd-tree. The agents return the points in range to the master node where the points are saved

into the GIS database. There is a possibility that an Agent does not find a single point which falls

under the specified range. In this scenario, the Agent gets terminated which leads to less agents

returning the points in range and making the execution more efficient. Finally, the results are

generated to a GIS map as coordinates.

GIS functionalities such as reading a shapefile and creating a map, need an external library.

As the GeoTools library is already integrated with the MASS-based GIS system, I leverage this

library for adding the GIS functionalities to this RS implementation. The GIS map is built by

setting layers on top of each other to get the final map. This map has two layers: a tiled map from

OpenStreetMap [47] and the points in range as dots on top of the map layer. Figure 15 presents a

29

spatial query of a mineral deposit dataset (MRDS) [48] to retrieve all mineral deposits in western

Europe. The blue dots represent the mineral deposits.

Figure 15: Map displaying spatial GIS query with Range Search.

4.2.2 Convex Hull

The Convex Hull MASS implementation uses the elastic band algorithm approach [49]. A.

Potturi’s [50] existing CH MASS application is used as a reference for this implementation.

Similarly to the Range Search MASS implementation, CH MASS uses the MASS library to

parallelize the computational geometry problem and adds GIS functionalities in order to be used

with the MASS-based GIS system. Figure 17 displays a GIS map which the Convex Hull

implementation generates with National USFS Fire Occurrence dataset [52]. Before using the

Convex Hull on the dataset, Range Search is used to retrieve all the fire occurrences in Yellowstone

National Park. The blue dots refer to the fire occurrences and the red line segments connect the

outer hull points to create the Convex Hull.

30

Figure 16: Map displaying spatial GIS query execution using Convex Hull.

In this implementation, the data points are read from a shapefile and at the same time the

minimum and maximum values for both latitude and longitude are calculated to define bounding

box to partition the data across the MASS Places. MASS initializes a two-dimensional grid of

Places where each Place represents a portion of the overall space and contains a subset of the data

points based on their spatial location. We make a modification to the approach regarding how each

Place receives the points. In the referenced CH MASS application, each place reads the input file

and collects the points which belonged to the specific place’s space. Considering spatial scalability,

using a large number of points may slow the performance as each place tries to read the same input

file which can lead to overhead. We read the points only once and pass the points to the places

when initialized.

31

Next, the agents are initialized and assigned starting positions at the boundary of the grid. We

use agent propagation to find potential outer hull points which make the Convex Hull. Figure 16

shows the agent propagation process in a simplified manner. These agents traverse through the

grid, and the strategy is to move inwards to identify potential points which might be part of the

outer hull. If a place contains a potential outer hull point, the point is marked as visited and

collected, while the current agent is terminated. After every agent is terminated, all the potential

outer hull points are collected.

Figure 17: Agent propagation finding outer hull points.

From the reduced set of data points the final Convex Hull is calculated with Monotone chain

algorithm to remove outliers which might have mistakenly identified as outer hull points. Lastly,

the final CH points are written in the GIS database from where the points can be used for additional

queries. In addition, a similar GIS map is created as in the RS MASS implementation. This GIS

32

map, however, has an additional layer for the map: line segments connecting the Convex Hull

points which makes the convex hull complete on the map.

4.2.3 Largest Empty Circle

The first approach we attempted to use for the LEC MASS implementation was an agent

propagation approach from a previously implemented LEC MASS application. The idea was that

there are cities (input points) and dump sites (potential centroid of LEC), and the goal was to find

the most suitable dump site farthest from all the cities. The strategy involved two sets of agents:

static agents positioned at city locations and mobile agents starting from potential dump sites. The

mobile agents propagated through the grid space trying to find a grid cell containing a city. Once

a city was found, the distance from the original dump site was calculated aiming to maximize this

distance. This approach, however, was unusable as the previous implementation was incomplete.

It was missing multiple key functions which were called in the implementation making the code

not executable. Another challenge was the implementation was not well-documented, especially

for incomplete segments. Not understanding intended functionality made it difficult to debug.

Thus, we decided to use a similar approach to the LEC MPI implementation.

The new approach for this problem creates a Voronoi Diagram sequentially from the read

geographic data points. The same Fortune’s Sweep algorithm used in the LEC MPI

implementation is used for this approach too. Next, the diagram’s vertices and edges are distributed

among Places. Each place tries to compute the intersections between Convex Hull edges and

Voronoi edges and the potential Largest Empty Circle. To determine the actual LEC, each Place

sends their potential circles to the master node where the circles are compared to find the largest

one among these circles. Lastly, a GIS map is created to visualize the output. For this

implementation, four layers were needed to visualize the whole LEC problem: a tiled map layer,

33

an input points layer, a circle layer, and a centroid layer. The first two layers are self-explanatory.

The circle layer contains the information about the circumference of the circle and the centroid

layer contains the centroid of the LEC.

Figure 18 displays the results for finding a Largest Empty Circle from all nuclear power plants

in Europe from 2023. This spatial query used World Nuclear Power Plant 2023 [54] dataset which

contains all nuclear power plants around the world in 2023. To compute the LEC from just the

power plants in Europe, Range Search had to be executed first to collect all the points located in

Europe. In Figure 18, the blue dots represent the existing nuclear power plants, the red dotted circle

refers to the Largest Empty Circle, and the blue cross refers to the centroid of the LEC and the

location where a new potential nuclear power plant can be built. This Figure shows a perfect

example as why using LEC is a good option for urban planning.

Figure 18: Map visualizing spatial GIS query execution using Largest Empty Circle.

34

4.2.4 Euclidean Shortest Path

For this Computational Geometry problem, A. Potturi [50] has already implemented a MASS

application for ESP which we tried using as a reference for this implementation. However, this

implementation was not suitable for the MASS-based GIS system. The approach would calculate

the shortest distances between the points every time it was executed by using agent-propagation,

which might make the spatial queries using ESP slow for larger datasets. However, as the MASS-

based GIS system can save data, we thought of saving the shortest distances. This was not effective

as the shortest distances saved would only be from a specific source point and would restrict users

from computing ESP from other points. To take advantage of the MASS-based GIS system, this

Euclidean Shortest Path MASS implementation needed another approach.

The approach taken was similar to the Euclidean Shortest Path MPI implementation. We

created a visibility graph and used the Dijkstra’s path finding algorithm to find the shortest path

between a source and destination point. In this approach, the visibility graph is saved to the GIS

database once the graph is created. This approach allows the users to query the shortest path

between new start and destination points using the existing visibility graph which lowers the

execution time considerably if a spatial query using ESP has been executed before with the same

dataset. Figure 19 shows a GIS map that this ESP MASS implementation generates, illustrating

the shortest path from Aden, Yemen, to Kuala Lumpur, Malaysia. The dataset this example

execution used was National Oceanic and Atmospheric Administration’s (NOAA) shoreline

dataset [55]. The shorelines are constructed from hierarchically arranged closed polygons. In

Figure 19, the blue dots refer to visibility graph vertices that create the shortest path and the red

line represents the actual shortest path, avoiding obstacles.

35

Figure 19: Map visualizing spatial GIS query execution using Euclidean Shortest Path.

The implementation reads obstacle points from a shapefile and creates a list of polygons

objects. Each polygon object has a list of its corner points. If the dataset used has singular points

instead, a list of points is created. The read data including the source point and the destination point

are partitioned into subsets of points corresponding to the number of MASS Places to distribute

the workload. The Places construct visibility graphs with their subset of points with the same naïve

algorithm which is bound to O(N3). Once the visibility graphs are constructed, these graphs are

returned to the master node to be combined into one big visibility graph. The final step for

calculating the shortest path is to use the Dijkstra’s algorithm on the combined visibility graph.

Lastly, the implementation returns the shortest distance and the points creating this path which can

be visualized with a GIS map.

36

Chapter 5. RESULTS

This section presents an analysis of benchmarks conducted on the MPI and MASS

implementations. It discusses the execution performance in terms of CPU scalability and spatial

scalability. At the end, this section offers a programmability comparison between the MPI and the

MASS implementations.

5.1 BENCHMARKING PROCESS

The benchmarks were carried out on University of Washington Bothell’s HERMES cluster.

This benchmarking used 20 computing nodes from the cluster which are 64-bit Linux servers

connected to a central filesystem. Detailed information about these computing nodes is available

in Table 1.

Table 1: Benchmarking environment

Number of

Computing Nodes

Logical

Cores

CPU Model Memory

3 4 Intel Xeon 5150 @ 2.66GHz 16 GB

4 8 Intel Xeon E5410 @ 2.33GHz 16 GB

5 4 Intel Xeon Gold 5220R @

2.20GHz

16 GB

8 4 AMD EPYC 7252 @ 3.10GHz 16 GB

The evaluations of the computational geometry implementations with MPI and MASS utilized

a diverse range of GIS datasets. Table 2 shows which dataset was used for which computational

geometry problem. The datasets are in .csv format which made it possible to use the datasets for

both MPI and MASS implementations. As the MPI implementations did not have support for GIS

functionalities, the implementations could not read shapefiles. Using csv files allowed us to

perform more accurate comparisons. To evaluate the spatial complexity for LEC, a dataset of

37

50,000 randomized coordinates is used. We could not find a GIS dataset in .csv format that

contained obstacles as points for benchmarking the ESP implementations. Thus, we generated a

dataset containing 500 polygons with randomized number of corners ranging from 4 to 8.

Table 2: Benchmarking Datasets

Dataset Size Computational

Geometry problems

Crime Locations in LA, US [51] 938,458 points Range Search, Convex

Hull

National USFS Fire Occurrence [52] 581,541 points Range Search, Convex

Hull

US Private School Locations [53] 22,346 points Largest Empty Circle

Randomized spatial points 50,000 points Largest Empty Circle

Randomized 300 polygons with 4 to 6

vertices

1,200 – 1,800 points Euclidean Shortest Path

Randomized 500 polygons with 4 to 6

vertices

2,000 – 3,000 points Euclidean Shortest Path

Benchmarking the applications primarily focused on CPU scalability and spatial scalability.

These benchmarks assessed how the implemented computational geometry applications performed

with varying sizes of data. In this scenario, CPU scalability refers to how effectively can an

application leverage multiple computing nodes. As for spatial scalability, it refers to how well an

application can handle increasing sizes of spatial data. The execution times do not include the time

taken to generate the GIS maps as the MPI implementations do not have this functionality

implemented. All the execution times are an average of three runs.

38

5.2 EXECUTION PERFORMANCE

Figure 20: Range Search execution performance of MASS and MPI.

For RS benchmarking, the spatial query executed with the Fire occurrences dataset was: “Fire

occurrences in Yellowstone national park”. With the larger dataset, the spatial query was: “Crime

occurrences in Hollywood area”. Figure 20 showcases the execution performance of MASS and

MPI for range search across two different sized datasets, provides insights into CPU scalability

and spatial scalability. Both implementations visualize two metrics: kd-tree construction time and

total time. Kd-tree construction time is the average time taken for the kd-trees to be constructed.

The total time is the time taken to solve the computational geometry problem which excludes IO

operations.

In general, MPI outperforms MASS as more computing nodes are used. However, MASS

shows a decreasing trend during the whole benchmarking process, indicating good CPU

scalability. In Figure 20 a), the most significant increase in performance is between moving from

1 to 4 nodes. With the larger dataset MASS started stabilizing after 12 nodes. This is because of

a) 581,541 points b) 938,458 points

39

the communication overhead. Once the agents have queried the kd-trees for points which are in

range, the agents return the points to the master node. As for the spatial scalability, MASS

demonstrates good spatial scalability when the larger dataset is used. Kd-tree construction time for

MASS starts outperforming MPI’s kd-tree construction time after 7 nodes. In the previous RS

MASS implementation, the kd-tree construction was the bottleneck, which is not the case anymore

with the current implementation. This results in better CPU scalability and spatial scalability than

the previous RS implementation.

MPI on the other hand, displays good CPU scalability in the beginning for both kd-tree

construction time and total time but then the performance starts decreasing for both time metrics.

In Figure 20 a), this behavior is noticed after 4 nodes for kd-tree construction time and 12 nodes

for the total time. In Figure 20 b), both metrics for MPI start stabilizing after 2 nodes. This is also

because of communication overhead. The master node calls “MPI_gather“ which gathers all the

result points from all the worker nodes. However, each computing node might have a different

amount of result points, making each message size different. For spatial scalability, MPI maintains

its performance advantage as the size of the dataset increases.

40

Figure 21: Convex Hull execution performance of MASS and MPI.

For benchmarking the CH applications, spatial queries are executed on the whole datasets. In

a real-world scenario, this might not be the case as the spatial locations might be distributed to a

large area. Point locations might be first gathered from a specific for example with RS and then

CH would be used to query the filtered points. To get accurate benchmarks, all the points were

used in both datasets. The three measurements in time are observed during the benchmarking

process: total time for MPI, total time for MASS, and time it took for Places to be created and

initialized in the MASS implementation.

Figure 21 indicates that MASS outperforms MPI for the most part. MASS demonstrates

promising results from nodes 1 through 2 with the smaller dataset and 1 through 4. After that, the

execution times start increasing. From both figures, we can observe that the Places initialization

cost in time follows the same trend as the total time for MASS. Another observation is that

initializing places take most of the time in the MASS implementation. The time difference between

these two metrics includes the agent propagation for finding the outer hull points and the Monotone

chain algorithm to remove the outlier points. The reason for the Places initialization taking the

a) 581,541 points b) 938,458 points

41

most time is most likely because, each place iterates through every data point and collects the

points which fall under the specific place’s portion of the overall space. Regarding spatial

scalability, MASS seems to support better spatial scalability than MPI by managing the larger

dataset more effectively as seen in the execution times. Compared to a Convex Hull

implementation from another MASS application which was used to compare different agent-based

models in terms of performance and programmability [50], this implementation shows better

execution performance with larger datasets, however this implementation can be improved further.

MPI’s execution time is constantly higher than MASS’s execution time with both datasets.

This is due to needing multiple communicative calls. As MPI implantation uses a divide and

conquer approach, the partial convex hulls in each computing node are merged by sending and

receiving the partial hulls from the nodes. At every step, the partial convex hulls are merged in

sets of two until one final convex hull remains. As more computing nodes are introduced, more

partial hulls need to be merged, meaning more communication calls are needed.

42

Figure 22: Largest Empty Circle execution performance of MASS and MPI.

For benchmarking the Largest Empty Circle problem, only one time metric is considered, the

total computation time excluding IO operations. From Figure 22 we can observe MASS does not

show CPU scalability at all, and the execution times stay constant with all the computing nodes.

This behavior is most likely due to the datapoints not being assigned correctly to the other

computing nodes, leading to the application running only on one computing node. However, with

one computing node, MASS is faster than MPI. Figure 22 b) shows the difference more clearly.

MASS shows a slight performance improvement. in Figure 22 a) and b) which is due to more

places being used when the number of computing nodes was used. The places are assigned to

threads, leading to a small performance gain. As for spatial scalability, the implementation can be

executed with larger datasets.

The MPI implementation shows great CPU scalability until 16 nodes with the smaller dataset

and 12 nodes with the larger dataset. After that, MPI demonstrates the performance stabilizing up

to 20 nodes. The stabilization in execution performance is because communication overhead. The

a) 22,346 points b) 50,000 points

43

more computing nodes are utilized, the more partitions of Voronoi edges are created. Some of

these might not have intersections with the Convex Hull edges which leads to an imbalance number

of potential centroids for the Largest Empty Circle. As master node tries to receive the potential

LEC, there might exist computing nodes which have not completed the computations. As the MPI

implementation uses blocking communication calls, the receive buffer cannot be used until the

receive buffer contains the intended message. In addition, MPI showed good spatial scalability by

demonstrating a similar trend with execution performance in Figure 22 b).

Figure 23: Euclidean Shortest Path execution performance of MASS and MPI.

Figure 23 a) and b) demonstrate how well MASS can distribute computational tasks

effectively across the cluster. The trend highlights MASS’s great CPU scalability by showing a

decrease in execution time as the number of nodes are increased.

With the smaller dataset both MASS and MPI start with high execution times with one node.

However, as more computing nodes are utilized, MASS shows substantial improvement in

execution time and caught up to MPI after 12 nodes. While MPI also expresses CPU scalability,

a) 1,800 points b) 3,000 points

44

the decrease in execution time is not as substantial. The execution time starts stabilizing for MPI

after four nodes.

Figure 23 b) describes the pattern better. MASS starts with a very high execution time, but

the performance improves as more nodes are used. MPI demonstrates a similar trend to MASS,

but it is not as efficient as MASS. In addition, Figure 23 b) displays that MASS can handle larger

datasets efficiently while maintaining good execution performance indicating the

implementation’s great spatial scalability.

5.3 PROGRAMMABILITY COMPARISON

We assessed the programmability of the MASS and MPI frameworks by analyzing their

implementation complexities and overheads for various computational tasks. The goal was to

clarify the trade-offs between development effort and maintainability within these frameworks

when applied to algorithms such as range search (RS), convex hull (CH), largest empty circle

(LES), and Euclidean shortest path (ESP). We investigated four metrics in this comparison: Lines

of Code (LoC), Cyclomatic Complexity, Boilerplate Code, and Boilerplate %. LoC refers to the

number of lines of code in the application excluding comments, blank spaces, and non-executable

lines. Cyclomatic Complexity indicates the complexity of the program. Boilerplate code is code

that is repeated in multiple places with little to no variation. Lastly, Boilerplate % refers to the

ratio of how much from Lines of Code is boilerplate code.

45

Table 3: Programmability comparison: Range Search

 LoC Cyclomatic

Complexity

Boilerplate Code Boilerplate %

MPI 233 3.1 20 8.5%

MASS 368 2.6 15 4.1%

From Table 3 we can see that MASS implementation has more Lines of Code with 368

compared to MPI’s 233. This is because of the GIS functionalities such as generating the map and

for MASS, Agents class and Places class were created which adds more code. However, MASS

demonstrates a lower Cyclomatic Complexity of 2.6 than MPI’s 31. MPI needs to have additional

if statements for master node for example to create receive buffers to gather the points in range.

For boilerplate code MPI has more than MASS resulting in a higher boilerplate percentage of 8.5%

compared to 4.1%.

Table 4: Programmability comparison: Convex Hull

 LOC Cyclomatic

Complexity

Boilerplate Code Boilerplate %

MPI 316 4.2 28 8.8%

MASS 710 3.4 27 3.8%

For convex Hull, the MPI implementation had less LoC compared to MASS as shown in Table

4. As MPI used the divide and conquer approach, not many lines of code were needed. Since

MASS used an agent propagation approach to gather the outer hull points, Places class and Agents

class needed many more lines of code. However, MPI had a higher Cyclomatic Complexity of 4.2

compared to MASS’s 3.4, making the MASS implementation more maintainable. The MPI’s

merge for loop and the additional if statement the master and worker nodes add complexity to the

implementation. As for boilerplate code, both implementations have roughly the same amount.

46

However, since MASS implementation is twice as long, the boilerplate percentage is much higher

for MPI (8.8% to 3.8%).

Table 5: Programmability comparison: Largest Empty Circle

 LOC Cyclomatic

Complexity

Boilerplate Code Boilerplate %

MPI 612 3.5 32 5.2%

MASS 767 3.1 19 2.5%

Table 5 shows that MASS had more lines of code than MPI even though both implementations

were quite long. The reason is the same as for the RS implementations. Both used the same

approach. However, MASS needed to implement a Place class resulting in having more code.

Nonetheless, MPI had a higher Cyclomatic Complexity of 3.5 than MASS’s 3.1. In the MPI

implementation’s main file, there are a lot of if statements for the different ranks and multiple for

loops MPI communication. Similarly, to the other MASS implementations, LEC MASS has less

boilerplate code than MPI (19 to 32) resulting in 2.5% MPI’s boilerplate percentage and 5.2% for

MPI.

Table 6: Programmability comparison: Euclidean Shortest Path

 LOC Cyclomatic

Complexity

Boilerplate Code Boilerplate %

MPI 523 3.1 25 4.7%

MASS 692 4.1 35 5.1%

ESP is the only application where MASS had a higher Cyclomatic Complexity as shown in

Table 6. Unlike the MPI implementation, MASS had the implementation where the user can use

an existing visibility graph to find the shortest path between the source and destination node. This

47

implementation added more lines of code and boilerplate code, thus, MASS having a slightly

higher boilerplate percentage of 5.1% compared to MPI’s 4.7%.

5.4 DISCUSSIONS

The large-scale benchmarking and programmability comparison revealed several strengths

and weaknesses for the computational geometry implementations using both MASS and MPI.

These observations help will help us to identify potential improvements.

In general, MASS showed needing less boilerplate code and having better Cyclomatic

Complexity than MPI, signifying better maintainability. These aspects make MASS more

appealing for complex systems. However, MASS faced inconsistencies with the execution

performance during benchmarking. These inconsistencies come from the computational geometry

problems themselves and the agent-based approaches. For example, Range Search utilizes kd-trees

and agents querying the trees which demonstrated good CPU and spatial scalability. In contrast,

Convex Hull used agent propagation to identify outer hull points which showed to be more

efficient than the divide and conquer approach for the MPI implementation. The other two MASS

implementations did not use agents, leading to variations in performance. For the Largest Empty

Circle MASS implementation, issues with data partitioning led to constant execution times,

regardless of the number of computing nodes used. In contrast, the Euclidean Shortest Path

implementation showed good CPU scalability and spatial scalability, but the execution times were

high due to the naïve approach for the visibility graph constructions.

MPI demonstrated strong performance with smaller datasets and fewer nodes. Once the

complexity and the data size increased, MPI started facing issues and the execution performance

became inefficient. This brings out MPI’s low-level control, while having strong initial

48

performance but as more complexity is introduced, synchronization and communication issues

start to appear.

In terms of enhancing the computational geometry MASS implementations, various potential

improvements can be carried out.

• Range Search: By extending the functionality to support 3D-space can enhance the range

searching capabilities of the MASS-based GIS system and more complex spatial queries

can be executed.

• Convex Hull: Improving the initialization process for Places can reduce the setup time and

improve the execution times altogether.

• Largest Empty Circle: Correctly implementing the data partitioning across the cluster will

allow us to make full use of MASS’s capabilities. Additionally, integrating the incomplete

agent propagation approach can potentially improve the LEC implementation.

• Euclidean Shortest Path: Implementing a more efficient algorithm for the visibility graph

creation such as the Lee’s Visibility Algorithm [45] which is bound to O(N2logN) can

potentially reduce the overall time complexity of the ESP implementation and be used with

larger datasets.

49

Chapter 6. CONCLUSIONS

6.1 OVERVIEW

This project was set out to enhance the existing integration of Multi-Agent Spatial Simulation

(MASS) with Geographic Information Systems (GIS), primarily focusing on improving the

existing and implementing new computational geometry problems to optimize spatial queries. This

approach included conducting a comprehensive analysis of the existing MASS-based GIS system,

implementing, and benchmarking computational geometry problems using Message Passing

Interface (MPI) and MASS library, and carrying out a detailed programmability comparison to

determine the implementation complexities and their relative efficiencies.

 Our results reveal that the reimplemented Range Search showed significant

improvements in execution time and scalability compared to the previous MASS implementation

and the MPI baseline. The use of multiple kd-trees allowed for efficient querying and demonstrated

good performance as data size and computing nodes increased. The Convex Hull implementation

using MASS outperformed the MPI implementation in most cases. The implementation showed

promising results by leveraging agent propagation to identify the outer hull points. However, the

initialization time for places was a bottleneck. Despite this, the MASS implementation showed

better spatial scalability with larger datasets than MPI. The Largest Empty Circle using MASS

beat the MPI implementation using one computing node but was then outperformed by MPI and

it did not show the expected improvements due to issues with data partitioning. The performance

remained constant, indicating the need for better data partitioning. Euclidean Shortest Path was

inefficient with large datasets. Despite that, the MASS implementation showed better CPU and

spatial scalability than MPI, improving execution performance as more computing nodes were

used. However, the naive algorithm's inefficiency limited the overall performance, emphasizing

50

the need for a more sophisticated approach. Lastly, the programmability comparison revealed that

MASS applications require more lines of code in general due to the framework. However, MASS

showed lower Cyclomatic Complexity and boilerplate percentage which indicates MASS having

better maintainability and readability.

While the project achieved its main objectives, multiple limitations were encountered:

• Our approach only focused on vector data and excluded raster data. This was because

the previous computational geometry problems utilized by spatial queries were

intended to be used with vector data.

• The initialization of Places in the Convex Hull implementation took most of the

execution time. This significantly impacted on the overall performance and needs

optimization to reduce setup time and improve execution efficiency.

• The agent propagation implementation for Largest Empty Circle was incomplete

which made us change our approach. In addition, partitioning the data partitioning

faced issues which led to inefficient use of MASS and the implementation running on

just one machine.

• The Euclidean Shortest Path implementation with naïve visibility graph construction

algorithm proved to be too inefficient. This limited us to using very small datasets.

6.2 FUTURE WORK

Future works should address the limitations listed above and furthermore focus on enhancing

computational geometry problems to further enhance the performance of the MASS-based GIS

system. For Range Search, adding functionality to query in 3D space and adding the option to

include additional filtering based on geographic data’s attributes will broaden its applicability. In

the Convex Hull implementation, optimizing the agent movement while agent-migration to

51

minimize capturing non-outer hull points will reduce execution performance. Also, adding new

map layers that might suit different GIS queries will enhance the versatility and functionality of

the system.

52

BIBLIOGRAPHY

[1] Maguire, D. J. (1991). An overview and definition of GIS. Geographical information systems:

Principles and applications, 1(1), 9-20.

[2] Savinykh, V. P., & Tsvetkov, V. Y. (2014). Geodata as a systemic information resource. Herald of

the Russian Academy of Sciences, 84(5), 365-368.

[3] Huang, F., Liu, D., Liu, P., Wang, S., Zeng, Y., Li, G., ... & Pang, L. (2007, August). Research on

cluster-based parallel GIS with the example of parallelization on GRASS GIS. In Sixth International

Conference on Grid and Cooperative Computing (GCC 2007) (pp. 642-649). IEEE.

[4] Wang, J., Xiong, J., Yang, K., Peng, S., & Xu, Q. (2010, June). Use of GIS and agent-based

modeling to simulate the spread of influenza. In 2010 18th International Conference on

Geoinformatics (pp. 1-6). IEEE.

[5] Carver, S., & Quincey, D. (2016). A conceptual framework of volcanic evacuation simulation of

Merapi using agent-based model and GIS. Procedia-Social and Behavioral Sciences, 227, 402-409.

[6] Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial

simulation. Computers, Environment and Urban Systems, 32(6), 417-430.

[7] Emau, J., Chuang, T., & Fukuda, M. (2011, August). A multi-process library for multi-agent and

spatial simulation. In Proceedings of 2011 IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing (pp. 369-375). IEEE.

[8] Preparata, F. P., & Shamos, M. I. (2012). Computational geometry: an introduction. Springer

Science & Business Media.

[9] Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance, portable

implementation of the MPI message passing interface standard. Parallel computing, 22(6), 789-828.

[10] Woodring, J., Sell, M., Fukuda, M., Asuncion, H., & Salathe, E. (2017, June). A multi-agent parallel

approach to analyzing large climate data sets. In 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS) (pp. 1639-1648). IEEE.

[11] Sieling, M. (2022, June). AGENT-BASED DATABASE WITH GIS. Accessed on: June 4, 2024.

[Online]. Available: https://depts.washington.edu/dslab/MASS/.

[12] GeoTools. Accessed on: June 4, 2024. [Online]. Available: https://www.geotools.org/.

[13] Raghavendra, S. P. (2023, June). Agent-based GIS Queries. Accessed on: June 4, 2024. [Online].

Available: https://depts.washington.edu/dslab/MASS/.

[14] Arasu, A., Babu, S., & Widom, J. (2006). The CQL continuous query language: semantic

foundations and query execution. The VLDB Journal, 15, 121-142.

53

[15] Ge, Q., Wang, H. T., & Zhu, H. (2006). An improved algorithm for finding the closest pair of

points. Journal of computer Science and Technology, 21(1), 27-31.

[16] Kakde, H. M. (2005, August). Range Searching using Kd Tree. Accessed on: June 4, 2024. [Online].

Available: https://users.cs.utah.edu/~lifeifei/cs6931/kdtree.pdf/.

[17] Zhong, C., Malinen, M., Miao, D., & Fränti, P. (2015). A fast minimum spanning tree algorithm

based on K-means. Information Sciences, 295, 1-17.

[18] Cui, Y. (2022, December). Agent-based Graph Applications in MASS Java and Comparison with

Spark. Accessed on: June 4, 2024. [Online]. Available: https://depts.washington.edu/dslab/MASS/.

[19] Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex

hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.

[20] Schuster, M. (2008). The largest empty circle problem. In Proceedings of the Class of 2008 Senior

Conference, Computer Science Department, Swarthmore College (pp. 28-37).

[21] Kapoor, S., & Maheshwari, S. N. (1988, January). Efficient algorithms for Euclidean shortest path

and visibility problems with polygonal obstacles. In Proceedings of the fourth annual symposium on

computational geometry (pp. 172-182).

[22] Netlogo. Accessed on: June 4, 2024. [Online]. Available: https://ccl.northwestern.edu/netlogo/.

[23] Walker, B., & T. Johnson. (2019, March). NetLogo and GIS: A Powerful Combination. EPiC Series

in Computing (pp. 257-264).

[24] Malik, A., & Abdalla, R. (2017). Agent-based modelling for urban sprawl in the region of Waterloo,

Ontario, Canada. Model Earth Syst Environ 3 (1): 7.

[25] Crooks, A. T. (2007). The Repast Simulation/Modelling System for Geospatial Simulation. Tech.

Rep. Paper 123, Centre for Advanced Spatial Analysis, University College London.

[26] Gorur, B. K., Imre, K., Oguztuzun, H., & Yilmaz, L. (2016, April). Repast HPC with optimistic time

management. In Proceedings of the 24th High Performance Computing Symposium (pp. 1-9).

[27] Taillandier, P., & Drogoul, A. (2010). From GIS data to GIS agents, modeling with the GAMA

simulation platform. In Technical Forum Group on Agent and Multi-agent-based Simulation: 1st

meeting collocated with Eumas (Vol. 10).

[28] Raab, R., Lenger, K., Stickler, D., Granigg, W., & Lichtenegger, K. (2022, May). An Initial

Comparison of Selected Agent-Based Simulation Tools in the Context of Industrial Health and

Safety Management. In Proceedings of the 2022 8th International Conference on Computer

Technology Applications (pp. 106-112).

[29] Fabri, A., & Pion, S. (2009, November). CGAL: The computational geometry algorithms library.

In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic

information systems (pp. 538-539).

54

[30] Wang, Y., Yu, S., Dhulipala, L., Gu, Y., & Shun, J. (2022, April). ParGeo: a library for parallel

computational geometry. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (pp. 450-452).

[31] Ghodsi, M., & Sharifzadeh, M. (2003, July). ParLeda: A Library for Parallel Processing in

Computational Geometry Applications. International Journal of Engineering, Volume 16, No. 2, pp.

123-132.

[32] OpenMP. Accessed on: June 4, 2024. [Online]. Available: https://www.openmp.org/.

[33] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., & Zhou, Y. (1995).

Cilk: An efficient multithreaded runtime system. ACM SigPlan Notices, 30(8), 207-216.

[34] Blelloch, G. E., Anderson, D., & Dhulipala, L. (2020, July). ParlayLib-a toolkit for parallel

algorithms on shared-memory multicore machines. In Proceedings of the 32nd ACM Symposium on

Parallelism in Algorithms and Architectures (pp. 507-509).

[35] Kakde, H. M. (2005, August). Range Searching using Kd tree. Accessed on: June 4, 2024. [Online].

Available: https://users.cs.utah.edu/~lifeifei/cs6931/kdtree.pdf/.

[36] Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990, May). The R*-tree: An efficient

and robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD

international conference on Management of data (pp. 322-331).

[37] Tobler, W., & Chen, Z. T. (1986). A quadtree for global information storage. Geographical

Analysis, 18(4), 360-371.

[38] Martínez, C., & Roura, S. (2001). Optimal sampling strategies in quicksort and quickselect. SIAM

Journal on Computing, 31(3), 683-705.

[39] Kingsford, C. kd- Trees. Accessed on: June 4, 2024. [Online]. Available:

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf/.

[40] Wibowo, A., Santoso, H. B., Rachmat, C. A., & Delima, R. (2019, August). Mapping and Grouping

of Farm Land with Graham Scan Algorithm on Convex Hull Method. In 2019 International

Conference on Sustainable Engineering and Creative Computing (ICSECC) (pp. 121-126). IEEE.

[41] Alzubaidi, A. M. N. (2014, September). Minimum Bounding Containers of 2D Convex Polygon.

European Academic Research Vol. II, Issue 6.

[42] Heineman, G. T., Pollice, G., & Selkow, S. (2016, March). Algorithms in a Nutshell: A Practical

Guide. " O'Reilly Media, Inc.".

[43] Jin, L., Kim, D., Mu, L., Kim, D. S., & Hu, S. M. (2006). A sweepline algorithm for Euclidean

Voronoi diagram of circles. Computer-Aided Design, 38(3), 260-272.

[44] Nguyet, T. T. N., Van Hoai, T., & Thi, N. A. (2011, October). Some advanced techniques in

reducing time for path planning based on visibility graph. In 2011 Third International Conference on

Knowledge and Systems Engineering (pp. 190-194). IEEE.

55

[45] Coleman, D. (2012). Lee’s O(n2 log n) Visibility Graph Algorithm: Implementation and Analysis.

Department of Computer Science, University of Colorado at Boulder: Boulder, CO, USA.

[46] Dijkstra, E. W. (2022). A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra:

His Life, Work, and Legacy (pp. 287-290).

[47] What is OpenStreetMap. OpenStreetMap. Accessed on: June 4, 2024. [Online]. Available:

https://welcome.openstreetmap.org/what-is-openstreetmap/.

[48] Mineral Resources Data System (MRDS). U.S. Geological Survey. Accessed on: June 4, 2024.

[Online]. Available: https://mrdata.usgs.gov/mrds/.

[49] Saadati, S., & Razzazi, M. (2022, December). Natural way of solving a convex hull problem.

Accessed on: June 4, 2024. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/2212/2212.11999.pdf/.

[50] Potturi, A. (2023, June). Programmability and Performance Analysis of Distributed and Agent-

Based Frameworks. Accessed on: June 4, 2024. [Online]. Available:

https://depts.washington.edu/dslab/MASS/.

[51] Crime Data from 2020 to Present. Los Angeles Open Data Portal. Accessed on: June 4, 2024.

[Online]. Available: https://data.lacity.org/Public-Safety/Crime-Data-from-2020-to-Present/2nrs-

mtv8/about_data/.

[52] National USFS Fire Occurrence Point (Feature Layer). U.S. Forest Service - Geospatial Data

Discovery. Accessed on: June 4, 2024. [Online]. Available: https://data-

usfs.hub.arcgis.com/datasets/6059c1a4dca749d393e33ee5f8a0cbaf_9/about/.

[53] Private School Locations – Current. ArcGIS Hub. Accessed on: June 4, 2024. [Online]. Available:

https://hub.arcgis.com/datasets/nces::private-school-locations-current/explore/.

[54] World Nuclear Power Plant 2023. ArcGIS Hub. Accessed on: June 4, 2024. [Online]. Available:

https://hub.arcgis.com/datasets/esriindia1::world-nuclear-power-plant-2023/about/.

[55] Shoreline / Coastline Resources. National Centers for Environmental Information (NOAA).

Accessed on: June 4, 2024. [Online]. Available: https://www.ngdc.noaa.gov/mgg/shorelines/.

56

APPENDIX

A Range Search Benchmarking Results

Table 7: Range Search execution performance with 581,541 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Kd-tree

construction

(MPI)

Total time

(MASS)

Kd-tree

construction

(MASS)

1 2737 2692 5813 2742

2 1968 1280 4801 1772

4 1322 1059 4408 1338

8 1737 1361 4140 1260

12 2164 1440 3985 1119

16 2812 2088 4102 1228

18 3160 2305 4329 1220

20 3651 2830 4276 1162

Table 8: Range Search execution performance with 938,458 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Kd-tree

construction

(MPI)

Total time

(MASS)

Kd-tree

construction

(MASS)

1 8406 8306 10438 6014

2 4082 3248 9710 4577

4 4273 2644 8394 2969

8 4141 2576 7476 1454

12 4878 2840 6342 1440

16 5053 2492 6324 1684

18 5295 2631 6267 1694

20 5372 2673 6168 1674

57

B Convex Hull Benchmarking Results

Table 9: Convex Hull execution performance with 581,541 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Total time

(MASS)

Places initialization time

(MASS)

1 1508 2511 1275

2 1330 1519 287

4 1754 1814 543

8 2818 2390 1142

12 4182 3124 1908

16 5425 3813 2623

18 6102 4652 3428

20 6628 6955 5673

Table 10: Convex Hull execution performance with 938,458 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Total time

(MASS)

Places initialization time

(MASS)

1 3762 4169 2094

2 3197 3474 1056

4 4055 2952 673

8 5342 3870 1611

12 8660 5489 3047

16 11470 7110 4825

18 13357 8846 6479

20 13574 10251 7834

58

C Largest Empty Circle Benchmarking Results

Table 11: Largest Empty Circle execution performance with 22,346 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Total time

(MASS)

1 22498 20933

2 11747 20914

4 6307 20825

8 3592 20814

12 2708 20898

16 2325 20873

18 2079 20913

20 2144 20809

Table 12: Largest Empty Circle execution performance with 50,000 points (milliseconds)

Computing

Nodes

total time

(MPI)

total time

(MASS)

1 163819 113027

2 63767 112991

4 29370 112389

8 17936 112318

12 10966 112577

16 13650 112232

18 12258 112228

20 11785 112801

59

D Euclidean Shortest Path Benchmarking Results

Table 13: Euclidean Shortest Path execution performance with 1,800 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Total time

(MASS)

1 39471 110414

2 28449 56817

4 15698 40728

8 16112 29643

12 16599 18395

16 17214 15762

18 17561 15261

20 18139 14926

Table 14: Euclidean Shortest Path execution performance with 3,000 points (milliseconds)

Computing

Nodes

Total time

(MPI)

Total time

(MASS)

1 157770 492083

2 110970 261170

4 57738 157256

8 61398 91398

12 61691 76833

16 61331 52431

18 67658 49242

20 66435 49294

60

E Running GIS queries

To run GIS queries in the MASS-based GIS system, MASS library needs to be first installed. The

steps are as follows.

1. Clone the MASS core library from mass_java_core BitBucket repository. The latest code

is found in the “develop” branch.

2. Install the downloaded MASS library by navigating to the folder and using the command:

“mvn clean package install”.

3. Clone the latest mass_java_appl BitBucket repository for MASS applications. The latest

MASS-based GIS system is found in “shahruz/gis_improvements” branch.

4. Navigate to the MASS-based GIS folder located in path: “Applications/gis_database”

5. In pom.xml file, there are paths to GIS queries which use the four computational geometry

MASS implementations. Uncomment the GIS query which should be executed. Only one

GIS query should be uncommented. Figure 24 shows the GIS query path inside the

pom.xml file.

Figure 24: Pom.xml configuration file for MASS-based GIS.

6. Build the chosen GIS query in “gis_database” folder using the command: “mvn package”.

This will create a “target” folder.

7. Go to the “target” folder and create a nodes.xml file to define the computing nodes.

Instructions for creating this file are found in the MASS Java Developers Guide. Figure 25

shows a sample nodes.xml file.

https://bitbucket.org/mass_library_developers/mass_java_core/src/master/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/master/
https://depts.washington.edu/dslab/MASS/docs/MASS%20Java%20Developer%20Guide.pdf

61

Figure 25: Sample nodes.xml file.

8. Before the GIS query can be executed, X11 variable needs to be defined because the GIS

query will create a GIS map. The execution will otherwise throw an error. If the X11

variable is defined, at the end of an execution the GIS map should be generated

automatically.

9. The general command to execute the queries are: “java -jar gis_database-1.0-

SNAPSHOT.jar <parameter> <parameter> …”.

• Each query has a different set of parameters

• For RS the full command is: “java -jar gis_database-1.0-SNAPSHOT.jar <number

of places> <minX><maxX><minY><maxY>”, where

o The“number of places” is how many place elements are used in the

execution.

o “minX”, “maxX”, “minY”, “maxY” parameters define the spatial

boundary where X refers to latitude and Y refers to longitude.

• For CH the full command is: “java -jar gis_database-1.0-SNAPSHOT.jar

<filename> <grid size>”

62

o “filename” parameter refers to the shapefile which wants to be used

from “gis_database/input” path.

o The “grid size” refers to the size of the grid of places.

• To execute GIS query using LEC, the command is: “java -jar gis_database-1.0-

SNAPSHOT.jar <number of places> <filename>”. The parameters are already

explained above.

• ESP is executed by using the command: ”java -jar gis_database-1.0-SNAPSHOT.jar

<number of places> <start latitude> <start longitude> <destination latitude>

<destination longitude> <filename>”

o The“number of places” is how many place elements are used in the

execution.

o “start latitude”, “start longitude”, “destination latitude”, and

“destination longitude” parameters refer to the start and destination point

coordinates.

o “filename” parameter refers to the shapefile which wants to be used

from “gis_database/input” path. This parameter is optional. If this

parameter is provided, the query will create a new visibility graph from

the input file and save this graph for further queries. If a

“visibilityGraph.txt” file exists in “gis_database/outputs”, the execution

can be run without providing the “filename” parameter and the execution

will use the existing visibility graph.

10. The datasets used in this project are located in “gis_database/input” folder which can be

used for these queries. The outputs for the queries are created in “gis_database/outputs”

which can also be used for further analysis.

