
Parallelization of BioInspired Computing

algorithms using MASS JAVA

Venkata Ramani Srilekha Bandaru

A whitepaper submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science and Software Engineering

University of Washington, Bothell

June 05th 2023

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Michael Stiber, Committee Member

Professor Min Chen, Committee Member

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Goal . 3

2 Libraries for Agent Based Modeling 4

2.1 Multi Agent Spatial Simulation(MASS) . 4

2.2 Repast Simphony . 4

3 Classes of Bio Inspired Computing Algorithms 5

3.1 Swarm Based Computation . 5

3.2 Evolutionary Computation . 10

3.3 Ecological Computation . 13

4 Applications 16

4.1 Image Segmentation using Artificial Bee Colony 17

4.2 Building Agent Based Classification System using Genetic Algorithm 25

4.3 Job Shop Scheduling Problem using Bio-geography Based Optimization 34

5 Performance Measurements 44

5.1 Artificial Bee Colony Performance . 44

5.2 Genetic Algorithm Performance . 47

5.3 Bio-geography Based Optimization Performance 48

6 Programmability Analysis 50

6.1 Quantitative Analysis of Classes . 50

6.2 Quantitative Analysis of Lines of Code . 50

6.3 Quantitative Analysis of Cyclomatic Complexity 51

7 Conclusion & Future Work 52

8 Appendix 55

Listings

1 Arti�cial Bee Colony algorithm . 9

2 ABC Agent Behavior in MASS . 21

3 Main program for ImageSegmentationWithABC in MASS 22

4 Context Builder for ImageSegmentationWithABC in Repast Simphony 23

5 ABC Agent Behavior in Repast Simphony . 24

6 E-ABC2 Agent behavior . 26

7 E-ABC2 Agent Fitness Evaluation and Model Design 28

8 E-ABC2 Training Phase . 29

9 E-ABC2 Main program to implement a Classi�cation System in MASS 31

10 Context Builder for Classi�cation system using EABC2 in Repast Simphony . 32

11 E-ABC2 Agent Behavior in Repast Simphony 33

12 BBO main program to depict Job Shop Scheduling Problem in MASS 40

13 Context Builder for JSSP using BBO in Repast Simphony 41

14 BBO Agent Behaviour for JSSP in Repast Simphony 42

List of Figures

1 Representations of the bees used in this documentation. 8

2 Solution matrix (Arti�cial Bee Colony with food resources) 8

3 Example of 3*3 JSSP . 35

4 Results produced by ABC algorithm for Image Segmentation 44

5 Scalability of ABC using 20 places and 20 Agents over 24 remote nodes 46

6 Scalability of GA using 6 Places and 6 Agents on 12 remote nodes 48

7 Scalability of BBO using 5 Places and 20 Agents over 24 remote nodes 49

List of Tables

1 Difference between ABC, GA, BBO . 16

2 Time taken to execute 20 solutions with 20 Agents 45

3 Time taken to execute iris dataset with 6 Agents 47

4 Time taken to execute DetectingPhishingWebsites dataset with 6 Agents 47

5 Time taken to execute 20 Jobs on 20 machines with 25 Agents 48

6 Number of classes for each implementation 50

7 LoC for Application Logic . 51

8 Cyclomatic Complexity . 51

Abstract

The exponential growth of big data has posed signi�cant challenges for traditional

optimization algorithms in effectively processing and extracting meaningful insights from

large-scale datasets. In this context, bio-inspired computing has emerged as a promising ap-

proach, drawing inspiration from natural systems and phenomena. By mimicking biological

processes such as evolution, swarm behavior, and natural selection, bio-inspired algorithms

offer innovative solutions for optimizing data processing, pattern recognition, classi�cation,

clustering, and other tasks related to big data analytics.

Parallelizing bio-inspired computing algorithms is crucial for achieving improved perfor-

mance and scalability. This accelerates the optimization process and enhances the ef�ciency

of solving challenging problems. Multi-Agent Spatial Simulation (MASS) is an agent-based

modeling library that has been used in great extent to parallelize a variety of simulations and

data analysis applications. Building on this foundation, the implementation of Bio-inspired

Computing algorithms project is an exploration into the advantages of using MASS Java to

parallelize computationally complex algorithms [1].

This project presents the applications of algorithm designs for agent-based versions

of Swarm Based Computation, Evolutionary Computation and Ecological Computation

Algorithms. In addition to the designs of the algorithms, we present an analysis of pro-

grammability and performance comparing MASS Java to another agent based modeling

framework named Repast Simphony.

1 Introduction

1.1 Background

Bio-inspired computing is a branch of computer science and engineering that takes inspiration

from biological systems to develop algorithms and systems to solve complex problems. The

underlying principle of bio-inspired computing is that nature has evolved ef�cient and effective

solutions to many problems, and by studying these solutions, we can develop better algorithms

and systems.

Bio-inspired computing draws inspiration from a wide range of biological systems, including

genetic algorithms that mimic the process of natural selection, neural networks that simulate the

structure and function of the brain, swarm intelligence that studies the collective behavior of

social animals like bees and ants, and arti�cial immune systems that mimic the immune response

of living organisms.

One of the key advantages of bio-inspired computing is its ability to handle complex, nonlinear

problems that are dif�cult to solve using traditional methods. This makes bio-inspired algorithms

particularly useful in �elds like big data analytics, where large volumes of data can be analyzed

to extract patterns and insights that are not immediately apparent.

For example, bio-inspired computing can be used to develop algorithms for data clustering,

where data points are grouped together based on their similarities. This can help identify patterns

in data that might be useful for making predictions or developing new products.

Another example is in the �eld of image processing, where bio-inspired algorithms can be used

to simulate the process of human vision, and extract features from images that are useful for

classi�cation and recognition.

Another example is in the �eld of manufacturing processes, where bio-inspired algorithms in Job

Shop Scheduling Problem enable ef�cient exploration of job-machine assignments, considering

complex constraints and dynamic factors in manufacturing processes. They optimize scheduling

1

outcomes, reduce makespan, and enhance resource utilization, leading to improved ef�ciency

and productivity.

In order to improve the speed and accuracy of solving complex problems, biological optimization

algorithms harness the behavioral patterns of animals and humans. Although several types of

optimization techniques exist, they can be broadly categorized into two fundamental steps [2]:

Exploration: This involves the process of agents traversing through data to identify an acceptable

target.

Exploitation: Here, agents leverage the knowledge gained through exploration to draw others to

their position.

Bio-inspired algorithms for big data analytics are classi�ed into 3 categories :

• Swarm Based Computation algorithms

• Evolutionary Computation algorithms

• Ecological Computation algorithms

1.2 Motivation

In recent times, the computational complexity of various decision making processes has become

increasingly reliant on the availability of high-quality data, commonly referred to as big data.

These data sets are characterized by their voluminous, complex, and ever-expanding nature,

rendering traditional data processing software is inadequate in managing them. As a result,

there is an increasing need for computationally ef�cient techniques that can cope with the

challenges posed by big data. Bio-inspired computation provides a viable solution, as it

encompasses biologically-inspired processes that harness the adaptability and self-learning

capabilities of biological systems to address complex problems. This approach shows great

promise in addressing issues related to scalability, task distribution, fault tolerance, and security

challenges in big data computing environments. [3].

2

The motivation for solving bio-inspired algorithms in parallel setting is to address the limitations

of sequential processing that hinder the scalability and ef�ciency of these algorithms. In the

context of big data computing, parallel processing can signi�cantly reduce the time required

for processing large data sets, increase the processing power of the algorithm, and enable the

use of large-scale distributed computing systems. Additionally, parallel processing can improve

load balancing, and resource utilization, making the algorithms more robust and ef�cient.

Therefore, exploring parallel implementation of bio-inspired algorithms can lead to signi�cant

advancements in solving complex problems and addressing challenges in diverse �elds such as

Image Processing, Optimization, and Machine Learning.

1.3 Goal

The search capabilities of biological optimizations like Exploring and Exploiting, best suite

the nature of Agent Based Modeling. So we will be implementing 3 algorithms one from each

category of bio-inspired computing and implement their applications using Multi Agent Spatial

Simulation (MASS) library and another open source Agent based Modeling framework called

Repast Simphony.

First we will be implementing an application of the algorithm in sequential setting and then we

will be parallelizing it using MASS and Repast Simphony.

1. Design Agent based approaches :The primary goal of the project is to design and

implement agent based algorithms for :

• Multi modal Image Segmentation using Arti�cial Bee Colony.

• Building Agent Based Classi�cation System using Genetic Algorithm.

• Job Shop Scheduling Problem using Bio-geography based Optimization algorithm.

2. Performance Measurements :To measure the performance of above 3 applications in

sequential, MASS and Repast Simphony.

3. Programmability Analysis : Examine the programmability of the applications in MASS

and compare it with sequential and Repast Simphony.

3

2 Libraries for Agent Based Modeling

2.1 Multi Agent Spatial Simulation(MASS)

This library utilizes Agent-Based Modeling (ABM) to do parallel computation over a cluster of

nodes. It provides an innate programming framework to do big data processing and analysis. The

MASS library contains two important classes called Places and Agents. Places is a distributed

matrix of simulated spaces over a cluster of computing nodes. Each place can store information

which can be pointed to by a set of network independent matrix indices, Places are �xed spaces

and cant be moved after initialization whereas Agents are a set of execution instances which

can migrate from place to place and also carry information to and fro from a place, by putting

information on a place one agent can help other agent by providing information which was

collected till then. MASS contains 2 types of agents called Static Agents and Dynamic Agents.

Static Agents are the agents which perform the computations and store it on the Place but do

not migrate or create more agents, whereas Dynamic Agents are the agents which migrate from

place to place and spawn children from themselves to increase the agent population. MASS

allows the user to customize the behavior of Places and Agents. [4]

2.2 Repast Simphony

Repast Simphony is an open-source agent-based modeling and simulation platform. It provides a

framework for building and executing agent-based simulations, which are used to model complex

systems made up of individual ”agents” that interact with each other and their environment. [5].It

provides a set of tools and libraries for building and running agent-based simulations, including

a graphical user interface for designing and running simulations, a Java-based simulation engine,

and a set of pre-built simulation models and templates.

For benchmarking the performance of the MASS library, We are considering using Repast

Simphony and compare their performance and scalability measurements.

4

3 Classes of Bio Inspired Computing Algorithms

3.1 Swarm Based Computation

Swarm-based computation is a type of bio-inspired computation algorithm that takes inspiration

from the behavior of social organisms, such as ants, bees, and birds, to solve complex optimiza-

tion problems. The basic idea is to simulate the collective behavior of a swarm of individuals in

�nding the optimal solution for a given problem.

There are several types of swarm-based computation algorithms, such as:

• Particle Swarm Optimization (PSO)

• Ant Colony Optimization (ACO)

• Arti�cial Bee Colony Optimization (ABC)

Each algorithm has its own unique characteristics, but they all share the same basic principle of

using a population of agents, or particles, to search for the optimal solution.

In ABC, the algorithm simulates the foraging behavior of bees in �nding the best food source.

The bees communicate with each other through a dance language, where the direction and

intensity of the dance convey information about the quality and location of the food source.

The algorithm uses this information to update the position of the bees in the search space and

converge to the optimal solution.

We have worked on implementing Arti�cial Bee colony algorithm to implement Multi Threshold

Image Segmentation.

Image segmentation is the process of dividing an image into multiple regions or segments, each

of which corresponds to a distinct object or part of an image. The goal of image segmentation is

to simplify or change the representation of an image into something more meaningful and easier

to analyze.

The process involves grouping pixels in an image into clusters based on their visual properties

5

such as color, texture, intensity, or other features. The result is a set of segments that can be used

to isolate and analyze speci�c objects or regions within an image.

The main reason why we chose to implement Image segmentation with ABC is because when

I read this paper [6], it was one of the �rst to mention the different types of methods that can

be used for image segmentation. One of these methods is callededge-line oriented detection,

which involves detecting edges and connecting them to form a line segment, and then connecting

multiple line segments to form an object. However, this method faced the problem of combining

line segments to form coherent regions that could be used in the future.

Another method for image segmentation is calledregion growing, which involves dividing the

image into basic regions and then merging adjacent regions based on their similarity. However,

this method faced the challenge of selecting the initial regions and merging them together, as

well as potentially missing some clarity from the original image.

The �nal method mentioned in the paper isHistogram based image segmentation, for threshold

setting, which has been one of the most successful methodologies. This approach involves

computing a histogram for the image intensity values and analyzing it to determine a threshold

setting for separating an object from the background but after doing some research the following

paper [6] suggested that while performing image segmentation using histogram most of the time

was consumed during the histogram generation and processing. Though Image Segmentation

can be done in multiple waysThresholdingis one simple but effective tool which helps in

isolating the objects of interest.Thresholdselection can be done in 2 ways bi-level and multi-

level, multiple objects in single scene can be detected using multiple threshold values. But

implementing Image segmentation using multi level thresholding can cause some inconveniences

(i). They might not have a semantic solution when number of objects to be detected increases.

(ii). They may show slow convergence or high computational costs.

Usually, image processing tasks are numerically intensive, and therefore, a meta-heuristic

algorithm such as Arti�cial Bee Colony, presented in [7], is a viable option for solving numerical

optimization problems. Thus, We decided to implement Arti�cial Bee Colony to compute

Multi-level Threshold selection for Image Segmentation using Gaussian approximations and

histogram-based methods.

6

Arti�cial Bee Colony Explanation

A Bee colony usually contains worker bees and queen bee and all the bees follow a swarm based

technique to collect required resources(ex: nectar, pollen etc). In the Arti�cial bee colony we

have 3 types of bees namely Employee Bees, Onlooker Bees and Scout Bees/ Unemployed Bee.

All these bees mainly follow two processes called”Foraging” and”Recruitment”.

Foraging: is a process in which Employee bees go around to �nd the food resources and if

they �nd any potential resource then they will do a waggle dance to let the Unemployed bees

know that they have found a potential resource and will let the unemployed bees know about the

location of the resource.

Recruitment:the process where the unemployed bee �nds the resource and gets recruited as an

employee bee is known as Recruitment.

The”Foraging” and”Recruitment” processes in ABC allow the arti�cial bees to explore the

search space and share information about the quality of the solutions found by each bee. This

allows the swarm to collectively converge towards better solutions over time, similar to how a

colony of honeybees collaborates to �nd the best food sources in their environment..

We will be applying this algorithm for Region based thresholding in Image Segmentation [8].

The idea of applying this algorithm for Multi Level Image Segmentation is because segmenting

high quality images is a tedious process and takes a lot of time. In normal traditional Image

segmentation algorithms for Multi level thresholding, the algorithm uses exhausted searching

methods that expend too much computational time. So by applying Arti�cial Bee Colony

algorithm for Image Segmentation, the algorithm will �nd a potential search space and employ

multiple individuals which means ABC can achieve fast computational ability than traditional

algorithms. ABC performs better than other algorithms because it has a special characteristic of

strong global search ability i.e., one dimension search strategy where bees in ABC, search for

potential solution one by one dimension.By parallellizing this ABC we are looking forward to

achieve segmented output in lesser amount of time.

7

As part of our project, for this application we am planning on implementing an Arti�cial Bee

Colony algorithm for 16 bit high quality images. This Segmentation will be useful in medical,

astronomical and gaming �elds by detecting objects in image.

Arti�cial Bee Colony Algorithm

Representation of Bees

((a)) Employee Bee ((b)) Onlooker Bee

((c)) Scout Bee

Figure 1: Representations of the bees used in this documentation.

If we observe Fig 2 we can imagine it to be one bee colony with multiple food resources in it.

The main goal of this algorithm is that Employee bees will be helping Unemployed bees to get

employed by helping them in �nding food resources. So, the Employee bee will start foraging

and will do the waggle dance if it �nds any food resources, this will help Unemployed bees �nd

the exact location of where the food resource is present and will help get it employed.

Figure 2: Solution matrix (Arti�cial Bee Colony with food resources)

8

Listing 1 is the algorithmic representation for how ABC works like. First we will initialize a

random bee population, then the Employee bees will look for Food resources, Onlooker Bees

will try to �nd a place which has maximum food and scout bee will get recruited by consuming

the resource which is present at the location sent to it by Employee Bee. This process continues

until all the resources are exhausted or is all the Scout bee are employed.

Listing 1: Arti�cial Bee Colony algorithm

1 I n i t i a l i z e A r t i f i c i a l Bee p o p u l a t i o n

2 REPEAT

3 Employee Bee Phase

4 Onlooker Bee Phase

5 Scout Bee Phase

6 UNTIL maximum c y c l e i s reached

9

3.2 Evolutionary Computation

Evolutionary Computation (EC) is a sub-�eld of bio-inspired computation that uses computa-

tional models of natural evolution to solve complex optimization problems. EC algorithms are

based on the principles of natural selection and genetic variation and are designed to search for

optimal solutions by mimicking the process of natural evolution.

The basic idea behind EC is to create a population of candidate solutions (often represented

as individuals or chromosomes) and allow them to evolve through successive generations by

applying operators such as selection, crossover, and mutation. These operators mimic the natural

processes of selection, reproduction, and genetic variation, respectively.

In each generation, the individuals are evaluated based on a �tness function that measures their

quality as solutions to the optimization problem. The �ttest individuals are then selected to form

the basis for the next generation, while less �t individuals are discarded. The process is repeated

for a �xed number of generations or until a satisfactory solution is found.

• Genetic Algorithms (GA)

• Evolution Strategies (ES)

• Genetic Programming (GP)

GA is one of the most widely used EC algorithms. It creates a population of candidate solutions

represented as strings of bits or characters and evolves them through selection, crossover, and

mutation.

We have worked on implementing Multi agent classi�cation system using Genetic algorithms.

We implemented a multi-agent classi�cation system that can tackle large datasets where each

agent independently explores a random small portion of the overall dataset, searching for mean-

ingful clusters in proper sub-spaces where they are well-formed. This search is orchestrated by

means of a genetic algorithm able to act in a multi-modal fashion, since meaningful clusters

might lie in different sub-spaces.

10

For implementing this classi�cation system we have used Improved Evolutionary Agent Based

Clustering Classi�er algorithm (E-ABC2) which solves both clustering and classi�cation prob-

lems. This algorithm ensures that each cluster contains only features that are similar to each

other and avoids outliers which helps in formation of meaningful clusters.

The Evolutionary Agent Based Clustering Classi�er (E-ABC2) algorithm combines elements of

evolutionary computation, agent-based modeling, and clustering techniques to perform classi�-

cation tasks.

The E-ABC2 algorithm starts by randomly generating a set of agents that act as individual

classi�ers. These agents then compete with each other to classify the data points in the input

dataset. During this process, the agents adjust their parameters and clustering techniques to

improve their classi�cation accuracy.

The E-ABC2 algorithm also includes an evolutionary process where we have used Genetic

algorithm to perform selection, crossover and mutation mechanisms on agents and help them

produce the next generation. This process continues until the algorithm converges to a set of

clusters that produce accurate classi�cations on the input data.

One of the bene�ts of the E-ABC2 algorithm is that it can handle complex, high-dimensional

datasets that may be challenging for other clustering algorithms.

The reason why we are implementing this application using a multi agent system is because

comprehensive research has proved that clustering algorithms when combined with multi agent

systems produced some impressive results in terms of scalability, �exibility and robustness.

• Multi-agent systems can be scaled to handle large, complex datasets by distributing the

computational load among multiple agents.

• Agents in a multi-agent system can be designed to perform speci�c tasks and adapt to

changes in the environment or the data being analyzed.

• Multi-agent systems can continue to function even if one or more agents fail or are

unavailable.

In [9] each agent runs on a different clustering algorithm in order to return the best clustering

algorithm for the dataset at hand.In [10] a genetic algorithm has been used where the agents'

11

genetic code is connection-based: each agent is a clustering result whose genetic code builds a

subgraph and, �nally, such subgraphs can be interpreted as clusters.

In E-ABC2 each agent runs a very simple clustering procedure on a small sub-sample of the

entire dataset. A genetic algorithm orchestrates the evolution of agents in order to return a set of

well-formed clusters, thus discovering possible regularities in the data set at hand.

Many clustering algorithms deal with a global metric. Global metrics measure the overall quality

of clustering at a global level. They evaluate the clustering results based on the entire dataset,

rather than individual data points or clusters. This metric is useful for comparing the performance

of different clustering algorithms or parameter settings, and for determining the optimal number

of clusters. In the proposed approach we use”local metric” to determine the quality of the

clusters formed. Local metrics evaluate the clustering results based on individual data points or

clusters, rather than the entire dataset. This metric is useful for identifying misclassi�ed or poor

clusters, and for identifying subgroups within clusters.

12

3.3 Ecological Computation

Ecological Computation (EcoC) is a sub�eld of bio-inspired computation that draws inspiration

from ecological systems and their behavior. The main idea behind EcoC is to create computa-

tional models that mimic the interactions between species in an ecosystem and use these models

to solve optimization problems.

The basic concept behind EcoC is to simulate the interactions between different species in an

ecosystem to �nd optimal solutions to an optimization problem. In these simulations, individuals

or species are represented as agents that interact with each other based on their individual traits

and environmental factors.

EcoC algorithms often rely on concepts such as competition, cooperation, and adaptation to

�nd optimal solutions. For example, in a competitive ecosystem, different species may compete

for resources, and those that are better adapted to their environment will survive and reproduce.

Similarly, in a cooperative ecosystem, different species may work together to achieve a common

goal. Some examples of EcoC are:

• Bio-geography based optimizer (BBO)

• Invasive Weed Colony Optimizer (IWCO)

• Multi-Species Optimizer (MSO)

Bio-geography-based optimization (BBO) is a nature-inspired algorithm it is based on the

principles of bio-geography, which is the study of the distribution of living organisms on earth.

BBO mimics the process of bio-geography by modeling the problem solution as a set of candidate

solutions that represent different islands in a geographical map. Each island is associated with a

speci�c solution to the problem and its quality is measured by an objective function. The aim

of the algorithm is to �nd the optimal distribution of the solutions on the islands, such that the

overall objective function is minimized.

The BBO algorithm consists of two main stages:”migration” and”mutation” . In the migration

13

stage, the algorithm models the process of immigration and emigration of organisms between

islands. This process is based on a mathematical model that takes into account the quality of the

solutions and the distance between the islands. The”migration” process aims to transfer the

best solutions from one island to another, in order to improve the overall quality of the solution.

In the ”mutation” stage, the algorithm models the process of mutation that occurs in living

organisms. This process is based on a mathematical model that introduces random changes to

the solutions in order to explore new regions of the solution space. The mutation process aims

to improve the diversity of the solutions and prevent the algorithm from getting trapped in local

optima.

We have worked on implementing the JSSP which is a critical issue in production planning

and control. Numerous manufacturing applications in the real world require a set of jobs to be

scheduled on a set of machines in order to maximize a particular objective function, such as

reducing the total completion time or the makespan.

Job Shop Scheduling issues can be effectively resolved, which can increase customer satisfaction,

lower production costs, and signi�cantly increase manufacturing productivity. Additionally, the

need to solve these issues in real-time are growing as manufacturing processes is becoming

more complex and dynamic.

Furthermore, it is well known that job shop scheduling issues are NP-hard, which means that

they are computationally intensive and challenging to solve in an ef�cient manner. So, creating

ef�cient and effective algorithms to address these issues is a crucial area of research.

Other categories of Bio inspired algorithms such as GA from Evolutionary computation and

PSO from Swarm based computation may not work well when the search space is discrete since

they are developed for continuous optimization situations.

GA and PSO are prone to get stranded in local optima, especially while working with challenging

optimization issues like JSSP. This could result in less than ideal solutions.

The JSSP has been solved effectively using the Bio-geography Based Optimization (BBO)

14

algorithm, which is built to tackle discrete optimization problems. The biogeography idea that

species migration and evolution may be treated as an optimization process is the foundation of

the BBO algorithm. The BBO algorithm explores the search space and prevents local optima

entrapment by using the principles of immigration and emigration. It has been demonstrated to

offer superior outcomes for JSSP than GA and PSO.

15

4 Applications

This section provides an in-depth description about what are the core differences between

Arti�cial Bee Colony, Genetic Algorithm and Bio-geography based Algorithm. It also describes

how we have designed the sequential and agent based versions of the applications.

Table 1 depicts some important differences between each of the algorithms.

Table 1: Difference between ABC, GA, BBO

Algorithm Type Arti�cial Bee
Colony (ABC)

Genetic Algorithm
(GA)

Bi-geography Based
Optimization
(BBO)

De�nition Swarm-based
optimization
algorithm inspired by
the foraging behavior
of honey bees

Optimization
algorithm based on
the principles of
natural selection and
genetic operations

Optimization
algorithm inspired by
the processes of
immigration and
emigration in
biogeography

Inspiration Inspired by the
Foraging behaviour
and communication
between another
honey bee in a hive

Inspired by the
principles of
genetics, inheritance,
and natural selection
observed in
biological evolution.

Inspired by the
immigration and
emigration processes
of species in
biogeography

Main Components Types of Bees
(employed, onlooker,
and scout), employed
bee phase, onlooker
bee phase, �tness
evaluation

Population of
individuals, �tness
evaluation, selection,
crossover, mutation

Habitats, migration,
immigration,
emmigration,
mutation, �tness
evaluation

Search Strategy Utilizes employed
bees, onlooker bees,
and scout bees to
explore and exploit
the solution space

Implements
selection, crossover,
and mutation
operators to explore
and exploit the
solution space

Simulates the
migration and
mutation processes
to �nd optimal
solutions

Application Areas Image Processing,
Arti�cial Intelligence

Clustering and
Classi�cation,
Machine Learning

Combinatorial
optimization
problems, Portfolio
Optimization

16

4.1 Image Segmentation using Arti�cial Bee Colony

ABC for Image Segmentation

Step 1: Convert the input 16 bit color image into grayscale, and then obtain histogram for

grayscale image.

Step 2: Initialize random population

• will be initialiting N # of random solutions.

• Will be segmenting the image into D classes(will obtain D intensities of colors by end).

• Each class will contain 3 variables (probability, standard deviation and mean)

After initializing the population , each row would look something like below.

I N = f PN
1 ; � N

1 ; � N
1 ; PN

2 ; � N
2 ; � N

2 ; PN
3 ; � N

3 ; � N
3 g (1)

P ! P robability; � ! StandardDeviation ; � ! mean;

N ! numberOfSolutions; D ! numberOfSegments

Step 3: Implement ABC

REPEAT

Employee Bee 1(a) will �nd next best solution using the equation listed below

vj;i = x j;i + � j;i � (x j;i � x j;k) (2)

k 2 f 1; 2; ::::; Npg; j 2 f 1; 2; ::::; Dg

j ! D # of attributes in a solution ; k ! randomly pick one solution;

� j;i ! random penalty; x j;i ! value of jth attribute in ith solution ;

17

xj;k ! value of jth attribute in kth solution ; vj;i ! value of jth attribute in new solution

After replacing all the values ofvj;i in old solution, Employee Bee will form a new solution.

Employee Bee 1(a) will replace the new solution with the original solution only if the �tness

value is greater than previous �tness value.

Onlooker Bee 1(b) picks a solution which has a high probability of having a good �tness score.

if Employee Bee 1(a) cannot produce a new solution after x iterations, the solution is abandoned

and

Scout Bee 1(c) will generate a new random solution

UNTIL max iterations are reached.

Fitness Score Computation

We need to calculate gaussian probability and calculate the objective function of each solution,

using these metrics we will be able to calculate the �tness value of the selected solution.

1. calculate Gaussian probability function

p(x) = � D
i =1 Pi :pi (x) = � D

i =1 (Pi �
p

2�� i) � exp[� (x � �)2 � 2� 2
i] (3)

p(x) ! probability of one solution out of N solutions

Pi ! summation of probabilities of all the D attributes of a solution

Pi (x) ! probability of a class in ith solutuion

� i ! standard deviation of one class in ith solution

x ! number of pixels in an image;

� ! mean of one class in ith solution

18

2. Using gaussian probability calculate objective function

J = � n
j =1 [p(x j) � h(x j)]2 + ! � j [� D

i =1 Pi] � 1j (4)

p(xj) ! gaussian probability of current solution:

h(xj) ! gaussian probability of originalImage solution:

! ! constant penalty

J ! f itness value of a solution

3. Calculate the �tness value

�t i = 1=(1 + Ji) ifJ i > = 0

f it i = 1 + abs(Ji) ifJ i < 0 (5)

After reaching the threshold limit number of iterations the ABC algorithm implementation will

be stopped and the best solution will be picked based on the �tness score.

After �nding out the best solution we need to �nd out the pixel intensity to which we want to

plot our output image, for which we need to calculate the thresholds of each class.

Step 4: Calculate thresholds (if we divide image into 3 segments we will get 2 thresholds).

AT 2
h + BTh + C = 0 (6)

A = � 2
h � � 2

h+1

B = 2(� h � � 2
h+1 � � 2

h+1 � � 2
h)

C = (� h+1 � � h)2 � (� h � � h+1)2 +2 � (� h � � h+1)2 � ln[� h+1 � Ph � � h � Ph+1]

19

Ph ! P robability of one class

� h ! StandardDeviation of one class

� h ! mean of one class

Step 5: convert the best solution into a grayscale image.

Image Segmentation with ABC in MASS

The ABC algorithm in MASS uses static agents to run the algorithm as many times as required

over a matrix in parallel. The code for the algorithm is divided into 4 Java classes:

1. Bee : this class will de�ne the behavior of the Agent Bee which is the static agent construct

and de�nes the methods on the Agent. The Agent will Initialize the population using

init () method and will �nd the next solution usingf indNextSolution () method.

2. ImageSegmentationWithABC : instantiates a multi-dimensional distributed array of

the Places construct usingsizeargument and initializes it in parallel. For instantiating the

Arti�cial Bee population we use static Agent Bee to create a random population consisting

of 20 solutions and then tries to �nd a solution which is similar to original histogram[8].

20

Listing 2 depicts the static Agent Bee behavior as described in Bee class.

Listing 2: ABC Agent Behavior in MASS

1 import MASS.* ;

2 pub l i c c l a s s Bee ex tends Agent f

3 I n i t i a l i z a t i o n s fo r mean , d e v i a t i o n and random seed

4 pub l i c Ob jec t ca l lMe thod (i n t f u n c t i o n I d , Ob jec t argument)f

5 sw i tch (f u n c t i o n I d)f

6 case i n i t : re turn i n i t (argument) ;

7 case f i n d N e x t S o l u t i o n : re turn f i n d N e x t S o l u t (argument) ;

8 g

9 re turn n u l l ;

10 g

11 g

After initialization of Places and Agents we maintain a couple of array objects calledprevIt-

erationSolutionsandtoBePassedNextIteration. These array objects are maintained on main

program to keep track of the solutions and help agents in �nding, generating new solutions.

Agents �nd the solution by randomly picking a solution from previous iteration which has max

�tness score and generates a new solution. After completing all the initializations MASS will

perform a parallel function call to all agents using Places.callAll() i.e.,imageThresholds.callAll(),

Agents.callAll() will perform the required computations and will �nd the �nal best solution after

completion of ABC. Listing 3 depicts the implementation mentioned above.

21

Listing 3: Main program for ImageSegmentationWithABC in MASS

1 import MASS.* ;

2 pub l i c c l a s s ImageSegmentat ionWithABCf

3 pub l i c s t a t i c vo id main (S t r i n g [] a r g s)f

4 G r a y S c a l e I n t e n s i t y C o n v e r t e r imageConver te r =new (. . .) ;

5 H is tog ramHe lper h i s t H e l p e r =new His tog ramHe lpe r () ;

6 P l a c e s imageThresho lds =new P l a c e s (. . .) ;

7 imageThresho lds . c a l l A l l (ImageThresho ld . i n i t) ;

8 Agents bees =new Agents (. . .) ;

9 double [] [] p r e v I t e r a t i o n S o l u t i o n s =new double[nAgents] [] ;

10 double [] [] t o B e P a s s e d N e x t I t e r a t i o n =new double[nAgents] [] ;

11 double [] [] h i s t C o p i e s = new double[nAgents] [] ;

12 fo r (i n t i nd = 0 ; i nd < nAgents ; i nd ++)f

13 h i s t C o p i e s [i nd] = h i s t ;

14 g

15 t ry f

16 fo r (i n t i = 0 ; i < i t e r a t i o n ; i ++) f

17 Ob jec t [] r e t S o l u t i o n s ;

18 i f (i == 0) f

19 r e t S o l u t i o n s = (Ob jec t []) bees . c a l l A l l (Bee .i n i t , h i s t C o p i e s) ;

20 g

21 e l s e f

22 r e t S o l u t i o n s = (Ob jec t []) bees . c a l l A l l (Bee .f i n d N e x t S o l u t i o n ,

23 t o B e P a s s e d N e x t I t e r a t i o n) ;

24 g

25 ggggg

22

Image Segmentation with ABC in Repast SimphonyIn Repast Simphony Places are called as

Projections(space, grid) and main program is called Context Builder and it doesn't contain a

main method. parallelization in Repast Simphony happens using annotations like@Scheduled-

Method(start= x, interval = y)and we can easily write methods for Agents .

Listing 4 depicts the overall working of Arti�cial Bee colony for Image Segmentation in Repast

Simphony. we have to import repast speci�c libraries just like in java and need to add all the

required Agent objects to context in lines 8,9 we will be adding Employee Bee Agents and

OnlookerBee Agents to our context and in line 10 we will be assigning these objects to the grid

projection created in line 7. After returning the context is when the program exection starts the

scheduled method, which means all the Agents present in the grid will become active and start

implementing the ABC algorithm. After completing X number of iterations we will stop the

execution and will draw the �nal image using the Best Solution obtained.

Listing 4: Context Builder for ImageSegmentationWithABC in Repast Simphony

1 import r e p a s t . simphony . c o n t e x t . Con tex t ;

2 import a l l t h e r e p a s t s p e c i f i c l i b r a r i e s

3 pub l i c c l a s s ABC implements C on te x t B u i l d e r< Objec t> f

4 I n i t i a l i z a t i o n s fo r N,D and PIXELS

5 pub l i c Con tex t b u i l d (Context< Objec t> c o n t e x t) f

6 Read i n p u t image and g e n e r a t e h i s t o g r a m

7 C r e a t e P r o j e c t i o n s (Cont inuousSpace and G r i d F a c t o r y)

8 I n i t i a l i z e Employee Bee Agent O b j e c t s and add t o c o n t e x t

9 I n i t i a l i z e Onlooker Bee Agent O b j e c t s and add t o c o n t e x t

10 Ass ign Agents t o Gr id P r o j e c t t i o n

11 re turn c o n t e x t ;

12 g g

23

Agent Bee Behavior

Listing 5 depicts the typical behavior of a Bee, where Agent Bee will be initialized during the

context formation and@ScheduledMethodwill �nd the nextBestSolutiondepending on the

type of the Bee. if the Agent is of type EmployeeBee then a random solution is selected from

the entire search space, the newly selected random solution will help the Agent in �nding the

best solution among the newly picked random solution and old solution using Fitness Score.

Similarly if the Agent is of type Onlooker Bee then a random solution is selected based on

�tness scores and it doesnt mean that solution with highest �tness score will be selected all the

times, but signi�cantly good solution will be selected from the entire search space.

Listing 5: ABC Agent Behavior in Repast Simphony

1 import a l l t h e r e p a s t s p e c i f i c l i b r a r i e s

2 pub l i c c l a s s Bee f

3 I n i t i a l i z a t i o n s fo r F i t n e s s S c o r e H e l p e r , space and g r i d

4 Bee (F i t n e s s S c o r e H e l p e r f i t n e s s S c o r e H e l p e r ,

5 Cont inuousSpace< Objec t> space , Grid< Objec t> g r i d)

6 f

7 t h i s . s o l = I n i t i a l i z a t i o n . g e n e r a t e N e w S t a r t () ;

8 t h i s . f i t n e s s S c o r e = f i t n e s s S c o r e H e l p e r . g e t F i t n e s s

9 �Value (t h i s . s o l) ;

10 g

11 @ScheduledMethod (s t a r t = 1 , i n t e r v a l = 1)

12 pub l i c vo id s e t N e x t B e s t S o l u t i o n ()f

13 Find a l l t h e n e i g h b o u r i n g Agents i n t h e g r i d

14 s e l e c t a random s o l u t i o n

15 super . s e t N e x t B e s t S o l u t i o n (s o l u t i o n s [s e l e c t e d S o l u t i o n] ,

16 f i t n e s s S c o r e H e l p e r) ;

17 g

18 g

24

4.2 Building Agent Based Classi�cation System using Genetic Algorithm

Improved EABC2 for Classi�cation System

the algorithm is divided into 3 phases starting from de�ning theEABC2 Agent Behavior,

Evolutive orchestration and Model synthesisfollowed byTesting phase.

EABC2 Agent Behavior:

the key role of agent here is to construct well formed clusters. Each agent uses a subset of

patterns R, randomly sampled from the training set, to build the decision regions of the classi�ca-

tion model M. The clustering algorithm used by each agent is the Basic Sequential Algorithmic

Scheme (BSAS), which assigns a pattern to an existing cluster if the pattern-to-cluster distance

is below a given threshold� . If the pattern cannot be assigned, it becomes a centroid for a new

cluster. However, BSAS may return a large number of small clusters, especially for low� values.

To address this, a maximum number of allowed clusters can be de�ned and new clusters can be

spawned if the number of available clusters is below the allowed number.

In E-ABC2, a Reinforcement Learning-based BSAS (RL-BSAS) is used to mitigate the sensi-

tivity of BSAS to pattern order and outliers. In RL-BSAS, an energy value is assigned to each

cluster. When a cluster receives a new pattern, its energy is increased by a value� 2 [0,1],

while the energies of all other clusters are diminished by a value� 2 [0,1]. Relevant clusters

will survive with high energies, while badly-formed clusters will eventually vanish when their

energies approach zero.

Each E-ABC2 agent depends on a set of parameters:

• the maximum threshold� for the BSAS procedure

• a binary maskW 2 [0,1] is in charge of selecting only relevant features, de�ning the

speci�c local metric used by the agent in searching for well-formed clusters. ex: [1,0,0,1]

• the ratio parameter r =� /� 2 (0,1) involved in the RL-BSAS.

Each agent uses the parameters described above to cluster the input data subset R. Initially, it

25

selects features from the patterns in R that belong to a value of 1 in the binary weight vector W.

Then, it applies the RL-BSAS algorithm using the threshold value� , along with penalty and

reward factors� = r·� . For simplicity, the value of� is set to 1, allowing the value of� to be

easily calculated as� = � /r. The agent's primary objective is to generate a partition P, which is

obtained by running RL-BSAS.

Listing 6: E-ABC2 Agent behavior

1 P � P a r t i t i o n o f c l u s t e r s f C1 , . . . ,Cp g

2 d � d i s t a n c e betwen p a t t e r n s

3 R � agen t d a t a sha rd

4 p r o c e d u r e AGENTEXECUTION

5 P = RL�BSAS (R)

6 r e p e a t

7 fo r each p a i r Ci , Cj i n Pdo

8 E v a l u a t e D = d (Ci , Cj)

9 u n t i l a l l p a t t e r n s i n R a r e a s s i g n e d t o a c l u s t e r

Evolutive Orchestration and Model Synthesis:

Initially each agent will be assigned a random genetic code which contains the set of parameters

mentioned above. The genetic code would look like this : [theta, W, r].

Each agent will evolve over the time using Genetic algorithm functionalities like Selection,

Crossover and Mutation.

Selection: we have collected all the genetic codes from previous generation and sorted the

agents based on their �tness scores in non-increasing order. Then we randomly select one

strongest parent from the �rst half and another parent from second half of the agents population

that we have. This will help us produce half the amount of population that we previously had.

After this, we will randomly select 2 parents from the stronger population that is the �rst half

and produce the off-springs until the desired population is reached. By following this procedure

we will be able to produce good quality off-springs.

26

genetic code structuref [binary mask] , threshold, energyg

Ex: Lets assume the selected parents are :f [1,0,1,1], 0.7 ,9g andf [0,0,1,1], 0.2 ,4g

Crossover: In crossover between 2 agents we have randomly selected one parameter each from

the 2 input genetic codes that we have and performed mutation on the result. Ex: parents are :

f [1,0,1,1], 0.7 ,9g andf [0,0,1,1], 0.2 ,4g

Offspring will be : f [1,0,1,1], 0.7 , 4g

Mutation: for the parameters=theta and r, we have randomly changed the threshold 20%

higher or lower. for the binary mask we randomly selected one index and inverted it.

Ex: if the Offspring is :f [1,0,1,1], 0.7, 4g

After Mutation : f [1,0,0,1], 0.56, 4.8g

After performing all the above operations each agent exploits the parameters written in its

genetic code in order to return a partition P of the random data shard R. As P = C1, . . . ,Cp is

returned, each cluster C in the partition is evaluated using quality indexf cc(C) that considers

both its compactnessf co(C) and cardinalityf ca(C) of the clusters.

f cc(C) = �:f co(C) + (1 � �):f ca(C) (7)

fco(C) = ((1 � (� x2 Cd(x; �)=jCj)) � comin)=comax � comin

fca(C) = jCj � camin =camax � camin

� ! user def ined tradeof f parameter

C ! number of instances in a cluster

d(x,�) ! sum of distance between all instances in a cluster

comin , comax , camin andcamax are the minimum and maximum compactness and cardinality

values observed during the evolution,� denotes the centroid of the cluster and� 2 [0,1] is a

user-de�ned trade-off parameter. In order to retain only good quality clusters, for each agent,

27

only the best clusterC � is retained, namely the cluster in P that maximizes 7

After each agent �nds out the best cluster , now we have to evaluate whether the best cluster

collected by each agent can be added to our �nal model or not. This involves �nding out the

ratio of validation data that share the same label as C and fall within C, to the total number of

validation set patterns falling in C.

If Acc(C)� is greater than both a user-de�ned thresholdAccmin and an adaptive parameterAccgl,

then the clusterC � is considered to be of good quality and is added to the classi�cation model,

denoted as M. M is incrementally built generation-by-generation, and serves as the core of the

classi�cation model. Once all agents have of�oaded their good clusters in M, these clusters can

be considered as building blocks for the classi�cation model.

Listing 7: E-ABC2 Agent Fitness Evaluation and Model Design

1 Pi � P a r t i t i o n o f c l u s t e r s C1; : : : ; Cp of t h e i t h agen t

2 Ri � d a t a sha rd o f i t h agen t

3 < C > � c l u s t e r compac tness

4 jCj � c l u s t e r c a r d i n a l i t y

5 p r o c e d u r e AGENTSEVALUATION

6 Compute Accgl f o r t h e model M on Svl

7 fo r each agen tai i n P do

8 Pi = a g e n t E x e c u t i o n (Ri)

9 fo r each C i n Pi do

10 f cc(C) = � � hCi + (1 � �) � jCj

11 b e s t C l u s t e rf C g = c l u s t e r w i th max f cc

12 Compute c l u s t e r accu racyAcc(C �) on Svl

13 f = Accgl � Acc(C �) + (1 � Accgl) � f cc(C �)

Training Phase: Here we start by initializing an empty model M, and initializing a population

Pi with randomly generated genetic codes. The algorithm then proceeds through a number of

generations to evolve the population towards an optimal solution.

28

In each generation, the algorithm �rst draws N random shards from the training datasetStr .

Then, the populationPi undergoes an evaluation step using the function agentsEvaluation to

generate a set of clusters, each with a corresponding �tness value f. Then we check the accuracy

of the current model M on the validation datasetSvl , denoted asAccgl. For each agent in the

population, the algorithm checks if the accuracy of the best clusterC � generated by that agent is

greater than a user-de�ned thresholdAccmin and greater than the adaptive parameterAccgl. If

so, then we add the clusterC � to the model M.

Overall, the E-ABC2 algorithm provides a robust and ef�cient method for training classi�cation

models using a combination of optimization and adaptive parameter tuning.

Listing 8 de�nes the working of how classi�cation model is built.

Listing 8: E-ABC2 Training Phase

1 N � Number o f a g e n t s

2 Pi � p o p u l a t i o n o f i th g e n e r a t i o n

3 Rj � d a t a sha rd fo r j th agen t

4 p r o c e d u r e TRAINAGENTS

5 Set M = ;

6 I n i t i a l i z e i n d i v i d u a l s i n P0 wi th random g e n e t i c code

7 fo r i = 0 t o NG do

8 Draw random s h a r d sf R1; : : : ; RN g from Str

9 C � , f = a g e n t s E v a l u a t i o n (Pi , f R1; : : : ; RN g , Svl)

10 Compute accu racyAccgl of model M on Svl

11 fo r each agen taj do

12 i f Acc(C �) > Accmin && Acc(C �) > Accgl t hen

13 Add C � t o model M

14 Pi +1 = Evolve (Pi)

29

Multi Agent Classi�cation System using E-ABC2 in MASS

The E-ABC2 algorithm in MASS uses static agents to run the algorithm until maximum accuracy

is achieved on a matrix in parallel. The code for the algorithm is divided into 4 major Java

classes:

1. EABC2Main: instantiates a multi-dimensional distributed array of the Places construct

usingsizeargument and initializes it in parallel. For instantiating the Agent population we

useMLClassi�cationAgentto create N agents with random genetic codes and evolve until

all the patterns in training set have been clustered.

2. MLClassi�cationAgent: it calcuates theEuclidean Distancebetween the pattern from

training set and cluster centroid, and handles energy management i.e.. assigning penalties

to the clusters.

3. Cluster Evaluation: it �nds the best cluster from all the cluster an agent has formed by

calculating the cluster quality. After �nding the bestCluster from an agent , it will �nd the

cluster accuracy by mapping it against validation dataset.

4. Evolutive Orchestration: takes care of performing selection, crossover and mutation

operations.

Listing 9 depicts the Implementation of Multi Agent Classi�cation system in MASS. Lines 7,9

de�ne the initializations of places and Agents objects, followed by the generation of random

genetic codes in Line 14,15. In Line 16 we are assigning each agent with its genetic code and

training data to form clusters. Line 17,18 depict how we have parallelized cluster formation for

each agent usingcallAll() method. After each agent has formed its own set of clusters, we will

pick one best cluster from each agent which has highest cluster accuracy which are de�ned by

cluster compactness and cardinality which id shown in Line 20. After collecting one best cluster

from all agents we will validate the clusters using validating data which is shown in Line 21. In

line 23 we will be calculating accuracy of the model that we are building using validation data,

and in Line 25 we are adding the cluster to �nal model.

30

Listing 9: E-ABC2 Main program to implement a Classi�cation System in MASS

1 import MASS.* ;

2 pub l i c c l a s s EABC2Main f

3 pub l i c s t a t i c vo id main (S t r i n g [] a r g s)f

4 I n i t i a l i z e i t e r a t i o n s , MAXCLUSTERS, g loba lMinAccuracy

5 Gene t i cCodeGenera to r g e n e r a t o r =new Gene t i cCodeGenera to r () ;

6 M L C l a s s i f i c a t i o n A g e n t agen t =new M L C l a s s i f i c a t i o n A g e n t () ;

7 MLModel mlModel = new MLModel () ;

8 P l a c e s p l a c e s =new P l a c e s (. . . .) ;

9 p l a c e s . c a l l A l l (MASSPlace . i n i t) ;

10 Agents c l a s s i f i c a t i o n A g e n t s =new Agents (. . .) ;

11 t r y f

12 double [] f i t n e s s = new double[nAgents]

13 whi le (i t e r a t i o n < i t e r a t i o n s) f

14 L i s t< Genet icCode> ge ne t i c Co des =

15 g e n e r a t o r . g e n e r a t e G e n e t i c C o d e s (nAgents , f i t n e s s) ;

16 fo r each agen t a s s i g n i t s g e n e t i c code and t r a i n d a t a

17 Ob jec t [] r e s p o n s e s = (Ob jec t []) c l a s s i f i c a t i o n A g e n t s .

18 c a l l A l l (M L C l a s s i f i c a t i o n A g e n t . i n i t , a rguments) ;

19 fo r (i n t i = 0 ; i < r e s p o n s e s . l e n g t h ; i ++)f

20 C l u s t e r b e s t C l u s t e r = (C l u s t e r) r e s p o n s e s [i] ;

21 double accu racy = b e s t C l u s t e r . ge tAccuracy () ;

22 double g loba lMode lAccuracy = mlModel . getModelAccuracy (

23 g en e t i cC ode s . g e t (i) . g e t V a l i d a t i o n ()) ;

24 i f (accuracy> g loba lMinAccuracy &&

25 accuracy> g loba lMode lAccuracy) f

26 mlModel . addToModel (b e s t C l u s t e r) ;gg

27 i t e r a t i o n ++;ggg

28 g

31

Multi Agent Classi�cation System using E-ABC2 in Repast Simphony

In Repast Simphony Places are called as Projections(space, grid) and main program is called

Context Builder, parallelization in Repast Simphony happens using annotations like @Scheduled-

Method(start= x, interval = y). Listing 10 depicts the overall working of building Classi�cation

System using E-ABC2 in Repast Simphony. we have to add all the required Agent objects

to context like in line 7 we will be adding Agents,MlModel and Generate random popula-

tion(Generator) and in line 8 we will be assigning these objects to the grid projection created in

line 6. After returning the context is when the program execution starts the scheduled method,

which means all objects in context will start implementing E-ABC2 algorithm until it achieves

maximum accuracy.

Listing 10: Context Builder for Classi�cation system using EABC2 in Repast Simphony

1 import r e p a s t . simphony . c o n t e x t . Con tex t ;

2 import a l l t h e r e p a s t s p e c i f i c l i b r a r i e s

3 pub l i c c l a s s EABC2 implements C on te x t B u i l d e r< Objec t> f

4 pub l i c Con tex t b u i l d (Context< Objec t> c o n t e x t) f

5 read i n p u t d a t a s e t and per fo rm sampl ing

6 C r e a t e P r o j e c t i o n s (Cont inuousSpace and G r i d F a c t o r y)

7 I n i t i a l i z e Agent , mlModel O b j e c t s and add t o c o n t e x t

8 Ass ign Agents t o Gr id P r o j e c t t i o n

9 re turn c o n t e x t ;

10 g g

Listing 11 depicts the behavior of a Agent, where Agent will be initialized during the context

formation and @ScheduledMethod will start the clustering process by �rst subsampling the data

into Train,Test and Validation datasets. All the agent objects will start forming clusters using

training data and best cluster will be selected from each agent for which global model accuracy

will be calculated and added to themlmodelaccordingly.

32

Listing 11: E-ABC2 Agent Behavior in Repast Simphony

1 import a l l t h e r e p a s t s p e c i f i c l i b r a r i e s

2 pub l i c c l a s s Agent f

3 I n i t i a l i z a t i o n s fo r g loba lMinAccuracy , space and g r i d

4 pub l i c Agent (i n t id , Gene t i cCodeGenera to r g e n e r a t o r ,

5 MLModel mlModel , D a t a s e t d a t a s e t)

6 f

7 s e t u p t h e i n s t a n c e v a r i a b l e s : id , g e n e r a t o r ,

8 c l u s t e r E v a l u a t i o n , mlModel , d a t a s e t .

9 g

10 @ScheduledMethod (s t a r t = 1 , i n t e r v a l = 1)

11 pub l i c vo id i n i t () f

12 Ass ign Tra in , Tes t and V a l i d a t i o n d a t a t o Agent

13 L i s t< C l u s t e r> c l u s t e r s = e x e c u t i o n (t r a i n D a t a ,

14 g e n e r a t o r . ge tGene t i cCode (a g e n ti d)) ;

15 C l u s t e r b e s t C l u s t e r = c l u s t e r E v a l u a t i o n .

16 f i n d B e s t A g e n t C l u s t e r (c l u s t e r s) ;

17 double accu racy = c l u s t e r E v a l u a t i o n .

18 b e s t C l u s t e r A c c u r a c y (b e s t C l u s t e r , v a l i d a t i o n D a t a) ;

19 double g loba lMode lAccuracy = mlModel . getModelAccuracy (

20 v a l i d a t i o n D a t a) ;

21 i f (accu racy > g loba lMinAccuracy &&

22 accu racy> g loba lMode lAccuracy)f

23 mlModel . addToModel (b e s t C l u s t e r) ;g g

24 g

25 g

33

4.3 Job Shop Scheduling Problem using Bio-geography Based Optimiza-

tion

Job Shop Scheduling Problem (JSSP)is where each job consists of a series of tasks that

must be completed in a particular order and on a particular machine. For instance, the task can

involve producing a single consumer good eg: a vehicle. The challenge is to plan the tasks on

the machines so that the total time required to complete everything on the schedule is kept to a

minimum and it follows the below rules

1. Before beginning a work for a job, the prior task must be �nished for that job.

2. Only one task can be completed by a machine at once.

3. Once a task has begun, it must continue until �nished.

we have worked on implementing a general JSSP, assuming that we will be having equal number

of operations for all the jobs and that the number of operations will be equal to the number of

machines. To understand more about JSSP refer to [11].

op-machine :

op #

job

2

6
6
6
6
4

2 1 3

2 3 1

3 2 1

3

7
7
7
7
5

jobCost-machine :

machine #

job

2

6
6
6
6
4

10 6 3

5 7 4

9 13 8

3

7
7
7
7
5

Example of a habitat :f 1, 2, 1, 3, 2, 1, 3, 2, 3g - de�nes the sequence of operations

34

Figure 3: Example of 3*3 JSSP

The sequence of operations executed on machines would look like following:

1. Job 1 Operation 1 will run on machine 2, because there are no jobs running on machine2.

2. Job 2 Operation 1 will run on machine 2 only after machine 2 becomes free.

3. Job 1 Operation 2 will run on machine 1, only after the �rst operation of Job 1 has been

executed and there are no jobs running on machine 1.

4. Job 3 Operation 1 will run on machine 3, because there are no jobs running on machine 3.

5. Job 2 Operation 2 will run on machine 3 only after the �rst operation of Job 2 has been

executed and there are no jobs running on machine 3.

The process continues until all the Operations of all the Jobs have been scheduled. The total

makespan of the above habitat is 41s.

35

BBO for JSSP

BBO mimics the geographical distribution of species, how new species emerge, and how they

become extinct. Each group of these distributions are called habitats and each habitat can be

considered as a potential solution. If a habitat is suitable for biological survival, it is determined

using a quantitative performance index called the Habitat Suitability Index (HSI).

The candidate solutions in the BBO are presented using a collection of habitats. Migration

and mutation are the two main mechanisms used by the BBO. In various population-based

optimization techniques, �tness is the criterion for determining whether a solution is good. HSI

is the equivalent of �tness score in BBO [12].

Step 1 : Initialize Habitats / Encoding

The JSSP's habitat encoding involves representing it as a sequence ofn job assignments tom

machines, i.e.,f j1, j2, j3, j2, j1, , jn*mg.

Due to the large number of jobs and machines involved, the total number of possible habitats

is (jobs * machines)! , making this problem NP-hard. To tackle this issue, we can restrict the

number of habitats to be considered in the candidate solution set and employ BBO to ef�ciently

identify the best habitat among them.

Ex: lets assume we have jobs = 2 and machines = 2, and our habitat count is 3.

habitats :f 1, 2, 2, 1g , f 1, 2, 1, 2g , f 1, 1, 2, 2g

Step 2 : Compute Habitat Suitability Index

After generating required number of habitats, now we have to calculate the suitability index or

�tness value for each each habitat.

1. Maintain a Hashmap to keep track of the operations on a job.

2. Find out the job number (J) and its operation number (i).

3. Find out which machine(M i) the current job should run on.

4. Now, Find the end time of current job previous operation (Ji � 1), and the end time of the

job running on the current machine (M i).

5. update the currJobStartTime as max(end time ofM i , end time of (Ji � 1) .

36

6. maintain start and end times of current operation of a job (Ji) , and the operation running

on machine (M i).

Step 3: Avoid Stagnation

Maintain stagnation count of the HSI's to avoid the stagnation of the solution. If a habitats HSI

hasn't changed in past x iterations then we change the features of the solution to help it escape

by getting trapped in local optima.

Step 4: Calculate Immigration Eligibilities of habitats

1. Normalize HSI's for all the habitats:

normalizedHSI [i] = ((computedHSIs[i] � minHSI)=(maxHSI � minHSI)) (8)

2. probabilistically assign the immigration eligibility to each of the habitats, habitats will

lower normalized HSI's will have high probablity to immigrate.

• if currHSI < globalMinHSI, then we will allow the habitat to immigrate.

Ex: Lets assume we have a habitat of size 3 then immigration =f false, false, trueg.

Step 5: Calculate Emigration Eligibilities of habitats

1. Normalize HSI's for all the habitats:

normalizedHSI [i] = 1 � ((computedHSIs[i] � minHSI)=(maxHSI � minHSI))

(9)

2. Probabilistically assign the emigration eligibility to each of the habitats. Here we inverted

the normalization because Habitat with lower HSI will have higher probability to emigrate.

• if currHSI > globalMaxHSI, then we will allow the habitat to emigrate.

Ex: emmigration =f true, false, falseg.

37

Step 6: Perform migration

Now we have to change the habitat with immigration eligibility to look like emigrating habitat

1. iteratively pick habitat with immigration eligibility.

2. pick a random habitat which has emigration eligibility.

3. Assuming we have M number of machines, randomly pick M indexes from emigrating

habitat.

4. perform cyclic rotation of values in the habitat. Ex: element present in 1st index will be

shifted to 2nd index from the chosen M indexes, element present in 2nd index will be

shifted to 3rd index and the process continues.

Ex: habitats :f 1, 2, 2, 1g , f 1, 2, 1, 2g , f 1, 1, 2, 2g, immigration =f false, false, trueg and

emmigration =f true, false, falseg

Lets assume habitat 1 has highb HSI which is why it doesnt immigrate and has probabilistically

gained emmigration eligibility. If we observe immigration[2] then we can see that it is eligible

to migrate , so lets randomly pick emmigration[0] and perform migration.

f 1, 2, 2, 1g is the habitat present at habitat[0].

Now lets pick machines number (2) random indexes in habitat[0] and perform cyclic rota-

tion,Indexes picked are 0 , 2.

After performing migration new habitat will bef 2, 2, 1, 1g.

Step 7: Recalculate HSI's for newly formed habitats

After performing migration, some of the habitats which previously had lower HSI's were

changed. So we have to recalculate HSIs of the new habitats and check immigration eligibilities.

Step 8: Perform mutation

To perform mutation:

1. select a habitat to mutate.

38

2. randomly pick a chunk of habitat and shuf�e the order of operations.

Ex: Suppose the habitat isf 2, 2, 1, 1g.

Lets pick indexes 1,2 as our chunk to rotate.

After rotating the chunk, this is how the new habitat will look like :f 2, 1, 2, 1g.

stop when mutationrate amount of habitats have been mutated.

Repeat the entire process for Y number of iterations to �nd the shortest makespan formed by a

habitat.

Job Shop Scheduling Problem using BBO in MASS

The BBO algorithm in MASS uses static agents to run the algorithm for a certain number of

iterations and �nds out the shortest makespan of a habitat. The code for the algorithm is majorly

divided into 4 Java classes:

1. JobShopSchedulingProblem: instantiates a 2D distributed array of the Places con-

struct using size argument and initializes it in parallel. Generates a set of candidate

solutions(habitats).hsiComputationAgentswill be the agent objects that will calculate the

HSI of habitats.

2. HSIComputationAgent: maintains two methodsinit and computeHSI. These methods

will take care of HSI computation usingHabitatSuitabilityIndexclass.

3. HabitatUtils: is an important class that contains all the major computation methods for [

generateRandomHabitat, generateNewHabitatsForEliteSolutions, getImmigrationEligi-

bility, getEmigrationEligibility, getMinMax, performMigration, mutate.]

Listing 12 depicts the Implementation of Job Shop Scheduling Problem using MASS. Line 5,6

depict that we will be initializing our places matrix and Line 7 depicts the initialization of Agents

object. Line 11 depicts that in the 1st iteration we will be randomly initializing the habitats using

generateRandomHabitat()and calculate the HSI for each of them. In Line 17 we are essentially

39

dividing the habitats into equal sized groups so that each Agent will get equal load to work on.

After diving the habitats among agents Line 20 shows that we are performing parallelization by

usingcallAll() method which will distribute the Agents onto multiple remote nodes and all the

nodes will start computing the HSI for each of the habitats. Depending on the minimum and

maximum HSI's we will be calculating the immigration eligibility which is shown in Line 23

usinggetImmigrationEligibility(), and in Line 24 we will calculate emmigration eligibility using

getEmigrationEligibility(). By considering the immigration and emmigration elibilities we will

implementperformMigration()as shown in Line 25. After performing migration some habitats

will change so we will have to recompute the HSI's as shown in Line 26 and then perform

mutation.

Listing 12: BBO main program to depict Job Shop Scheduling Problem in MASS

1 import MASS.* ;

2 pub l i c c l a s s JobShopSchedu l ingProb lemf

3 pub l i c s t a t i c vo id main (S t r i n g [] a r g s)f

4 I n i t i a l i z a t i o n s fo r jobs , machines , h a b i t a t C o u n t

5 P l a c e s p l a c e s =new P l a c e s (. . . .) ;

6 p l a c e s . c a l l A l l (MASSPlace . i n i t) ;

7 Agents hs iCompu ta t i onAgen ts =new Agents (. . .) ;

8 Genera te h a b i t a t C o u n t # o f c a n d i d a t e s o l u t i o n s

9 t ry f

10 fo r (i n t i t e r = 0 ; i t e r < i t e r a t i o n s ; i t e r ++)f

11 i f (i t e r == 0) f

12 hs iCompu ta t i onAgen ts . c a l l A l l (HSIComputat ionAgent .i n i t ,

13 h s i) ;

14 con t inue ;

15 g

16 Ob jec t [] h a b i t a t G r o u p s =new Ob jec t [nAgents] ;

17 fo r (i n t i = 0 ; i < nAgents ; i ++) f

18 i n t [] [] group = Ar rays . copyOfRange (c u r r G e n H a b i t a t s ,

40

19 i * g roupSize , ((i + 1) * g roupS ize)) ;

20 h a b i t a t G r o u p s [i] = group ;g

21 Ob jec t [] r e s p o n s e s = (Ob jec t []) hs iCompu ta t i onAgen ts .

22 c a l l A l l (HSIComputat ionAgent .computeHSI , h a b i t a t G r o u p s) ;

23 i n t [] minMax = h a b i t a t U t i l s . getMinMax (computedHSIs) ;

24 boolean[] imm ig ra t i on = h a b i t a t U t i l s . g e t I m m i g r a t i o n

25 � E l i g i b i l i t y (. . .) ;

26 h a b i t a t U t i l s . g e t E m m i g r a t i o n E l i g i b i l i t y (. . .) ;

27 p e r f o r m M ig r a t i o n (. . .) ;

28 Recompute HSIs

29 h a b i t a t U t i l s . muta te (. . .) ;gg

30 f i n a l l y f

31 MASS. f i n i s h () ; g

32 gg

Job Shop Scheduling Problem using BBO in Repast Simphony

In Repast Simphony parallelization can be implemented using annotations like@ScheduleMethod

(start = x, end = y). Listing 13 describes the �ow of how JSSP can be executed using BBO

in Repast Simphony. Line 4 depicts that we have to create context using spaceFactory and

gridFactory. Line 8 depicts that HSIComputationAgent will create habitats and add the agent

objects to the context.

Listing 13: Context Builder for JSSP using BBO in Repast Simphony

1 import a l l t h e r e p a s t s p e c i f i c l i b r a r i e s

2 pub l i c c l a s s JSSPBu i lde r impe lments C on te x tB u i l d e r<> f

3 I n i t i a l i z e # o f jobs , machines , h a b i t a tc o u n t

4 C r e a t e c o n t e x t us i ng Con t i nuousSpaceFac to ry and G r i d F a c t o r y

5 I n i t i a l i z e h s i , h a b i t a t U t i l s , h a b i t a t G e n e r a t o r and nAgents

6 c o n t e x t . add (h a b i t a t G e n e r a t o r) ;

7 fo r (i n t i = 0 ; i < nAgents ; i ++) f

41

8 c o n t e x t . add (new HSIComputat ionAgent (h a b i t a t G e n e r a t o r

9 , hs i , i)) ;

10 g

11 re turn c o n t e x t ; g

12 g

Agent parallelization in Repast Simphony

Listing 14 de�nes the typical behaviour of an agent in BBO. On the execution of Line 10, the

initialization of Agents and random habitats will take place, followed by HSI computation by

each agent as depicted in Line 2. After the HSI computation we will check if each solution

has reached stagnation and then perform migration which is depicted in Line 16 and 17. After

migration we will recalculate HSIs and then perform mutation which is depicted in Line 24.

Listing 14: BBO Agent Behaviour for JSSP in Repast Simphony

1 pub l i c c l a s s HSIComputat ionAgentf

2 @ScheduledMethod (s t a r t = 2 , i n t e r v a l = 2)

3 pub l i c vo id computeHSI () f

4 i n t [] [] h a b i t a t s = h a b i t a t G e n e r a t o r . ge tAgen t

5 � P a r t i t i o n (a g e n t I d) ;

6 h a b i t a t G e n e r a t o r . s e t A g e n t H a b i t a t s (

7 h a b i t a t S u i t a b i l i t y I n d e x . computeHSIs (h a b i t a t s) , a g e n t I d) ;

8 g

9 g

10 pub l i c c l a s s H a b i t a t G e n e r a t o rf

11 @ScheduledMethod (s t a r t = 1)

12 pub l i c vo id i n i t () f

13 g e n e r a t e random h a b i t a t s

14 i n t g roupS ize = h a b i t a t C o u n t / nAgents ;

15 Each agen t w i l l r e c e i v e g roupS ize # of h a b i t a t s

16 g

42

17 @ScheduledMethod (s t a r t = 3 , i n t e r v a l = 4)

18 pub l i c vo id c h e c k S t a g a t i o n ()f

19 i f (m a x s t a g n a t e dc o u n t == A l l owedS tagna t i on)f

20 h a b i t a t U t i l s . g ene r a teN ewH ab i t a t sF o r

21 � E l i t e S o l u t i o n s (computedHSIs , c u r r G e n H a b i t a t s) ;g

22 p e r f o r m M ig r a t i o n () ;

23 g

24 @ScheduledMethod (s t a r t = 5 , i n t e r v a l = 4)

25 pub l i c vo id pe r fo rmMuta t i on ()f

26 h a b i t a t U t i l s . muta te (c u r r G e n H a b i t a t s , imm ig ra t i on) ;

27 g

28 @ScheduledMethod (s t a r t = 4002)

29 pub l i c vo id f i n a l R e s u l t () f

30 System . ou t . p r i n t l n (” Bes tHSI : ” + bes tHSI) ; g

31 g

43

	Introduction
	Background
	Motivation
	Goal

	Libraries for Agent Based Modeling
	Multi Agent Spatial Simulation(MASS)
	Repast Simphony

	Classes of Bio Inspired Computing Algorithms
	Swarm Based Computation
	Evolutionary Computation
	Ecological Computation

	Applications
	Image Segmentation using Artificial Bee Colony
	Building Agent Based Classification System using Genetic Algorithm
	Job Shop Scheduling Problem using Bio-geography Based Optimization

	Performance Measurements
	Artificial Bee Colony Performance
	Genetic Algorithm Performance
	Bio-geography Based Optimization Performance

	Programmability Analysis
	Quantitative Analysis of Classes
	Quantitative Analysis of Lines of Code
	Quantitative Analysis of Cyclomatic Complexity

	Conclusion & Future Work
	Appendix

