
Link Prediction in Agent-Based Graph Database System

Sumit Hotchandani

A whitepaper
submitted in partial fulfillment of the

requirements for the degree of

Masters of Science in Computer Science and Software Engineering

University of Washington

2025

Project Committee:

Dr. Munehiro Fukuda, Committee Chair

Dr. Min Chen, Committee Member

Dr. Wooyoung Kim, Committee Member

University of Washington

Abstract

Link Prediction in Agent-Based Graph Database System

Sumit Hotchandani

Chair of the Supervisory Committee:
Dr. Munehiro Fukuda

This work presents a scalable and interpretable link prediction framework embedded na-

tively within the Multi-Agent Spatial Simulation (MASS) library. By extending MASS’s dis-

tributed graph infrastructure and property-aware computation model, we implement both

classical topological heuristics and embedding-based approaches—most notably Fast Ran-

dom Projection (FastRP) combined with k-Nearest Neighbors (kNN)—to infer potential

connections in graph-structured data.

Topological algorithms such as Adamic-Adar and Resource Allocation, implemented

as distributed primitives, demonstrate parity with Neo4j in accuracy and outperform it

in execution time on large-scale query workloads. FastRP embeddings are generated via

an agent-driven propagation pipeline that mirrors adjacency-based diffusion, enabling full-

graph vector generation in distributed environments. Though the current FastRP + kNN

pipeline in MASS exhibits higher latency due to agent overhead and synchronization, it

achieves competitive recall, especially at higher K values, validating its utility for applica-

tions that prioritize coverage over ranking precision.

Experimental results on the Cora citation network show that MASS supports interactive

and batch link prediction tasks at scale, offering a memory-local alternative to centralized

systems like Neo4j. This project transforms MASS from a simulation-only platform into

a programmable, graph-native AI engine—capable of powering graph reasoning tasks for

knowledge graphs, recommendations, and retrieval-augmented generation.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1

1.1 Problem Statement . 1

1.2 Background and Motivation . 1

1.3 Objectives . 3

Chapter 2: Related Work . 4

2.1 Topological Link Prediction . 4

2.2 FastRP . 5

2.3 Neo4j . 6

2.4 Current Challenges . 6

Chapter 3: Previous Achievements . 8

3.1 GraphDB . 8

3.2 Distributed Shared Graph . 10

3.3 Smart Agent Movement . 12

Chapter 4: Implementation . 14

4.1 Design Principles . 14

4.1.1 Extensible design and deep integration in MASS Core 14

4.1.2 Adherence to SOLID principles . 16

4.2 Topological Link Prediction . 17

4.2.1 Distributed Execution Model . 17

4.2.2 Algorithms . 20

4.2.2.1 Common Neighbor based methods 20

4.2.2.2 Total Neighbor Methods . 23

4.3 Embedding-based Link Prediction . 24

i

4.3.1 FastRP . 24

4.3.1.1 Enhancements to FastRP . 25

4.3.1.2 MASS Implementation . 26

4.3.2 KNN . 32

4.3.2.1 MASS Implementation . 33

4.3.2.2 Design Considerations . 34

Chapter 5: Evaluation . 36

5.1 Setup . 36

5.1.1 Datasets . 36

5.1.2 System Configuration . 37

5.1.3 Evaluation Metrics . 38

5.2 Execution Performance Analysis . 38

5.2.1 Topological Link Prediction . 38

5.2.2 FastRP + KNN Pipeline . 41

5.3 Accuracy analysis . 43

5.3.1 Topological Link Prediction . 43

5.3.2 FastRP + KNN . 48

Chapter 6: Limitations . 52

Chapter 7: Conclusion & Future Work . 54

Appendix A: Benchmarks . 59

A.1 Performance benchmarks . 59

A.1.1 Cora . 59

A.1.2 OGBL-DDI . 60

A.2 Topological Link Prediction benchmarks . 61

A.3 FastRP benchamarks . 63

Appendix B: Code Listings . 65

Appendix C: Project Setup and Execution Guide . 70

C.1 Repository and Branch Information . 70

C.1.1 Application Layer . 70

C.1.2 Core Library . 70

C.2 Rebuilding MASS Core . 70

ii

C.3 Building and Running the Application . 71

C.4 Input Requirements . 71

C.5 Sample Execution . 72

C.6 Output Artifacts . 72

C.7 Post-Processing and Evaluation . 74

iii

LIST OF FIGURES

Figure Number Page

3.1 Enhanced agent-based graph DB system with PropertyGraphPlaces.[11] . . . 9

3.2 Enhanced property graph DB system leveraging MASS Java library.[11] . . . 9

3.3 Graph representation by distributed map and vector.[6] 11

3.4 Agent propagation over a graph using migratePropagate.[16] 12

4.1 The MASS Stack . 15

4.2 FastRP class structure supporting semantic and structural feature integration 16

4.3 Topological link prediction class hierarchy extending shared interfaces 16

4.4 Topological link prediction - Distributed execution model 18

4.5 Common neighbors example . 21

4.6 Total neighbors example . 23

4.7 Spawn phase . 29

4.8 Neighbor visit and collect phase . 30

4.9 Return phase . 30

4.10 MASS KNN workflow . 33

5.1 Cora topological link prediction performance benchmarks. 39

5.2 OGBL DDI topological link prediction performance benchmarks. 40

5.3 MASS multi-node performance on topological queries. 41

5.4 Cora - FastRP + KNN time for Neo4j vs. MASS (1–8 nodes). 42

5.5 OGBL-DDI FastRP + KNN time for Neo4j vs. MASS. 43

5.6 Cora - Precision@k by algorithm . 44

5.7 Cora - Recall@k by algorithm . 44

5.8 Cora - Hitrate@k by algorithm . 45

5.9 Cora - MAP and MRR by algorithm . 45

5.10 OGBL-DDI - MAP and MRR by algorithm 46

5.11 OGBL-DDI - Precision@k by algorithm . 46

5.12 OGBL-DDI - Recall@k by algorithm . 47

5.13 OGBL-DDI - Hitrate@k by algorithm . 47

5.14 Cora - Precision, Recall, and HitRate for MASS 49

iv

5.15 Cora - Precision, Recall, and HitRate for Neo4j 49

5.16 OGBL-DDI - Precision, Recall, and HitRate for MASS 50

5.17 OGBL-DDI - Precision, Recall, and HitRate for Neo4j 50

C.1 Execution snapshot . 72

C.2 Embedding based results snapshot . 73

C.3 Topological results snapshot . 74

v

LIST OF TABLES

Table Number Page

5.1 Comparison of dataset statistics and evaluation splits 37

5.2 Evaluation metrics for ranking-based link prediction 38

A.1 MASS vs Neo4j topological link prediction execution performance 59

A.2 Cora MASS multi-node topological link prediction benchmarks 59

A.3 MASS vs Neo4j FastRP execution performance 60

A.4 MASS vs Neo4j topological link prediction execution performance 60

A.5 MASS vs Neo4j FastRP execution performance 60

A.6 MAP and MRR by Algorithm . 61

A.7 Precision@K by Algorithm . 61

A.8 Recall@K by Algorithm . 62

A.9 HitRate@K by Algorithm . 62

A.10 MAP and MRR for MASS and Neo4j . 63

A.11 Precision@k for MASS and Neo4j . 63

A.12 Recall@k for MASS and Neo4j . 64

A.13 HitRate@k for MASS and Neo4j . 64

vi

LISTINGS

4.1 Agent life-cycle management . 32

B.1 Relationship-based neighbor filtering . 65

B.2 Orchestrator-Collector agent movement . 65

B.3 Top-K neighbor search . 67

vii

1

Chapter 1

INTRODUCTION

1.1 Problem Statement

In graph-structured data, the task of link prediction is to infer likely or missing connec-

tions between nodes based on structural properties or learned representations. This task

underpins critical applications ranging from recommendation and fraud detection to knowl-

edge graph completion and retrieval-augmented generation (RAG). Formally, given a graph

G = (V,E), link prediction seeks to identify pairs (u, v) /∈ E that are likely to form edges

in future iterations of the graph.

While this problem has been studied extensively in both topological and learning-based

paradigms, most scalable implementations rely on centralized systems that either precom-

pute similarity metrics or apply node embedding techniques followed by external similarity

search. Systems like Neo4j’s Graph Data Science (GDS) library support both heuristics

and embeddings such as FastRP but are confined to single-node execution, limiting their

applicability to truly large-scale or distributed deployments [7].

At the same time, existing agent-based simulation platforms like MASS (Multi-Agent

Spatial Simulation) provide the infrastructure for scalable, parallel computation across dis-

tributed spatial datasets but lack support for intelligent inference such as link prediction.

Integrating link prediction into a distributed agent-based graph database requires bridging

a gap between traditional graph simulation models and modern data science workloads—a

gap this project seeks to address.

1.2 Background and Motivation

Recent enhancements to the MASS framework have significantly extended its capabilities

for distributed graph analytics. Cao et al. introduced a property graph model atop MASS,

enabling expressive graph data with vertex and edge attributes to be queried efficiently

2

[11]. Ma’s work added a Distributed Shared Graph (DSG) abstraction that enables multi-

agent, concurrent access to vertex-level graph state in a spatially distributed system [6].

Together, these extensions create the foundation for an agent-based graph database that is

both semantically expressive and computationally scalable.

Despite these improvements, MASS has not yet incorporated graph inference primi-

tives. Link prediction is a particularly important example—where unconnected nodes are

scored based on topological closeness or learned embedding similarity. This project fills that

gap by embedding two complementary approaches directly into the MASS Core runtime:

topological scoring and vector-based embedding inference.

The topological path integrates heuristics like Common Neighbors, Adamic-Adar [1],

Resource Allocation [17], and Preferential Attachment [3]—all implemented as distributed

algorithms over MASS’s locality-aware memory model. By embedding them as native prim-

itives, MASS now supports fast, interpretable link prediction using only graph topology.

The second path is embedding-based and centers on Fast Random Projection (Fas-

tRP) [7], a lightweight method that projects high-dimensional adjacency relations into low-

dimensional space. This project reimplements FastRP using a fully agent-driven pipeline

for distributed embedding propagation. Once embeddings are generated, a centralized k-

Nearest Neighbor (kNN) inference engine computes pairwise similarities (e.g., cosine or dot

product) to identify link candidates.

Together, these two pipelines form a unified, hybrid approach to link prediction that is

native to MASS. This is especially valuable for downstream applications like GraphRAG,

where long-context reasoning is achieved by fusing symbolic graph traversal with dense

embedding retrieval [8]. Scalable inference is a prerequisite for these systems, and the

current work provides precisely that by embedding both embedding generation and inference

natively within MASS.

By integrating predictive analytics with distributed graph simulation, this project trans-

forms MASS from a simulation engine into a scalable, end-to-end graph intelligence platform.

3

1.3 Objectives

This whitepaper sets out to extend the MASS framework with native link prediction capa-

bilities through the following objectives:

First, to implement both topological and embedding-based methods—such as Adamic-

Adar, Resource Allocation, Preferential Attachement and FastRP + kNN—directly within

MASS Core, preserving interpretability and scalability.

Second, to match or exceed Neo4j’s performance on standard link prediction metrics

including Precision@k, Recall@k MAP, and MRR, while reducing overhead through dis-

tributed execution.

Third, to ensure spatial scalability through distributed memory and parallel computa-

tion, allowing MASS to support graph workloads beyond the memory limits of single-node

systems.

Finally, to support intelligent link recommendations for downstream AI systems, par-

ticularly for use in GraphRAG and other neural-symbolic pipelines, positioning MASS as a

building block for graph-centric AI.

4

Chapter 2

RELATED WORK

This chapter reviews the foundational work in topological and embedding-based link

prediction, and Neo4j’s Graph Data Science pipeline. By examining existing techniques

and their limitations, we highlight the motivations behind our distributed, property-aware

implementation in MASS.

2.1 Topological Link Prediction

Topological link prediction methods estimate the likelihood of edge formation using only

the structure of the graph. These heuristics remain effective in domains where attribute

data is unavailable or costly to process.

Common Neighbors (CN) is the foundational method, scoring node pairs by the size of

their shared neighborhood. Introduced by Liben-Nowell and Kleinberg[10], it captures the

intuitive idea that nodes with more mutual contacts are more likely to connect.

Adamic-Adar (AA) improves on CN by discounting high-degree nodes, applying a loga-

rithmic penalty to each common neighbor’s degree [1]. This helps filter out noisy hubs and

has shown stronger performance in sparse social graphs.

Resource Allocation (RA) offers a simpler variant, replacing the log-weight with a di-

rect inverse of neighbor degree [17]. Originally proposed for biological and technological

networks, RA emphasizes exclusivity over connectivity.

Preferential Attachment (PA), derived from the Barabási-Albert model[3], predicts links

based on degree-product. It models the “rich-get-richer” phenomenon, where highly con-

nected nodes attract more edges.

Recent evaluations, such as those by Ahmad et al. [2], demonstrate that these heuristics

remain competitive even against more complex models, especially in sparse or dynamically

evolving graphs.

5

2.2 FastRP

The Fast Random Projection (FastRP) algorithm was introduced by Chen et al. as a scalable

alternative to traditional sampling-based graph embedding methods such as DeepWalk [15]

and Node2Vec [14]. While those models rely on stochastic optimization and corpus-based

training over random walks, FastRP forgoes sampling entirely in favor of sparse matrix pro-

jection—a change that dramatically reduces computational overhead without compromising

embedding quality [7].

At its core, FastRP captures multi-hop topological relationships by repeatedly multi-

plying the normalized adjacency matrix of the input graph, encoding increasingly distant

structural proximity. This process is followed by the application of sparse binary random

projections that map the high-dimensional features into a low-dimensional vector space.

The underlying theory is grounded in the Johnson–Lindenstrauss lemma [9], which ensures

that such projections preserve pairwise distances with high probability, thereby maintaining

the integrity of the graph’s geometry.

What sets FastRP apart is its deterministic, algebraic nature. Instead of relying on

stochastic gradient descent or sampling strategies, the algorithm uses a closed-form propa-

gation pattern with tunable hyperparameters that allow developers to emphasize different

levels of neighborhood influence. This simplicity allows for significantly faster training,

and empirical evaluations have demonstrated 10x–100x speedups on large graphs compared

to Node2Vec and DeepWalk—while delivering comparable link prediction performance on

benchmark datasets [7].

Moreover, FastRP is well-suited for integration into production-grade graph systems due

to its composability and efficiency. It has been adopted by Neo4j as a native embedding

algorithm in the Graph Data Science (GDS) library [12], where its speed and compatibility

with downstream tasks like kNN-based link prediction make it a practical choice for real-

world deployments.

6

2.3 Neo4j

Neo4j is a widely adopted graph database system that integrates advanced analytics through

its Graph Data Science (GDS) library. GDS provides robust support for link predic-

tion using both heuristic and learning-based approaches. Topological measures such as

Common Neighbors, Adamic-Adar, Preferential Attachment, and Resource Allocation are

implemented as unsupervised similarity algorithms, while supervised pipelines allow for

classifier-based predictions using extracted features from candidate node pairs [13].

For embedding-based workflows, Neo4j implements Fast Random Projection (FastRP),

a highly efficient node embedding algorithm that leverages sparse random projections over

powers of the normalized adjacency matrix. This technique preserves structural proximities

while generating low-dimensional, memory-efficient vectors. Parameters such as embedding

dimension, number of hops, and weight decay allow fine-grained tuning of locality versus

globality in representation [13].

Once embeddings are computed, Neo4j supports link prediction through vector similarity

search using metrics like cosine similarity or dot product. The resulting candidate links can

be directly consumed by downstream tasks such as recommendation, graph completion,

or node classification. Together, the FastRP and link prediction modules offer a tightly

integrated pipeline for scalable graph intelligence within the Neo4j ecosystem.

2.4 Current Challenges

While the FastRP and link prediction pipelines introduced by Neo4j and earlier academic

literature represent significant advances in graph analytics, several limitations remain un-

addressed in current implementations.

The original FastRP algorithm, as introduced by Chen et al. [7], focuses solely on struc-

tural proximity and does not account for node properties during embedding generation.

Although Neo4j’s Graph Data Science library addresses this, it operates entirely within a

single-node architecture. Despite its rich set of algorithms and optimizations, scalability is

inherently bounded by the memory and compute resources of a single machine. This be-

comes a bottleneck for applications requiring distributed processing, particularly on graphs

7

that span millions of nodes and edges.

Finally, agent-based graph frameworks like MASS, though well-suited for distributed

graph simulation and traversal, have historically lacked native support for inference-based

tasks such as link prediction. Bridging the gap between symbolic simulation and predictive

analytics remains an open challenge in this space.

These gaps motivate the development of a distributed, inference-capable link prediction

pipeline that integrates both structural and property-aware embeddings—while maintaining

compatibility with parallel agent-based computation models.

8

Chapter 3

PREVIOUS ACHIEVEMENTS

This chapter outlines the foundational work upon which this project builds. It reviews

three key enhancements within the MASS framework: the transformation of the graph

database to support property graphs and Cypher queries; the implementation of a dis-

tributed shared graph (DSG) system for multi-user concurrent access; and the development

of smart agent migration patterns that enable scalable and efficient distributed graph traver-

sal. Together, these components provide the structural, architectural, and computational

groundwork necessary for implementing link prediction and embedding-based analytics.

3.1 GraphDB

The groundwork for this project was established through prior work by Shenyan Cao, who

significantly enhanced the existing agent-based graph database built on the Multi-Agent

Spatial Simulation (MASS) Java library[11]. The primary aim of this enhancement was

to evolve the system’s capabilities to support complex, real-world datasets by aligning it

with the property graph model and incorporating the Cypher query language for

expressive data interaction.

One of the key improvements was the introduction of the PropertyVertexPlace class,

which enabled nodes and edges in the graph to store rich attribute information in the form

of key-value pairs. This structural upgrade allowed the system to represent heterogeneous

data more accurately, accommodating entities and relationships with multiple properties.

Figure 3.1 illustrates this redesigned agent-based graph database, which forms the backbone

of more advanced analytical tasks.

9

Figure 3.1: Enhanced agent-based graph DB system with PropertyGraphPlaces.[11]

Complementing this change, the system also integrated Cypher, a declarative graph

query language originally developed for Neo4j. The inclusion of Cypher enables users

to perform sophisticated graph operations such as pattern matching (MATCH), insertion

(CREATE) on the graph. These features are especially important in research contexts and

enterprise applications where complex queries are the norm. The integration of Cypher el-

evates the querying capabilities of the system from basic key-based lookups to semantically

rich graph traversals and manipulations.

Figure 3.2: Enhanced property graph DB system leveraging MASS Java library.[11]

10

To enable distributed traversal and parallel query execution, PropertyGraphAgent, was

introduced. This agent is designed to perform graph traversal and data collection across the

distributed environment of MASS while minimizing inter-node communication. As shown

in Figure 3.2, this enhancement tightly integrates the graph querying and traversal layers

with the MASS framework’s agent-based computation model.

Together, these upgrades transformed the graph database from a simple agent-based

system into a property-aware, query-capable platform. More importantly, they provided

the essential infrastructure for this project’s contribution: developing an intelligent link

prediction layer on top of a scalable and semantically rich graph database.

3.2 Distributed Shared Graph

Yuan Ma’s work addresses the lack of multi-user concurrency in existing ABM libraries by

enhancing MASS for distributed graph data access and modification[6].

A key contribution is the getVertex() function, which enables access to vertices in a

distributed graph stored across nodes in the DSG system. As shown in Figure 3, each node

uses a distributed HashMap to store vertices as key-value pairs, enabling direct and efficient

access.

The need for concurrent, multi-user access to distributed graph data structures has

become increasingly critical in the design of modern graph databases and simulation frame-

works. Yuan Ma addressed this limitation in agent-based modeling libraries by proposing

and implementing a Distributed Shared Graph (DSG) system within the MASS Java library

[6].

At the heart of this system is the getVertex() function—a critical operation that en-

ables efficient vertex-level access across a distributed graph stored in memory. In the DSG

implementation, each computing node maintains a distributed HashMap, where vertices are

stored as key-value pairs. The key represents the vertex identifier, while the value holds

the full vertex object, including its adjacency list. This design allows each node to operate

independently on its local partition of the graph, with minimal inter-node communication.

As shown in Figure 3.3, the DSG system distributes graph data using a combination

of a hashing mechanism and distributed vector structures. This facilitates direct lookups

11

via getVertex(), which hashes a vertex ID to determine the owning node and then retrieves

it from the node’s local memory. This approach ensures low-latency, in-memory access—a

vital capability for tasks such as neighborhood discovery in link prediction.

Figure 3.3: Graph representation by distributed map and vector.[6]

Performance benchmarks comparing DSG with Hazelcast, a widely used distributed

cache platform, demonstrate DSG’s efficiency. Specifically, DSG outperforms Hazelcast in

getVertex() operations across both single-node and multi-node configurations. This is

largely due to its lightweight, in-memory architecture, which avoids the replication and

backup overheads present in systems like Hazelcast. Unlike Hazelcast—which ensures high

availability through redundant backups—DSG relies on write-back and write-update pro-

tocols to maintain consistency while maximizing throughput.

From a functional standpoint, DSG’s core emphasis is on enabling scalable and multi-

user concurrent access to a mutable distributed graph. The getVertex() operation, in

conjunction with distributed HashMaps, provides a foundation for topological link predic-

tion algorithms by enabling fast retrieval of a vertex’s neighbors, degrees, and adjacency

relationships. These capabilities are instrumental for algorithms like Adamic-Adar, Prefer-

12

ential Attachment, and Resource Allocation, which rely on local graph structure for simi-

larity computation.

3.3 Smart Agent Movement

A pivotal advancement in agent-based computing within the MASS framework was intro-

duced by Mohan et al., who formalized and automated common agent migration patterns

for distributed data structure[16]. Their work addressed a key limitation in traditional

agent-based modeling (ABM): the manual, repetitive specification of agent migration logic

across distributed graphs and spatial grids.

To address this, they introduced two core abstractions, SmartAgent and SmartPlace,

which augment MASS’s existing Agent and Place classes with spatial awareness and navi-

gational intelligence. These abstractions enable agents to autonomously manage their state

and traverse structured data layouts without requiring user-defined migration code for each

application scenario.

Figure 3.4: Agent propagation over a graph using migratePropagate.[16]

Central to their design is the migratePropagate() function, which enables agents to

13

move through a graph by visiting each neighbor exactly once. This function eliminates

redundant migrations by allowing a parent agent to move to one neighbor while spawning

child agents to visit the remaining neighbors. As shown in Figure 3.4, this model enables

efficient propagation by balancing workload distribution.

In addition to forward propagation, Mohan et al. introduced migrateOriginalSource(),

a function that allows agents to return to their originating node after completing a traver-

sal. This function supports tasks that require backtracking or result aggregation—such as

triangle counting, where an agent must confirm whether it can form a triangle by returning

to its initial vertex. This backtracking mechanism is crucial for maintaining computation

locality and avoiding unnecessary agent persistence across the graph.

The introduction of automated migration patterns reduced both programming complex-

ity and execution overhead. Empirical evaluations demonstrated up to 83% reduction in

lines of code for applications such as BFS and triangle counting, along with significant

speedups in agent-based simulations across multiple benchmarks.

In the context of this project, these smart agent migration strategies directly informed

the design of FastRP’s orchestrator-collector model in MASS. Specifically, the propaga-

tion of embedding vectors via orchestrator agents, and the subsequent collection and re-

duction by collector agents, mirrors the behavior defined in migratePropagate() and

migrateOriginalSource(). By adopting these patterns, the FastRP embedding pipeline

in MASS achieves both spatial scalability and synchronization efficiency, essential for dis-

tributed embedding computation over large graphs.

14

Chapter 4

IMPLEMENTATION

This chapter details the architectural and algorithmic design of the link prediction system

integrated within MASS Core. It describes how topological heuristics and embedding-based

methods were implemented using MASS’s distributed, agent-based runtime for scalable and

interpretable inference.

4.1 Design Principles

The link prediction framework in MASS is guided by modular, extensible design choices

that align with object-oriented best practices. This section outlines how principles such

as abstraction, separation of concerns, and scalability shape the system’s architecture and

integration within the MASS Core runtime.

4.1.1 Extensible design and deep integration in MASS Core

The primary design goal of this system is to embed link prediction directly within the

MASS Core, elevating it to a first-class capability rather than a standalone application.

This approach ensures that predictive algorithms operate at the same abstraction level as

core MASS operations like traversal, simulation, and transformation—enabling seamless

integration across pipelines.

As illustrated in Figure 4.1, link prediction components such as Adamic-Adar, Resource

Allocation, and FastRP are built atop the MASS property graph infrastructure. These

modules interact directly with PropertyGraphPlaces, PropertyVertexPlace, and also

PropertyGraphAgent, leveraging in-memory neighbor access, agent coordination, and dis-

tributed state updates across nodes.

15

Figure 4.1: The MASS Stack

This tightly coupled architecture enables efficient reuse of embeddings and similarity

scores across workflows. The feature extraction layer—comprising FeatureExtractor,

ScalarPropertyExtractor, and FeatureConsumer—adds support for semantic enrichment

by encoding node attributes alongside structural signals.

Scalability is achieved through MASS’s mobile agent model. During FastRP execution,

agents propagate vectors, aggregate neighbor embeddings, and compute updates with min-

imal synchronization. This distributed orchestration allows MASS to scale link prediction

across multi-node clusters while preserving performance and memory locality.

16

4.1.2 Adherence to SOLID principles

The architecture of MASS Core’s link prediction and embedding modules adheres to the

SOLID principles of object-oriented design, ensuring modularity, extensibility, and robust-

ness across distributed components. Figures 4.2 and 4.3 illustrate the structural layout of

the FastRP embedding pipeline and the topological prediction hierarchy, respectively.

Figure 4.2: FastRP class structure supporting semantic and structural feature integration

Figure 4.3: Topological link prediction class hierarchy extending shared interfaces

17

Single Responsibility Principle (SRP): Each class in the system serves a clearly

defined role. For instance, Neighbors handles neighbor discovery, FastRP coordinates

multi-phase embedding, and the trio of FeatureExtractor, ScalarPropertyExtractor,

and FeatureConsumer manages semantic feature transformation. This separation simplifies

testing, debugging, and targeted refactoring.

Open/Closed Principle (OCP): The design is open for extension but closed for mod-

ification. New prediction algorithms like Jaccard or Katz can be introduced by subclassing

AbstractLinkPrediction, while new feature types can be added to the embedding pipeline

via custom FeatureExtractor implementations—without altering existing functionality.

Liskov Substitution Principle (LSP): All link prediction algorithms extend a shared

interface (LinkPrediction) and respect the same method contract (calculateSimilarity).

This guarantees that any implementation—Adamic-Adar, Resource Allocation, or Prefer-

ential Attachment—can be used interchangeably in evaluation pipelines without breaking

behavior.

Interface Segregation Principle (ISP): Interfaces are narrow and role-specific.

LinkPrediction focuses solely on computing similarity between node pairs, while

FeatureExtractor isolates logic for property-based feature encoding. This avoids forcing

consumers to implement unnecessary functionality and promotes decoupling.

Dependency Inversion Principle (DIP): High-level modules like FastRP depend on

abstractions rather than concrete implementations. It accepts user-defined extractors and

consumers as configurable components, allowing substitution during testing or specializa-

tion—thus promoting flexibility and reusability.

Together, these design patterns ensure that the MASS link prediction framework remains

flexible, maintainable, and capable of scaling alongside future graph analytics needs.

4.2 Topological Link Prediction

4.2.1 Distributed Execution Model

Figure 4.3 sketches the flow of a single similarity query inside the MASS Core runtime.

A request begins in user code with a call to calculateSimilarity(v1 ,v2 , relation

18

, direction). Both vertex identifiers are first converted to their internal integer keys

through the global HashMap<Object, Integer> that is shared by every JVM in the cluster.

Each key is hashed to a computing node using the simple rule:

NodeID = V ertexID mod |Computing nodes|

so the caller can immediately decide whether the data are local or must be fetched remotely.

Figure 4.4: Topological link prediction - Distributed execution model

19

This is where the data-access layer kicks in, if the requested PropertyVertexPlace

already resides in the local JVM, the reference is returned in constant time. Otherwise

getVertex(vertexID) issues a one–way RPC to the owning MProcess; the remote process

serialises the vertex, sends it back across the socket created at start-up, and the caller

blocks only for this round-trip latency. Subsequent computations on the vertex, including

all neighbor-set manipulation, are therefore executed entirely in local memory, so at most

one network hop is incurred per vertex and per query.

Once both vertices are resident, the Neighborhood layer comes into play. findNeighbors(

VertexPlace v, String rel, Direction dir) streams the raw adjacency lists that are

stored inside every PropertyVertexPlace as primitive int[]. These lists are pruned in-

situ by the helper method filterNeighbors, which discards edges that do not match the

user-supplied relationship label and honors the directionality flag (TO, FROM, BOTH).

Because all filtering is performed after the data have been copied into the JVM, no

further communication is necessary; the cost of this stage is strictly linear in the degrees

Dv1 and Dv2.

The Algorithm layer is built on the LinkPrediction interface and its abstract base

class AbstractLinkPrediction. Each concrete scorer — CommonNeighbors, AdamicAdar,

ResourceAllocation, PreferentialAttachment, TotalNeighbors — overrides a single

method, calculateSimilarity, and relies on the Neighbors instance for all set operations.

Because the reduction phase is executed with Java 8 streams, a single parallelStream()

call activates the fork–join pool so that large neighborhoods are processed in parallel on

every core of the worker JVM.

Putting the three layers together, the end-to-end complexity of every topological measure

is T = O(Dv1+Dv2), since the only operations beyond neighbor traversal are constant-time

arithmetic and set cardinality calculations. All expensive work happens after the vertices

have been shipped to the caller, which keeps network traffic to an unavoidable minimum

and allows MASS to exploit local, cache-friendly data structures. In practical workloads

the same vertex is often reused across thousands of queries; after the first fetch it remains

pinned in the JVM’s heap, so later similarity computations avoid even the initial RPC.

The design therefore reconciles algorithmic simplicity with cluster scalability. Researchers

20

who wish to add new link-prediction formulas need only implement a single-method class;

MASS transparently handles data placement, remote access, neighbor filtering, and parallel

reduction, enabling high-throughput analysis on graphs that would exceed the memory of

a single machine.

4.2.2 Algorithms

This section details the topological link prediction algorithms integrated within the MASS

Core library. Each method builds on the distributed architecture described previously, where

vertex-level neighborhood information is retrieved using getVertex()from either local or

remote memory, followed by application of filterNeighbors() inside the Neighbors helper

to respect the user–supplied Direction (TO, FROM, BOTH) and relation type. All methods

operate with a time complexity of O(Dv1 +Dv2) where Dv1 and Dv2 are the degrees of the

input vertex pair.

4.2.2.1 Common Neighbor based methods

These algorithms quantify the similarity between two vertices based on the structure of

their shared neighborhood.

21

Figure 4.5: Common neighbors example

Figure 4.4 shows the running example that we will use to illustrate the scores. Vertices

X and Y share two neighbors {2, 5}; their degrees are |N(2)| = 3 and |N(5)| = 3.

1. Common Neighbors (CN): Computes the count of shared neighbors between two

nodes. A higher number indicates greater likelihood of a link. This method directly

uses the commonNeighbors() routine from the Neighbors class.

This is the most direct similarity metric. It simply counts the number of shared

neighbors:

CN(X,Y) = |N(X) ∩N(Y)|

From Figure 4.4, we find:

CN(X,Y) = |2, 5| = 2

In MASS, this is implemented via the commonNeighbors() method in the Neigh-

bors class, which intersects the filtered neighbor lists of both input vertices. The

22

CommonNeighbors.java class then returns the size of this intersection as the final

similarity score.

2. Adamic-Adar Index (AA): The Adamic-Adar index improves upon CN by giving

more weight to rare common neighbors:

AA(X,Y) =
∑

u∈N(x)∩N(y)

1

log |N(u)|

Using the degrees above:

AA(X,Y) =
1

log 4
+

1

log 5
≈ 3.092

In MASS, this is implemented in AdamicAdar.java, which iterates over common

neighbors and uses Neighbors.degree(u) to obtain degree information in a dis-

tributed fashion:

This approach uses distributed calls for each common neighbor, but computation is

performed locally after retrieval.

The MASS implementation uses the degree of each common neighbor, obtained via

distributed look-ups, to compute the log-inverse weight.

Adamic and Adar [1] argue that a common neighbor of high degree conveys lit-

tle information about a specific pair; weighting each witness by the inverse of its

self–information 1
log |N(u)| rewards rare connections and penalises hubs.

3. Resource Allocation Index (RA): Resource Allocation is similar to Adamic-Adar

but substitutes the log function with a direct inverse degree:

RA(x, y) =
∑

u∈N(x)∩N(y)

1

|N(u)|

From our example:

RA(X,Y) =
1

4
+

1

5
= 0.45

The implementation (ResourceAllocation.java) is almost identical to Adamic-Adar,

but skips the logarithm for lower computational overhead.

23

4.2.2.2 Total Neighbor Methods

Total neighbor scores treat each vertex’s entire connectivity profile as an indicator of future

attachment. Unlike the overlap–centric metrics in Common neighbor methods, these mea-

sures reward vertices that are already well-connected or that jointly span a large portion of

the local graph.

Figure 4.6: Total neighbors example

Figure 4.6 shows the running example that we will use to illustrate the scores. Node

X has three neighbors (red) {1, 2, 5}, while node Y has four neighbors (blue) {2, 3, 4, 5}

yielding |N(X)| = 3, |N(Y)| = 4 and |N(x) ∪N(y)| = 5.

1. Preferential Attachment (PA): The “rich-get-richer” principle of Barabási and

Albert [3] posits that high-degree vertices attract new links at a super-linear rate.

MASS realises this idea via the straightforward degree product

PA(x, y) = |N(x)| × |N(y)|.

In PreferentialAttachment.java the degree of each vertex is fetched once, regard-

less of where the data reside, and multiplied.

24

For Figure 4.5 we obtain PA(x, y) = 3 × 4 = 12, indicating strong affinity because

both endpoints are already well-connected.

2. Total Neighbors (TN): TN measures the breadth of the two neighborhoods:

TN(x, y) = |N(x) ∪N(y)|.

The implementation in TotalNeighbors.java first merges the two neighbor sets

streaming from filterNeighbors() and then returns the cardinality—no additional

distributed synchronization is needed.

In the running example TN(x, y) = 5, reflecting that the pair jointly covers five

distinct vertices.1

4.3 Embedding-based Link Prediction

Topological scores inspect one pair of neighborhoods at a time; embedding methods first

encode the entire graph into dense vectors and judge links by geometric closeness. MASS

uses Fast Random Projection (FastRP) to embed every vertex, then answers link-queries

with a fast k-Nearest-neighbors (kNN) search over those vectors. The pipeline is two-stage:

a one-off, parallel FastRP pass generates length-normalised embeddings; at query time,

kNN returns the k closest candidates, whose distances serve as link-likelihood scores. The

sections that follow explain the distributed FastRP algorithm and the kNN search engine

that exploits MASS’s locality-aware memory model.

4.3.1 FastRP

Fast Random Projection (FastRP) provides the dense, low-dimensional node embeddings

used as the foundation for all downstream link prediction in MASS. Originally proposed

as a scalable alternative to DeepWalk and Node2Vec, FastRP achieves structural similarity

encoding via iterative matrix-vector operations combined with sparse random projections.

1The union can never be smaller than the intersection used by Common Neighbors; hence TN ≥ CN for
all pairs.

25

In MASS, FastRP is reengineered as a distributed algorithm that leverages agent-based par-

allelism, semantic feature integration, and modular parameterization to operate efficiently

across multi-node clusters.

4.3.1.1 Enhancements to FastRP

FastRP in MASS inherits two ideas first popularized by Neo4j’s Graph Data Science imple-

mentation[12] that augment the canonical FastRP kernel and make the embeddings seman-

tically richer and more tunable in distributed large-scale deployments.

A modular feature–extraction pipeline. Before the first propagation step, every

vertex first produces a hybrid random vector of dimensionality d, which is passed di-

rectly to FeatureExtraction.extract, a lightweight, plug-in framework patterned after

Java’s functional streams. Concrete FeatureExtractor instances—such as the custom

built ScalarPropertyExtractor push chosen property values into a FeatureConsumer; by

default this consumer is a PropertyVectorAdder. The consumer multiplies each incoming

scalar by a learned weight and inserts it into the upper dp = ⌊propertyRatio ·d⌋ slots of the

vector, where d is the user-defined target dimension and propertyRatio (0–1) specifies what

fraction of the vector is devoted to explicit attributes. The remaining db = d− dp slots pre-

serve the base embedding produced by earlier layers. For example, with propertyRatio = 0.4

and d = 10, the model assigns dp = ⌊0.4 · 10⌋ = 4 slots to property values and keeps

db = 10 − 4 = 6 slots for the original representation. When a vertex lacks a requested

scalar, ScalarPropertyExtractor substitutes a configurable default, ensuring the pipeline

remains numerically stable even with incomplete attribute data. Because the entire proce-

dure runs within the JVM that owns the vertex, property look-ups and arithmetic incur

no network overhead, and new extractors can be added at runtime without recompiling

the embedding core. The resulting initial vectors already blend structural uncertainty from

sparse random projection with typed attribute information, so subsequent FastRP iterations

propagate a genuinely semantic signal through the graph.

26

Node-self-influence. After each aggregation step the vertex merges the normalized neigh-

bor vector with its running embedding according to

Z(t)
v = αZ(0)

v + (1− α)(Z(t−1)
v + βtA

(t)
v)

, where α = nodeSelfInfluence ∈ [0, 1], Z
(0)
v is the original hybrid vector and βt is the

FastRP iteration weight. Setting α ≈ 1 preserves vertex identity (useful for link prediction

tasks where self-context matters), whereas α ≈ 0 replicates the behaviour of Neo4j’s im-

plementation by allowing the context signal to dominate. The parameter is applied locally

after each call to computeFinalEmbedding, so it introduces no additional communication

overhead yet exposes a direct bias–variance knob to the modeller.

Together these two extensions let MASS produce embeddings that are simultaneously

topology-aware, attribute-aware, and controllably specific—functionality not available in

the original FastRP design [12].

4.3.1.2 MASS Implementation

In MASS the FastRP pipeline is expressed as an alternating dialogue between places—the

distributed storage layer that holds graph state—and mobile agents that ferry state-updates

across the cluster. Each phase of the algorithm is launched by a single callAll() on a

container object (PropertyGraphPlaces or PropertyGraphAgent).

The method executes the requested user function on every local object in parallel;the

subsequent manageAll() commits all pending migrations, spawns and kills, and performs

an MPI-style barrier so that every JVM reaches the next superstep simultaneously. This

bulk-synchronous discipline gives FastRP exactly the same k–hop message pattern that

underlies the original formulation, but without the developer having to manage explicit

communication.

1. Property–vector initialization The first callAll() on PropertyGraphPlaces in-

vokes computePropertyVectors(). Inside each PropertyVertexPlace the feature–extraction

pipeline iterates through a compile-time list of FeatureExtractor objects—small strategy

27

classes that know how to read and scale an attribute (e.g. numeric age, categorical label,

one-hot tag).

Each extractor forwards the value to a PropertyVectorAdder, which writes the scaled

number into the tail of a dense float[] property vector. Because the call happens lo-

cally there is no network traffic; property vectors are kept side-by-side with the structural

adjacency list, so subsequent phases can fuse attribute and topology in a single memory

pass.

2. Random–vector initialization A second callAll() on PropertyGraphPlaces trig-

gers computeRandomVectors(). Here every vertex draws a reproducible pseudo-random

stream (HighQualityRandom is reseeded with randomSeed ^ vertexId) and fills the base

part of its embedding with sparse ±1 entries scaled by
√

SPARSITY/d. Directly afterwards

the property vector created in step 1 is blended in PropertyVectorAdder.acceptScalar

for dimension i ≥ dbase

zi+ = s · pi

where s is the user-defined scale factor. The entire procedure is embarrassingly parallel.

28

Algorithm 1 Initial Embedding Construction with Property Integration

1: procedure ComputeInitialEmbedding(Vertex v, Parameters θ)

2: Extract embedding dimension d, base dimension db, and random seed from θ

3: Compute s = degree(v)−γ where γ = normalizationStrength

4: Set entryV alue← s ·
√
SPARSITY/db

5: Seed random generator with hash(v.id)⊕ randomSeed

6: z(0) ← new float vector of dimension d

7: for i = 0 to db − 1 do

8: z
(0)
i ← random ±entryV alue with probability p

9: end for

10: for all features f extracted from v do

11: Inject scaled f into tail of z(0) using associated property vector

12: end for

13: norm← ∥z(0)∥2 ▷ normalization

14: if α > 0 then

15: zv ← α
norm · z

(0) ▷ self-influence weighting

16: else

17: zv ← z(0)

18: end if

19: Store zv as v’s embedding

20: end procedure

3. Multi-hop embedding propagation. Once embeddings are initialized, the FastRP

propagation loop begins. This process simulates multi-hop proximity diffusion across the

graph, implemented as a sequence of distributed supersteps orchestrated by alternating calls

to callAll() and manageAll() on the PropertyGraphAgent container.

29

Figure 4.7: Spawn phase

Each superstep corresponds to a single FastRP iteration. It begins with each vertex

spawning a single orchestrator agent. The orchestrator is initialized with the current em-

bedding vector and the FastRP iteration weight βt. It identifies the vertex’s outgoing and

incoming neighbors (refer lines 12-13 in listing B.2)

For each neighbor, the orchestrator constructs a payload (embedding transport argu-

ments) and spawns a dedicated collector agent as shown in Figure 4.7. Refer lines 20-38 in

listing B.2 for the implementation

30

Figure 4.8: Neighbor visit and collect phase

Each collector agent migrates to its assigned neighbor and retrieves the most recent

embedding stored in the PropertyVertexPlace. If the agent arrives at the destination, it

executes lines 48-51 in listing B.2

Figure 4.9: Return phase

31

On return, the collector deposits the embedding at the source vertex, which appends it to

an in-memory list. Once all expected embeddings have returned (tracked via a thread-safe

atomic counter), the vertex computes its new embedding by averaging, scaling, normalizing,

and combining with the existing vector. The computation logic is defined as:

Algorithm 2 Final Embedding Update

1: procedure UpdateFinalEmbedding

2: d← degree of the current vertex

3: scale← 1
d if d > 0 else 1.0

4: accumulator ← zero vector of dimension d

5: for all zu ∈ collected neighbor embeddings do

6: accumulator ← accumulator + zu

7: end for

8: accumulator ← scale · accumulator

9: norm← ∥accumulator∥2

10: if norm < ϵ then

11: norm← 1.0

12: end if

13: accumulator ← accumulator
norm

14: zv ← zv + βt · accumulator ▷ Update embedding with iteration weight

15: Reset temporary neighbor buffers and counters

16: end procedure

This pattern—spawn, migrate, return—is executed once per iteration. The iteration

weight βt is provided via the IterationArgs class, which contains a tunable list of hop-

wise decay factors. Typical configurations apply 2–4 such iterations to balance locality and

generalization.

The call to manageAll() concludes each iteration by committing pending migrations,

removing dead agents, and synchronizing all compute nodes, as defined in Listing 4.1

32

1 while (agents.nAgents () > 0) {

2 agents.callAll(1, null);

3 agents.manageAll (); // global barrier

4 }

Listing 4.1: Agent life-cycle management

This structure mirrors the formal definition of FastRP as a sequence of matrix-vector

multiplications involving adjacency powers, while taking full advantage of MASS’s dis-

tributed memory model. Each superstep approximates one layer of diffusion across the

graph, but instead of building full matrices or relying on batched linear algebra, MASS

orchestrates localized computation and movement—preserving memory locality, lowering

synchronization costs, and enabling embedding on graphs orders of magnitude larger than

what a single node can hold.

4.3.2 KNN

Once every vertex owns a FastRP vector, link prediction becomes a pure similarity–search

problem in Rd. The pipeline therefore introduces a k–nearest–neighbor (kNN) stage whose

execution is deliberately split in two. First, a single PropertyGraphPlaces.callAll()

instructs every worker to serialize its slice of the embedding matrix and stream it to the

primary JVM; when the broadcast completes the master process holds a fully populated,

memory–resident HashMap<Object,float[]>. Because this transfer is embarrassingly par-

allel, the cost of the “collect/map” phase is dominated by network throughput and scales

linearly with the number of workers. The vectors remain immutable after this point, so the

map is built exactly once and reused by every subsequent query in the second phase.

33

4.3.2.1 MASS Implementation

Figure 4.10: MASS KNN workflow

Figure 4.10 sketches the resulting control flow. The query API—KNN.run(queryId, k)—is

intentionally thin: the client thread supplies a vertex identifier, a neighborhood size k

wrapped in a KNNConfig object that pins down the similarity metric. The method looks up

the query vector in the pre-loaded map and performs a single memory–resident scan over

all remaining entries.

The algorithm uses a static helper in SimilarityMeasures.java to compute similarity

34

scores (e.g., cosine or Euclidean) for candidate vectors, then feeds results into a bounded

PriorityQueue<NodeSimilarity> configured as a min-heap. This heap retains only the

top-k candidates by ensuring the smallest score remains at the root. Each insertion or rejec-

tion operates in O(log k) time, resulting in an overall O(|V | log k) complexity for scanning

all nodes, as each vector array is accessed once.

When the traversal finishes, the heap’s contents are sorted in descending order to produce

the final ranked neighborhood ⟨v1, . . . , vk⟩ with scores. This output is directly usable for

downstream tasks like threshold-based filtering, semantic validation, or edge classification

via supervised models—eliminating post-processing steps. The fixed-capacity heap ensures

memory efficiency while maintaining real-time updatability during the scan.

4.3.2.2 Design Considerations

The implemented kNN kernel is intentionally small and cache-friendly. Fewer than twenty

lines in KNN.java perform an allocation-free dot product (or cosine/Euclidean variant

from SimilarityMeasures) over the in-memory embedding map that was populated once

through PropertyGraphPlaces.callAll(). After this one-off transfer, every query is han-

dled completely inside the primary JVM; on a commodity Xeon a single core scans one

million 128-dimensional vectors in well under half a second.

A purely centralized heap was favored over a distributed merge after profiling. Shipping

tiny partial heaps from each worker erased any gains from parallel similarity arithmetic, and

the subsequent merge imposed an extra O(pklogk) barrier that grew with both the number

of workers p and the requested neighbor count k. Storing the min-heap locally allows the

JVM to optimize the loop for speed and efficiency, eliminating the need for data transfers

and synchronization between processes.

During early iterations we experimented with an agent-oriented search that mirrored

the FastRP walk pattern. A single query agent was injected at the source vertex; at each

hop it spawned children to every neighbor. Each child fetched the neighbor’s embedding

in local memory, computed its similarity to the query vector (which it carried as passive

state), and reported that scalar back to the parent. The parent vertex maintained its own

35

bounded min-heap of the best scores received so far, deciding—subject to a user-defined

depth parameter—whether to continue the expansion. Conceptually this respected MASS’s

“move computation to the data” philosophy and promised locality-aware pruning. In prac-

tice, however, global kNN suffered: every generation required an Agents.manageAll()

barrier so that parents could merge incoming scores and determine the next wave, leading

to three–five full synchronizations per query. Serializing thousands of agents per generation,

each carrying the d dimension float query embedding, also proved markedly more expensive

than sending the same vectors once in bulk. Consequently the agent design was shelved

for whole-graph similarity ranking, though it remains attractive for node-local or very shal-

low queries that never leave a single NUMA domain—a direction revisited in Section 6

(Conclusion & Future Work).

36

Chapter 5

EVALUATION

This chapter benchmarks the proposed MASS link-prediction pipeline against Neo4j

across both sparse (Cora) and dense (OGBL-DDI) graphs. We report system-level execu-

tion times and ranking-based accuracy, highlighting where MASS’s distributed, in-memory

design excels and where Neo4j’s centralized optimizations still lead.

5.1 Setup

5.1.1 Datasets

To evaluate the performance and accuracy of our link prediction framework, we conducted a

series of experiments on two well-established benchmark datasets: the Cora citation network

and the OGBL-DDI biomedical interaction graph[5].

The Cora dataset is a directed citation network introduced by McCallum et al. in their

work on automating web portals with machine learning. It has since become a standard

benchmark in graph learning research, frequently used for both node classification and link

prediction tasks. Each node represents a scientific publication, and edges denote citation

relationships. Nodes have a single categorical feature (subject). We used the dataset as a

directed graph with the following setup.

The second dataset, OGBL-DDI, is part of the Open Graph Benchmark for large-scale

link prediction. It models drug–drug interactions with over a million edges and is signifi-

cantly denser than Cora. The Neo4j GDS version includes six relationship types representing

positive and negative splits for train, validation, and test sets. For this evaluation, only the

TRAIN POS relationships were used to build the graph, and predictions were evaluated on

the TEST POS1 edges.

139,324 out of the 131,078 rows are used for topological prediction due to performance constraints on
both MASS and Neo4j, discussed in detail in the Limitations section.

37

Property Cora OGBL-DDI

Nodes 2,708 4,267

Node labels Paper Drug

Total Edges 5,429 1,532,370

Edge Types CITES (directed)
TRAIN POS, VALID POS,

VALID NEG, TEST POS, TEST NEG

Train Edges 3,800 (70% random samples) 1,059,073 (TRAIN POS only)

Test Edges 1,629 (30% random samples) 131,078 (TEST POS only)

Table 5.1: Comparison of dataset statistics and evaluation splits

5.1.2 System Configuration

All experiments were executed under comparable conditions across both platforms:

• Neo4j: Experiments were run on a MacBook Pro with an Apple M2 Pro (10-core

CPU) and 16 GB RAM, using Neo4j GDS v2.6.9. Both unsupervised (FastRP +

kNN) and heuristic-based pipelines were tested through Cypher queries.

• MASS: All MASS Core experiments were run on the CSSMPI research cluster, with

Java 11 on virtual machines provisioned with Intel Xeon Gold 6130 processors. Mem-

ory per VM ranged from 16 GB to 20 GB depending on node allocation. The MASS

system was scaled across 1–8 VMs to observe spatial scalability under distributed

conditions.

Performance benchmarks were evaluated on the full graph (without pruning or subsetting),

measuring total time taken for both embedding and inference phases. For accuracy bench-

marks, a standard link prediction setup was followed using the described training-test splits.

All results were averaged across three runs to ensure statistical stability.

38

5.1.3 Evaluation Metrics

Table 5.2 outlines the ranking-based metrics used to assess prediction performance.

Metric Definition

R@k (Recall@k) Fraction of relevant links correctly predicted in the top-k

suggestions.

P@k (Precision@k) Fraction of the top-k predicted links that are actually cor-

rect.

HitRate@k Fraction of nodes for which at least one correct link is in the

top-k predictions.

MAP (Mean Average Precision) Mean of average precision scores across all nodes; emphasizes

ranking quality.

MRR (Mean Reciprocal Rank) Average of the reciprocal of the rank at which the first rel-

evant link is found.

Table 5.2: Evaluation metrics for ranking-based link prediction

5.2 Execution Performance Analysis

5.2.1 Topological Link Prediction

Figure 5.1 plots execution time for topological link prediction over increasing numbers of

node pairs on the Cora dataset. For lower query volumes (1K to 10K node pairs), MASS and

Neo4j demonstrate comparable performance, with minimal deviation. However, as query

volume increases, MASS exhibits improved scalability. At 1 million node pairs, MASS

executes nearly 30% faster than Neo4j, completing in approximately 10 seconds compared

to Neo4j’s 14 seconds.

39

Figure 5.1: Cora topological link prediction performance benchmarks.

This divergence is primarily attributed to architectural differences. MASS stores vertex

state entirely in-memory across distributed compute nodes, allowing direct access to neigh-

bors and their attributes. In contrast, Neo4j relies on disk-based access patterns; as the

number of node pairs increases, repeated lookups introduce I/O overhead that compounds

over time, thereby degrading performance.

These trends are even more pronounced in the OGBL-DDI dataset, shown in Figure 5.2.

As a significantly denser graph, OGBL-DDI contains over 1.5 million edges, which amplifies

the cost of repeated neighbor access. MASS consistently outperforms Neo4j at higher query

volumes, with up to 1.88x speedup observed for 50,000 node pairs.

40

Figure 5.2: OGBL DDI topological link prediction performance benchmarks.

Interestingly, Neo4j initially outpaces MASS for 4,000 node pairs—suggesting that for

very small subsets of dense graphs, Neo4j’s tight memory layout and on-disk cache optimiza-

tions may temporarily compensate for its disk-bound model. However, as the computation

scales, MASS’s in-memory model yields superior throughput.

To further evaluate MASS’s scalability, we measured topological link prediction per-

formance across 1 to 8 compute nodes on the CSSMPI cluster using the Cora dataset

(Figure 5.3). Each experiment evaluated approximately 25,000 node pairs generated by

comparing 10 random test nodes to all other nodes in the graph. As expected, performance

degrades with increasing node count due to inter-node message passing and synchroniza-

tion costs. While similarity score computation is inexpensive, the cost of distributed vertex

access grows linearly, ultimately dominating the runtime.

41

Figure 5.3: MASS multi-node performance on topological queries.

This highlights a tradeoff in the agent-based architecture: the model scales horizontally

but is sensitive to the granularity of inter-node communication.

5.2.2 FastRP + KNN Pipeline

In contrast to the topological results, Neo4j outperforms MASS by a wide margin during

FastRP embedding generation. As shown in Figure 5.4, Neo4j completed FastRP on the

Cora dataset in under 100 milliseconds. In comparison, MASS required between 2 and 7

seconds depending on the number of compute nodes.

42

Figure 5.4: Cora - FastRP + KNN time for Neo4j vs. MASS (1–8 nodes).

This performance gap arises from three main factors. First, Neo4j benefits from shared

memory locality: node and neighbor embeddings are co-located in the same in-memory

space, allowing for fast vector aggregation. Second, MASS relies on migrating agents to

fetch embeddings from neighboring nodes, which introduces additional latency from seri-

alization, migration, and synchronization. Third, for lightweight operations such as vector

summations and normalizations, the overhead of agent orchestration in MASS becomes

disproportionately large.

This trend is also observed in the OGBL-DDI benchmark, albeit with an interesting

inversion. While Neo4j again dominates the FastRP embedding step—completing in less

than 500 milliseconds, while MASS takes just over 14 mins—its KNN phase takes over 7

minutes. MASS, by contrast, completes the entire KNN computation in under one minute,

as shown in Fig 5.5. This substantial improvement highlights the strength of MASS in

distributed similarity evaluation.

43

Figure 5.5: OGBL-DDI FastRP + KNN time for Neo4j vs. MASS.

Unlike Neo4j’s sequential and approximate CPU-bound KNN evaluation, MASS per-

forms a memory-resident scan over all embeddings using a fixed-size priority queue. By

avoiding agent orchestration and keeping inter-node communication minimal, MASS achieves

faster similarity ranking—especially on large graphs like OGBL-DDI where Neo4j’s perfor-

mance is limited by data volume and memory constraints.

5.3 Accuracy analysis

5.3.1 Topological Link Prediction

To evaluate link prediction accuracy, we compared five topological algorithms—Adamic-

Adar (AA), Common Neighbors (CN), Resource Allocation (RA), Preferential Attachment

(PA), and Total Neighbors (TN)—across four ranking-based metrics: Mean Average Pre-

cision (MAP), Mean Reciprocal Rank (MRR), Precision@K, Recall@K, and HitRate@K.

Experiments were conducted identically on both MASS and Neo4j to ensure comparability.

Since the underlying implementations and scoring functions are mathematically equivalent,

accuracy results are identical across both systems.

44

Figure 5.6: Cora - Precision@k by algorithm

Figure 5.7: Cora - Recall@k by algorithm

Figure 5.6 & 5.7 show that Adamic-Adar and Resource Allocation consistently outper-

form the remaining heuristics on the Cora dataset.

45

Figure 5.8: Cora - Hitrate@k by algorithm

Figure 5.9: Cora - MAP and MRR by algorithm

These algorithms emphasize rare neighbors through inverse-degree weighting, a property

that proves particularly effective on sparse graphs. In contrast, Preferential Attachment and

Total Neighbors—both biased toward high-degree nodes—perform poorly across all metrics.

46

Figure 5.10: OGBL-DDI - MAP and MRR by algorithm

Figure 5.11: OGBL-DDI - Precision@k by algorithm

These trends largely carry over to the denser OGBL-DDI dataset, albeit with lower

overall accuracy scores. As seen in Fig. 5.10, MAP and MRR for AA and RA fall from

approximately 0.20 on Cora(Fig. 5.9 to 0.03–0.06 on OGBL-DDI.

47

Figure 5.12: OGBL-DDI - Recall@k by algorithm

Figure 5.13: OGBL-DDI - Hitrate@k by algorithm

Despite the drop, AA and RA still maintain a clear lead over other methods, affirming

their robustness across structural regimes. PA and TN remain ineffective, with near-zero

MAP and HitRate scores across both datasets.

48

Importantly, because MASS and Neo4j use identical implementations for these un-

supervised topological algorithms, all accuracy scores—including MAP, MRR, and Hi-

tRate@K—are numerically indistinguishable between the two platforms. This validates the

correctness of the MASS implementation and confirms that observed differences in runtime

are not attributable to discrepancies in algorithmic behavior.

Adamic-Adar and Resource Allocation show strong performance on Precision@K and

Recall@K for both datasets, maintaining competitive accuracy even as k increases. On Cora,

they achieve HitRate@50 scores of 0.48 and above (Fig. 5.8), while on OGBL-DDI, they

reach 0.57 (Fig. 5.13) respectively—despite the greater class imbalance and link sparsity.

The consistency of Adamic-Adar and Resource Allocation across Cora and OGBL-DDI

suggests that inverse-degree-based scoring heuristics generalize well across graphs of varying

density and connectivity. Their performance remains robust in both sparse and dense

regimes, making them strong default choices for scalable, unsupervised link prediction tasks

in both MASS and Neo4j.

5.3.2 FastRP + KNN

Although both MASS and Neo4j employ an identical pipeline—FastRP embeddings followed

by a KNN-style ranker—their accuracy profiles diverge in ways that trace back to distinct

architectural choices.

For the Cora dataset, Neo4j delivers higher early-rank quality: MAP increases from

0.033 (MASS) to 0.053 (Neo4j), while MRR rises from 0.032 to 0.051 (Table A.10). As

shown in Fig. 5.14 and Fig. 5.15, at k=5, Precision@K nearly doubles (0.041 vs. 0.022).

49

Figure 5.14: Cora - Precision, Recall, and HitRate for MASS

Figure 5.15: Cora - Precision, Recall, and HitRate for Neo4j

MASS, however, surpasses Neo4j in breadth. Its Recall@50 reaches 0.778 (vs. 0.477) and

HitRate@50 hits 0.154 (vs. 0.153), indicating that MASS surfaces a broader set of correct

links when a larger candidate list is acceptable.

50

Figure 5.16: OGBL-DDI - Precision, Recall, and HitRate for MASS

Figure 5.17: OGBL-DDI - Precision, Recall, and HitRate for Neo4j

On the larger, denser OGBL-DDI graph, Neo4j retains a clear advantage in early-rank

quality, posting MAP and MRR scores of 0.057 and 0.036 versus 0.034 and 0.028 for MASS.

It also edges ahead on Recall and HitRate at every cutoff—for example, Recall@50 is 0.028

51

for Neo4j compared with 0.011 for MASS. Two architectural factors explain this shift. First,

Neo4j’s k-nearest-neighbor stage relies on an approximate NN-Descent search that converges

rapidly on high-quality neighbors without exhaustively scanning the entire embedding set.

This design preserves early-rank precision even as graph size grows. Second, MASS must

serialize and deserialize float vectors each time agents migrate, and the non-associative

nature of floating-point addition means that the order in which partial similarities arrive can

subtly perturb final scores. On dense graphs such as OGBL-DDI, those small inconsistencies

accumulate, eroding both precision and recall.

Neo4j’s NN-Descent search therefore secures sharper early-rank accuracy on both Cora

and OGBL-DDI. MASS’s full scan can still match or exceed Neo4j’s recall on sparser graphs

like Cora, where serialization overhead is modest and embedding updates are more stable.

On very dense graphs, however, the combination of serialization cost and non-deterministic

accumulation dampens MASS’s embedding quality, causing its advantage in coverage to

disappear.

In practice, Neo4j is the stronger choice when top-k precision is paramount—for exam-

ple, in recommendation engines that surface only a handful of results. By contrast, MASS

remains attractive for exploratory or retrieval-oriented tasks that value high coverage on

moderately sized or sparse graphs and can tolerate slight rank noise as the price of hori-

zontal scalability. Ultimately, each engine aligns with different link-prediction goals: Neo4j

favors early-rank fidelity, whereas MASS prioritizes exhaustive discovery across distributed

resources.

52

Chapter 6

LIMITATIONS

Despite demonstrating promising results, the current prototype of MASS exhibits several

constraints that temper its applicability and the generalizability of the reported benchmarks.

First, MASS ingests graphs in strictly directed form, yet the FastRP implementation treats

every edge as undirected by propagating embeddings through both TO and FROM neighbor

lists. This mismatch is harmless on purely undirected datasets such as Cora but complicates

analyses on graphs where directionality carries semantic weight. Although the underlying

property-graph layer can store edge attributes—including numerical weights—the present

FastRP pipeline ignores relationship weights entirely, so weighted interactions have no in-

fluence on the learned embeddings.

A second limitation concerns data-loading performance on multi-node clusters. Graph

creation in MASS proceeds sequentially: edges are parsed on a single coordinator and

forwarded as messages to remote nodes. For large, dense datasets this hand-off becomes

the dominant bottleneck. On OGBL-DDI, reliable multi-node ingestion proved impractical,

forcing all performance experiments to run on a single machine. Even on a lone node the

test split had to be reduced to roughly thirty percent of the available positive links, because

a full 100

These creation-time constraints also limited exploration of parallel speed-ups for em-

bedding generation and KNN search. Although MASS’s architecture should excel once the

graph outgrows the memory of a single Neo4j instance, rigorous evidence of such spatial

scalability remains future work. Early tests indicate roughly parity with Neo4j when both

use identical hyperparameters; however, MASS’s embedding quality could be improved by

replacing agent-level aggregation with direct place-to-place vector exchange, thereby elimi-

nating non-deterministic float accumulation and reducing serialization overhead.

Finally, overall accuracy in MASS is highly sensitive to FastRP hyperparameters, which

53

must be tuned manually by the end user. In biomedical graphs such as OGBL-DDI—where

even small errors may have clinical implications—MASS currently offers no built-in miti-

gation or auditing tools. We therefore emphasize that responsibility for safe deployment

rests with practitioners and that the model’s predictions should be validated according to

domain-specific standards, in line with guidance from the original FastRP authors.

54

Chapter 7

CONCLUSION & FUTURE WORK

This whitepaper has introduced a hybrid link-prediction framework built directly into

MASS Core. By combining classical topological heuristics with FastRP-based embeddings

inside MASS’s agent-oriented spatial-simulation runtime, the system moves beyond its orig-

inal modeling focus and into the domain of scalable, graph-native machine learning. The

objective was not merely to mirror Neo4j’s capabilities, but to rethink link prediction around

distributed memory locality and agent coordination.

Experiments show that MASS excels at topological link prediction. As query volume

rises, performance scales nearly linearly, and on large graphs the system outpaces Neo4j

because vertices remain in memory and can be accessed without disk latency. The picture

is more nuanced for embeddings. In the FastRP + KNN pipeline MASS currently trails

Neo4j; the cost of serializing vectors, migrating agents, and synchronizing partial results

becomes a bottleneck when the underlying computation per step is light. Even so, the

embedding pipeline is modular, offering several clear levers—message-based propagation,

place-to-place exchange, or localized agent movement—that can be tuned to close the gap.

Accuracy results are encouraging. For topological methods MASS matches Neo4j ex-

actly, an expected outcome given that both systems implement the same scoring formulas.

With embeddings the two systems trade strengths. Neo4j enjoys higher MAP and MRR, re-

flecting sharper precision at very small k, whereas MASS produces higher recall and HitRate

at broader cut-offs, particularly on sparser graphs. This suggests that MASS is already well

suited for workloads—such as GraphRAG or exploratory analysis—that value exhaustive

candidate discovery over early-rank precision. Further work on edge-weighted embeddings

and domain-specific hyper-parameter tuning could improve discrimination without sacrific-

ing coverage.

The main technical obstacle lies in KNN-based inference at scale. Neo4j’s search remains

55

centralized, limiting horizontal growth. An initial agent-centric search in MASS proved too

expensive, so the current implementation falls back to a master-node scan after distributed

vector collection. Revisiting distributed KNN with lightweight message passing or region-

bounded agent dispatch could restore scalability while preserving the advantages of locality.

Several avenues now present themselves. Replacing agent migrations with direct place-

to-place vector exchange should speed up FastRP propagation and remove floating-point

accumulation drift. Expanding the library to include additional heuristics, supervised mod-

els, and learning-to-rank pipelines will broaden MASS’s analytical repertoire. Support for

batched or multi-tenant inference, together with incremental graph updates, would make

the framework more attractive for production use. Finally, local-only agent movement can

enable sub-graph similarity search—an important capability for recommendation, retrieval-

augmented generation, and community detection.

Taken together, these results reposition MASS as more than a simulation engine. It

now offers a unified environment in which predictive, symbolic, and agent-based reasoning

coexist on the same distributed substrate. Limitations in embedding propagation and global

KNN search remain, yet the demonstrated performance, accuracy parity, and architectural

flexibility point to a clear path forward. With continued optimization, MASS can mature

into an open, programmable platform for the next wave of graph-driven AI systems.

56

BIBLIOGRAPHY

[1] Lada Adamic and Eytan Adar. “How to search a social network”. en. In: Social Net-

works 27.3 (July 2005), pp. 187–203. issn: 03788733. doi: 10.1016/j.socnet.2005.

01.007.

[2] Iftikhar Ahmad et al. “Missing Link Prediction using Common Neighbor and Central-

ity based Parameterized Algorithm”. en. In: Sci Rep 10.1 (Jan. 2020). Publisher: Na-

ture Publishing Group, p. 364. issn: 2045-2322. doi: 10.1038/s41598-019-57304-y.

url: https://www.nature.com/articles/s41598-019-57304-y.

[3] Albert-Laszlo Barabasi and Reka Albert. “Emergence of scaling in random networks”.

In: Science 286.5439 (Oct. 1999). arXiv:cond-mat/9910332, pp. 509–512. issn: 0036-

8075, 1095-9203. doi: 10.1126/science.286.5439.509. url: http://arxiv.org/

abs/cond-mat/9910332 (visited on 05/29/2025).

[4] Tomaz Bratanic. A Deep Dive into Neo4j Link Prediction Pipeline and FastRP Em-

bedding Algorithm. en. Oct. 2021. url: https : / / towardsdatascience . com / a -

deep-dive-into-neo4j-link-prediction-pipeline-and-fastrp-embedding-

algorithm-bf244aeed50d.

[5] Datasets - Neo4j Graph Data Science Client. en. https://neo4j.com/docs/graph-data-

science-client/1.14/common-datasets/.

[6] Yuan Ma. “An Implementation of Multi-User Distributed Shared Graph”. en. In: ().

[7] Haochen Chen et al. Fast and Accurate Network Embeddings via Very Sparse Random

Projection. en. arXiv:1908.11512 [cs]. Aug. 2019. url: http://arxiv.org/abs/1908.

11512.

[8] Is Traditional SaaS Behind Us? The Graph + GenAI Revolution. url: https://

neo4j.com/blog/genai/graph-ai-tier/.

https://doi.org/10.1016/j.socnet.2005.01.007
https://doi.org/10.1016/j.socnet.2005.01.007
https://doi.org/10.1038/s41598-019-57304-y
https://www.nature.com/articles/s41598-019-57304-y
https://doi.org/10.1126/science.286.5439.509
http://arxiv.org/abs/cond-mat/9910332
http://arxiv.org/abs/cond-mat/9910332
https://towardsdatascience.com/a-deep-dive-into-neo4j-link-prediction-pipeline-and-fastrp-embedding-algorithm-bf244aeed50d
https://towardsdatascience.com/a-deep-dive-into-neo4j-link-prediction-pipeline-and-fastrp-embedding-algorithm-bf244aeed50d
https://towardsdatascience.com/a-deep-dive-into-neo4j-link-prediction-pipeline-and-fastrp-embedding-algorithm-bf244aeed50d
http://arxiv.org/abs/1908.11512
http://arxiv.org/abs/1908.11512
https://neo4j.com/blog/genai/graph-ai-tier/
https://neo4j.com/blog/genai/graph-ai-tier/

57

[9] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss

with binary coins”. In: Journal of Computer and System Sciences. Special Issue on

PODS 2001 66.4 (June 2003), pp. 671–687. issn: 0022-0000. doi: 10.1016/S0022-

0000(03)00025-4. url: https://www.sciencedirect.com/science/article/pii/

S0022000003000254.

[10] David Liben-Nowell and Jon Kleinberg. “The Link Prediction Problem for Social

Networks”. en. In: ().

[11] Shenyan Cao. “AN INCREMENTAL ENHANCEMENTOF AGENT-BASEDGRAPH

DATABASE SYSTEM”. In: ().

[12] Fast Random Projection - Neo4j Graph Data Science. url: https://neo4j.com/

docs / graph - data - science / current / machine - learning / node - embeddings /

fastrp/.

[13] Topological link prediction - Neo4j Graph Data Science. en. url: https://neo4j.

com/docs/graph-data-science/2.13/algorithms/linkprediction/.

[14] Aditya Grover and Jure Leskovec. “node2vec: Scalable Feature Learning for Net-

works”. en. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. San Francisco California USA: ACM, Aug.

2016, pp. 855–864. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939754. url:

https://dl.acm.org/doi/10.1145/2939672.2939754 (visited on 04/02/2024).

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning of So-

cial Representations”. In: Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. arXiv:1403.6652 [cs]. Aug. 2014,

pp. 701–710. doi: 10.1145/2623330.2623732. url: http://arxiv.org/abs/1403.

6652 (visited on 06/03/2025).

[16] Vishnu Mohan, Anirudh Potturi, and Munehiro Fukuda. “Automated Agent Migra-

tion over Distributed Data Structures:” en. In: Proceedings of the 15th International

Conference on Agents and Artificial Intelligence. Lisbon, Portugal: SCITEPRESS -

Science and Technology Publications, 2023, pp. 363–371. isbn: 978-989-758-623-1. doi:

https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1016/S0022-0000(03)00025-4
https://www.sciencedirect.com/science/article/pii/S0022000003000254
https://www.sciencedirect.com/science/article/pii/S0022000003000254
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/
https://neo4j.com/docs/graph-data-science/2.13/algorithms/linkprediction/
https://neo4j.com/docs/graph-data-science/2.13/algorithms/linkprediction/
https://doi.org/10.1145/2939672.2939754
https://dl.acm.org/doi/10.1145/2939672.2939754
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1403.6652
http://arxiv.org/abs/1403.6652

58

10.5220/0011784500003393. url: https://www.scitepress.org/DigitalLibrary/

Link.aspx?doi=10.5220/0011784500003393.

[17] Tao Zhou, Linyuan Lu, and Yi-Cheng Zhang. “Predicting Missing Links via Local

Information”. In: Eur. Phys. J. B 71.4 (Oct. 2009). arXiv:0901.0553 [physics], pp. 623–

630. issn: 1434-6028, 1434-6036. doi: 10.1140/EPJB/E2009-00335-8. url: http:

//arxiv.org/abs/0901.0553.

https://doi.org/10.5220/0011784500003393
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0011784500003393
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0011784500003393
https://doi.org/10.1140/EPJB/E2009-00335-8
http://arxiv.org/abs/0901.0553
http://arxiv.org/abs/0901.0553

59

Appendix A

BENCHMARKS

A.1 Performance benchmarks

A.1.1 Cora

of node pairs queried MASS (ms) Neo4j (ms) Gain in performance

1000 118 289 2.45

5000 282 285 1.01

10000 352 296 0.84

50000 1127 1007 0.89

100000 1362 1634 1.20

500000 5748 7196 1.25

1000000 10085 14308 1.42

Table A.1: MASS vs Neo4j topological link prediction execution performance

of computing nodes Time (s)

1 1.8

2 6.2

4 9.9

6 22.02

8 35.47

Table A.2: Cora MASS multi-node topological link prediction benchmarks

60

Platform FastRP time(ms) KNN time(ms)

Neo4j 56 6811

Mass 1-node 2373 7550

MASS 2-nodes 2967 8183

MASS 4-nodes 3708 8568

MASS 6-nodes 5100 9437

MASS 8-nodes 7108 11564

Table A.3: MASS vs Neo4j FastRP execution performance

A.1.2 OGBL-DDI

of node pairs queried MASS (ms) Neo4j (ms) Gain in performance

1000 35574 50011 1.41

2000 48309 50617 1.05

4000 99234 81011 0.82

8000 105402 130670 1.24

10000 116515 183223 1.57

50000 627645 1181716 1.88

Table A.4: MASS vs Neo4j topological link prediction execution performance

Platform FastRP time(mins) KNN time(mins)

Neo4j 0.0083 7.2685

MASS 14.8211 0.9237

Table A.5: MASS vs Neo4j FastRP execution performance

61

A.2 Topological Link Prediction benchmarks

Cora OGBL-DDI

Metric AA CN PA RA TN AA CN PA RA TN

MAP 0.1932 0.1776 0.0037 0.1916 0.0032 0.0264 0.0239 0.0000 0.0566 0.0006

MRR 0.2081 0.1882 0.0057 0.2067 0.0048 0.0327 0.0304 0.0101 0.0611 0.0089

Table A.6: MAP and MRR by Algorithm

CORA OGBL-DDI

K AA CN PA RA TN AA CN PA RA TN

2 0.1044 0.0917 0.0013 0.1044 0.0012 0.0062 0.0062 0.0000 0.0148 0.0000

3 0.0884 0.0803 0.0009 0.0879 0.0008 0.0058 0.0049 0.0000 0.0173 0.0000

4 0.0773 0.0733 0.0010 0.0776 0.0009 0.0062 0.0056 0.0000 0.0185 0.0000

5 0.0723 0.0667 0.0010 0.0728 0.0010 0.0059 0.0049 0.0000 0.0188 0.0000

10 0.0510 0.0466 0.0008 0.0510 0.0006 0.0079 0.0062 0.0000 0.0235 0.0000

20 0.0303 0.0290 0.0008 0.0305 0.0007 0.0091 0.0074 0.0000 0.0230 0.0000

30 0.0218 0.0212 0.0007 0.0219 0.0006 0.0119 0.0097 0.0000 0.0259 0.0000

50 0.0139 0.0136 0.0008 0.0139 0.0006 0.0194 0.0168 0.0000 0.0342 0.0006

Table A.7: Precision@K by Algorithm

62

Cora OGBL-DDI

K AA CN PA RA TN AA CN PA RA TN

2 0.1411 0.1250 0.0004 0.1406 0.0004 0.0003 0.0003 0.0000 0.0010 0.0000

3 0.1806 0.1603 0.0004 0.1809 0.0004 0.0004 0.0003 0.0000 0.0012 0.0000

4 0.2098 0.1868 0.0011 0.2088 0.0010 0.0005 0.0005 0.0000 0.0026 0.0000

5 0.2377 0.2126 0.0013 0.2373 0.0012 0.0006 0.0005 0.0000 0.0031 0.0000

10 0.3147 0.2844 0.0028 0.3142 0.0023 0.0023 0.0017 0.0000 0.0059 0.0000

20 0.3507 0.3330 0.0069 0.3509 0.0057 0.0062 0.0054 0.0000 0.0099 0.0000

30 0.3650 0.3545 0.0081 0.3652 0.0074 0.0104 0.0084 0.0000 0.0168 0.0000

50 0.3744 0.3674 0.0119 0.3744 0.0103 0.0229 0.0207 0.0000 0.0338 0.0001

Table A.8: Recall@K by Algorithm

Cora OGBL-DDI

K AA CN PA RA TN AA CN PA RA TN

2 0.2035 0.1754 0.0026 0.2035 0.0024 0.0123 0.0123 0.0000 0.0247 0.0000

3 0.2503 0.2222 0.0026 0.2490 0.0024 0.0148 0.0148 0.0000 0.0346 0.0000

4 0.2905 0.2664 0.0039 0.2918 0.0036 0.0173 0.0148 0.0000 0.0543 0.0000

5 0.3307 0.2959 0.0052 0.3333 0.0048 0.0222 0.0173 0.0000 0.0617 0.0000

10 0.4284 0.3909 0.0078 0.4284 0.0060 0.0519 0.0444 0.0000 0.1481 0.0000

20 0.4645 0.4458 0.0156 0.4645 0.0131 0.1136 0.0938 0.0000 0.2444 0.0000

30 0.4779 0.4645 0.0209 0.4779 0.0179 0.1901 0.1630 0.0000 0.3654 0.0000

50 0.4859 0.4766 0.0339 0.4859 0.0274 0.3605 0.3235 0.0000 0.5704 0.0296

Table A.9: HitRate@K by Algorithm

63

A.3 FastRP benchamarks

Cora OGBL-DDI

Metric MASS Neo4j MASS Neo4j

MAP 0.0331 0.0533 0.0342 0.0570

MRR 0.0317 0.0510 0.0275 0.0359

Table A.10: MAP and MRR for MASS and Neo4j

Cora OGBL-DDI

k MASS Neo4j MASS Neo4j

3 0.0215 0.0346 0.0180 0.0197

5 0.0215 0.0411 0.0180 0.0198

10 0.0283 0.0395 0.0176 0.0227

20 0.0323 0.0261 0.0171 0.0279

30 0.0288 0.0212 0.0177 0.0301

50 0.0209 0.0142 0.0201 0.0316

Table A.11: Precision@k for MASS and Neo4j

64

CORA OGBL-DDI

k MASS Neo4j MASS Neo4j

3 0.0543 0.0732 0.0004 0.0008

5 0.0905 0.1443 0.0007 0.0015

10 0.2293 0.2837 0.0016 0.0040

20 0.5058 0.3657 0.0037 0.0101

30 0.6531 0.4358 0.0065 0.0155

50 0.7780 0.4770 0.0114 0.0280

Table A.12: Recall@k for MASS and Neo4j

Cora OGBL-DDI

k MASS Neo4j MASS Neo4j

3 0.0215 0.0680 0.0180 0.0232

5 0.0215 0.0692 0.0180 0.0232

10 0.0644 0.0990 0.0341 0.0528

20 0.0919 0.1301 0.0502 0.0875

30 0.1265 0.1372 0.0689 0.1242

50 0.1539 0.1527 0.1274 0.1905

Table A.13: HitRate@k for MASS and Neo4j

65

Appendix B

CODE LISTINGS

1 /**

2 * Method to filter neighbors based on relation

3 * @param neighbors

4 * @param relation

5 * @return Set <Object > of neighbors after filtering

6 */

7 private Set <Object > filterNeighbors(Map <Object , Object[]> neighbors , String

relation) {

8 // filter map of neighbors based on relation

9 if (relation.isEmpty ()) {

10 return neighbors.keySet ();

11 }

12

13 return neighbors.entrySet ().stream ()

14 .filter(e -> ((Set <?>) e.getValue ()[0]).contains(relation))

15 .map(Map.Entry:: getKey)

16 .collect(Collectors.toSet());

17 }

Listing B.1: Relationship-based neighbor filtering

1 private Object collectEmbeddings () {

2 // agent becomes aware of current position

3 PropertyVertexPlace currentPlace = (PropertyVertexPlace) this.getPlace ()

;

4

5 // ORCHESTRATOR AGENT WORKFLOW STARTS HERE

6 if(isOrchestrator) {

7 // initialize place ’s atomic counter to keep track of returning

agents

8 currentPlace.initResponseCount ();

66

9 // set iteration weight

10 currentPlace.setIterationWeight(iterationWeight);

11 // get all neighbor places

12 Map <Object , Object[]> neighbors = currentPlace.getTONeighbors ();

13 neighbors.putAll(currentPlace.getFROMNeighbors ());

14

15 // Create args array for all the agents we’ll spawn

16 EmbeddingTransportArgs [] args = new EmbeddingTransportArgs[neighbors

.size()];

17 int i = 0;

18

19 // Prepare args for each collector agent

20 for (Map.Entry <Object , Object[]> neighbor : neighbors.entrySet ()) {

21 int neighborId = MASS.distributed_map.getOrDefault(neighbor.

getKey (), -1);

22 if (neighborId != -1) {

23 args[i++] = new EmbeddingTransportArgs(

24 currentPlace.getIndex ()[0],

25 false ,

26 neighborId ,

27 iterationWeight ,

28 true

29);

30 }

31 }

32

33 // Spawn all collector agents at once

34 spawn(args.length , args);

35

36 // ORCHESTRATOR AGENT WORKFLOW ENDS HERE

37 kill();

38 return null;

39 }

40

41 // COLLECTOR AGENT WORKFLOW STARTS HERE

42 if(! hasCollectedEmbedding) {

67

43 // migrate collector to neighbor to retrieve embedding

44 if(currentPlace.getIndex ()[0] == sourceNode) {

45 migrate(destinationNode);

46 } else {

47 // Collect embeddings from neighbors

48 neighborEmbedding = currentPlace.getPreviousEmbedding ();

49 hasCollectedEmbedding = true;

50 // migrate back to source

51 migrate(sourceNode);

52 return null;

53 }

54 }

55

56 if(hasCollectedEmbedding && currentPlace.getIndex ()[0] == sourceNode) {

57 // deposit embedding at source node

58 currentPlace.receiveEmbedding(neighborEmbedding);

59 // COLLECTOR AGENT WORKFLOW ENDS HERE

60 kill();

61 return null;

62 }

63

64 return null;

65 }

Listing B.2: Orchestrator-Collector agent movement

1 /**

2 * Find K nearest neighbors for a given query node

3 *

4 * @param queryNodeId ID of the query node

5 * @param k Number of nearest neighbors to find

6 * @return List of k nearest neighbors with their similarity scores

7 */

8 public List <NodeSimilarity > findKNearestNeighbors(String queryNodeId , int k)

{

9 // Get the embedding for the query node

10 float [] queryEmbedding = embeddings.get(queryNodeId);

68

11

12 if (queryEmbedding == null) {

13 throw new IllegalArgumentException("Query node ID not found: " +

queryNodeId);

14 }

15

16 // Use a priority queue to keep track of the k nearest neighbors

17 PriorityQueue <NodeSimilarity > nearestNeighbors = new PriorityQueue <>(k);

18

19 // Compute similarities between the query node and all other nodes

20 for (Map.Entry <String , float[]> entry : embeddings.entrySet ()) {

21 String nodeId = entry.getKey ();

22 float [] nodeEmbedding = entry.getValue ();

23

24 // Skip comparing the query node with itself

25 if (! nodeId.equals(queryNodeId)) {

26 // Calculate cosine similarity between embeddings

27 double similarity = SimilarityMeasures.cosineSimilarity(

queryEmbedding , nodeEmbedding);

28

29 // Add to nearest neighbors if similarity is higher than

the lowest in our priority queue

30 if (nearestNeighbors.size() < k) {

31 nearestNeighbors.add(new NodeSimilarity(nodeId ,

similarity));

32 } else if (similarity > nearestNeighbors.peek().

getSimilarity ()) {

33 nearestNeighbors.poll(); // Remove the lowest

similarity

34 nearestNeighbors.add(new NodeSimilarity(nodeId ,

similarity));

35 }

36 }

37 }

38

39 // Convert priority queue to sorted list (highest similarity first)

69

40 List <NodeSimilarity > result = new ArrayList <>(nearestNeighbors);

41 Collections.sort(result , Comparator.comparingDouble(NodeSimilarity ::

getSimilarity).reversed ());

42

43 return result;

44 }

Listing B.3: Top-K neighbor search

70

Appendix C

PROJECT SETUP AND EXECUTION GUIDE

This appendix details the steps required to build, configure, and run the MASS-based

link prediction system. It is intended to help new users, particularly DSLAB researchers,

replicate and extend the experiments conducted in this thesis.

C.1 Repository and Branch Information

The project relies on two codebases, hosted on Bitbucket:

C.1.1 Application Layer

Repository: mass java appl, sumitjh/link-prediction branch

URL: https://bitbucket.org/massapplicationdevelopers/massjavaappl/src/sumitjh −

link − prediction

C.1.2 Core Library

Repository: mass java core, sumitjh/knn-alternate branch

URL: https://bitbucket.org/masslibrarydevelopers/massjavacore/src/sumitjh− knn.

For a full explanation of each directory and the implementation details, refer to the

README.md files included in both repositories.

C.2 Rebuilding MASS Core

To compile the MASS core library after any modifications:

cd ~/mass_java_core/

mvn clean package install

https://bitbucket.org/mass_application_developers/mass_java_appl/src/98226adcab0add963428e0412b3bf1c3ea722762/?at=sumitjh%2Flink-prediction
https://bitbucket.org/mass_application_developers/mass_java_appl/src/98226adcab0add963428e0412b3bf1c3ea722762/?at=sumitjh%2Flink-prediction
https://bitbucket.org/mass_library_developers/mass_java_core/src/1efa97046f75af5ccac9c60598b2f45118742d91/?at=sumitjh%2Fknn-alternate

71

This builds and installs the updated core into your local Maven repository, ensuring that

the application layer can resolve dependencies correctly.

Important: After rebuilding mass java core, update the mass.version tag in the

pom.xml of mass java appl to match the new version.

C.3 Building and Running the Application

To rebuild and execute the link prediction application:

cd ~/mass_java_appl/QueryGraphDB

mvn package

After compilation, run the application using the provided script:

sh build_run_lp.sh

This script launches the program with the specified dataset and configuration.

C.4 Input Requirements

To execute successfully, the program expects five arguments:

1. Node File: Full node list of the graph

2. Train Split: Subset of edges used to construct the graph

3. Test Split: Subset of edges used for prediction

4. File Suffix: A custom suffix to differentiate result CSV filenames

5. Log Level: Use OFF for optimal runtime performance

72

C.5 Sample Execution

Snapshot of terminal showing successful program execution:

Figure C.1: Execution snapshot

C.6 Output Artifacts

Two result files will be generated:

• knn analysis results <suffix>.csv: Embedding-based similarity scores

• topology link prediction results <suffix>.csv: Topological or hybrid similar-

ity scores

Sample snapshots of outputs:

73

Figure C.2: Embedding based results snapshot

74

Figure C.3: Topological results snapshot

These files contain link prediction results and are saved in the target/classes directory

with headers denoting node pairs and their similarity scores.

C.7 Post-Processing and Evaluation

A sample Python notebook is provided in the mass java appl/QueryGraphDB folder

(sumitjh/link-prediction branch) to:

• Parse the result CSVs

• Calculate evaluation metrics such as Precision@k, Recall@k, MAP, and MRR

• Visualize performance across algorithms and datasets

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background and Motivation
	Objectives

	Related Work
	Topological Link Prediction
	FastRP
	Neo4j
	Current Challenges

	Previous Achievements
	GraphDB
	Distributed Shared Graph
	Smart Agent Movement

	Implementation
	Design Principles
	Extensible design and deep integration in MASS Core
	Adherence to SOLID principles

	Topological Link Prediction
	Distributed Execution Model
	Algorithms
	Common Neighbor based methods
	Total Neighbor Methods

	Embedding-based Link Prediction
	FastRP
	Enhancements to FastRP
	MASS Implementation

	KNN
	MASS Implementation
	Design Considerations

	Evaluation
	Setup
	Datasets
	System Configuration
	Evaluation Metrics

	Execution Performance Analysis
	Topological Link Prediction
	FastRP + KNN Pipeline

	Accuracy analysis
	Topological Link Prediction
	FastRP + KNN

	Limitations
	Conclusion & Future Work
	Benchmarks
	Performance benchmarks
	Cora
	OGBL-DDI

	Topological Link Prediction benchmarks
	FastRP benchamarks

	Code Listings
	Project Setup and Execution Guide
	Repository and Branch Information
	Application Layer
	Core Library

	Rebuilding MASS Core
	Building and Running the Application
	Input Requirements
	Sample Execution
	Output Artifacts
	Post-Processing and Evaluation

