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Abstract

Implementing the Multi-agent spatial simulation (MASS) library on the Graphics Processor Unit

Tosa Ojiru

Chair of the Supervisory Committee:
Munehiro Fukuda, Ph.D.

Computing & Software Systems

The current frameworks for Agent-Based Models (ABMs) are mostly sequential, which causes a speed
limitation in their execution. ABMs by nature require a large population of agents in order to show
consistent patterns in the model, for example, epidemic modeling, airplane flight patterns, and crime rate
analysis, all requiring millions of agents. To put this in perspective, there are 50,000 flights per day in the
USA (18.25 million per year) while New York City has a population of over 18 million people as of
2011. This research effort implements a multi-agents spatial simulation library (MASS library) on the
graphics processor unit (GPU) to achieve: 1) speedup by parallelization on the GPU and 2) implementing
a general agent-based simulator on the GPU. Results obtained from implementing a wave simulation of 4
million array elements on the GPU showed a 15 times speedup over the corresponding sequential
implementation while the CPU-only implementation (with the conventional multithreading) flattens at a 2
to 3 times speedup. This research explores other applications that use the MASS library and investigate
their performance gains when compared to the same applications implemented using the CPU version of
the library implemented in C++. Algorithms for efficient agent-to-agent communication and agent
migration are proposed and evaluated as compared to existing algorithms.
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1 Introduction

The Multi-Agents Spatial Simulation (MASS) library [1] is designed to facilitate Agents-Based Models
(ABMs) in a way that makes it easier to parallelize ABM-based scientific research. The MASS library
consists of Places and Agents, where Places map to the environment definition of an ABM while Agents
map to the computation entities incidentally called agents in an ABM. In summary, the MASS library is
an abstraction of an ABM while the actual implementation of an ABM is the concrete simulation that is
executed in parallel. For example, the MASS library can be used to implement Conway’s game of life [2],
Sugarscape [2], and Boids [3], which are all ABMs.

1.1 Why ABM

Agent-Based Models [4] have been increasingly used in scientific communities and in practice to examine
various emergent behaviors that exist when individual entities (or agents) interact with each other.

An agent here can be used to represent:

* A water particle in a wave simulation
* A human being (or a living organism) in an epidemic prediction simulation
* A supplier, a manufacturer, or a client in a supply chain simulation

In all the above cases, it can be deduced that the attributes of an agent have to be appropriately defined, in
order words, when a library like MASS is used to implement an ABM, it is critical to inherit the Place
and Agent computational entities and override the attributes that are specific to the domain of
implementation. An important property of an ABM is that even a simple definition of an agent can still
lead to useful emergent behaviors when combined with valid rules for agent-to-agent interaction, agent-
to-environment interaction, and environment-to-agent interaction.

The problems that ABMs [3] help solve are:

*  Observing emergent behavior. Agent-to-agent interaction can lead to emergent behavior that
cannot be adequately modeled by mathematical equations. Conway’s game of life is a variation of
an ABM that shows consistent emergent behavior despite the simplicity of the rules that are
defined on each agent.

*  Providing heterogeneity of agents. In [3], Macal and North mentioned that the complexity of
systems previously made it difficult to model using traditional techniques. They stated that
“modeling economic markets has traditionally relied on the notions of a perfect markets,
homogeneous agents, and long-run equilibrium because these assumptions made the problems
analytically and computationally tractable.”

*  Ability to model complex systems. ABMs are a type of Complex Adaptive System (CAS), as
defined by the interaction among agents as well as between agents and their environment. The



ability of an agent to adapt to its environment changes its state due to its environment, and affects
change to other agents and its environment.

1.2 The need for more computing resources

ABMs have no restriction on the size of a population in the model. For example, it can range from a
single agent model to hundreds of millions of agents in a single model. However, most ABMs require
large population sizes for it to be practical. An example is an attempt to predict an epidemic outbreak for
New York City that [5] has a population of over 19 million according to the 2011 Census Bureau. This
would require an agent population in the tens of millions to adequately predict an epidemic dissemination,
and a large amount of computational power and memory is needed to achieve faster performance so that
multiple runs can be performed for allowing models to compute more accurate predictions.

Another example of a computational need is when modeling flight patterns. As of 2011, there is an
average of 50,000 flights per day [6], resulting in over 1.8 million flights in a year. The dominant factor in
ABMs is the size of the simulation space, in this case, number of agents. Even on an extremely optimized
sequential algorithm, the runtime of running millions of agents serially would be worse than if these
operations were done in parallel. For instance, running a four million agent simulation in a 4-core CPU by
splitting agent execution such that one million agents would run in parallel on each CPU would reduce
the runtime by approximately 75 percent.

CPUs have traditionally been used to implement parallel applications; however, the level of parallelism
that can be achieved on the CPU is dwarfed by the parallelism provided by the GPU with a relatively
lower cost in terms of price and scalability (i.e. adding more GPU cores). An example of a high-end CPU
is the Intel Core 17-3960X with 6 total cores on the single multiprocessor for up to 12 threads with hyper
threading and a price tag of about $1029. On the other hand, an above average GPU, the GeForce GTX-
680 has 8 multiprocessors, 192 cores per multiprocessor totaling 1536 cores on this chip — with a cost of
$440'.

In summary, there is need for more concurrency, and from above, using a single GPU with a 1536 cores
offers a more attractive option than combining multiple high-end CPUs with limits to the amount of cores
that can fit on a single chip. The problem with current ABM tools is the limitation posed by the number of
agents that can exist in the simulation. This is partly because popular ABM tools including NetLogo [7]
and Repast [8] are implemented without parallelism, i.e. they are all sequential and do not take advantage
of the resident computational power that they are running on. MASON [9] is an exception because it
provides support for scheduling agents to run as parallel threads on the separate CPU cores. The MASS
library however, attempts to maximize the local resources available to it by running the implemented
ABM in parallel on the CPU cores, or in this case, the available GPU leading to improved performance
results and faster simulation cycles.

1.3 GPU as a parallel powerhouse

According to the recent research and performance results from literature [10-22], many-core GPUs [14]
have proven to outperform multicore CPUs especially in terms of the ability to run thousands of threads
in parallel when the CPU is hitting a hardware limit in how many cores can fit on a chip.

! Prices are current on www.amazon.com as of 11/20/2012



The GPU is especially suited for applications where:

* The computational requirements are huge

¢ Parallelism would improve the current runtime

* The throughput is more desirable as opposed to latency. An application that puts more emphasis
on the overall work performed by a group of threads rather than the latency incurred in
performing individual operations.

To show how attractive the GPU is for implementing an ABM, Chen W. et al. [23] implemented a high-
speed framework for blood coagulation by using NetLogo [7], Repast [8], and C. According to their
experiments, the speedup of the GPU implementation of over a million agents was about 10 times faster
than the C version, 100 times faster than the Repast version, and over 300 times faster than the NetLogo
version. These results show that ABMs can benefit from implementation on the GPU.

1.4 The need for MASS library

The MASS library consists of Places and Agents [1]. “Places” is a grid of Place elements which form a
location where an agent can reside. A place interacts with other place elements, agent elements, and act as
a compute entity. An agent can migrate from one place to another, communicate with a single agent or
multiple agents, and also change its state based on these interactions.

When an ABM is implemented using the MASS library, the underlying computational resources would be
maximized to achieve the best performance that can be obtained on available computing cores. For
example, the MASS library implements parallelism across multiple CPU cores, while utilizing available
GPUs to achieve even better throughput and increase overall performance. All MASS library users have
to do is:

* Inherit the MASS library Agent (and or Place) class

¢ (all the minimally required MASS library functions; this step requires evaluating a specific ABM
design and identifies portions of the model that would benefit more from parallelization — these
identified portions will be parallelized by calling MASS library functions.

The MASS library implements the basic functionality needed by an ABM so that the time to program a
full ABM model is significantly reduced, and it gives users the ability to perform incremental
improvements to the overall runtime of the target ABM. For example, executing a single function fooA
using MASS library increased the performance by 10% when a for loop of the wave simulation was
replaced by a call to the parallel CallAll. Implementing the same wave simulation using MASS (GPU
version) gave a performance improvement of as much as 80% compared to the multicore version.

1.5 Goals

This research effort aims at:

¢ Implementing the MASS library on a single GPU by changing its library definition and designing
so as to fit them to the GPU.
* Proposing and evaluating algorithms for:
o Communication: agent-agent, agent-place, place-agent, place-place
o Agent migration



o Agent production (or spawning)
Comparing the performance of MASS library implementation, using multicore CPUs versus a
many-core GPU. Performance evaluation would be done by implementing the following two
simulations:

o Conway’s game of life (ABM)

o Wave simulation (non-ABM)



2 Execution Model

The version of MASS library developed as part of this research is fully implemented on the GPU. This
ensures that the available computational power of the GPU complements the CPU in running the
simulation.

2.1 Processing flow
The follow section shows how data and processing goes from the CPU to GPU and back to CPU using a
single threaded CPU process and a single GPU for parallel execution.

-

GPU memory

MASS library processing flow

1. Initialize MASS library

2. Copy simulation data to the GPU

3. Call MASS library functions

4. Start parallel execution

5. Copy simulation data back to memory

GPU

Figure 2.1: MASS library processing flow

1. Initialize MASS library: The execution of a program implemented in MASS library starts out with
calling the init() method. Here, the number of threads is specified, which maps to the total number of
GPU threads that would be launched for each time step for parallel execution on the GPU cores.
GPUs favor throughput over latency [20] so it is beneficial to get as much work done by launching as
many threads as possible to hide the latency incurred by the slowest thread in a thread block.

2. Copy simulation data to the GPU: After the initialization step, an entire simulation dataset is
copied to the GPU. As shown in Fig. 2.1, the GPU and CPU have separate memory, so the GPU
needs to have a copy of the current simulation data in GPU memory. The dataset is copied from the
GPU memory to CPU memory and vice versa across the PCle bus, which constitutes a bus bottleneck
because most PCle bus have bandwidth [24] up to 6.4 GB/sec compared to GPU bandwidth that
approach 100 GB/sec. Simulation data copied to the GPU should only be data that needs to be
processed by the GPU to avoid unnecessary copy operations across the PCle bus. After a successful
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copy operation from main memory to the GPU memory, the simulation data resident on the GPU is
ready for processing.

3. Call MASS library functions: The third step to call MASS library functions is dependent on the
application. In the case of Conway’s game of life, a simulation time step might include a call to
callAll(), exchangeBoundary(), and manageAll(). callAll() executes a user-specified function on all
Places and Agents while exchangeBoundary() synchronizes parallel boundary data, and manageAll()
updates the simulation state.

4. Start parallel execution: MASS library functions are executed using the data resident in GPU
memory, and the function passed in as a parameter to the callAll() parallel function. Parallel
execution is performed by assigning a group of threads (called a thread block) to execute different
portions of the simulation space (in this case a 2D array). The number of threads launched at this step
is proportional to the specified threads in the init() method at the initialization of the simulation.

5. Copy simulation data back to main memory: Here the state of the data is copied back to main
memory to keep data updated on the CPU after each callAll() call. It is important to note that not all
processing is done on the GPU so the data in main memory have to be in sync with the data in GPU
memory to avoid bugs in the simulation due to data inconsistency. This emphasizes the need to only
perform GPU operations on computationally intensive tasks that are parallelizable, and perform
sequential operations on the CPU to avoid unnecessary trips across the PCle bus.

2.2 Agents

Agents are execution instances with the ability to migrate, communicate with others, spawn, and
terminate themselves. Agents in the MASS library are similar to agents in ABMs such that they have
defined rules. These agents are separate from mobile agents, i.e., software proxies that roam around the
World Wide Web to perform various user functions. In MASS library Agents are situated in an
environment called Places.

blue agents bag green agents bag

Figure 2.2: Agents in MASS library showing heterogeneity

There can be different types of agents in the same MASS-supported ABM simulation: blue agents, green
agents, stock agents, and price agents, all depending on the ABM that is being modeled. In order to
implement any ABM in MASS, the agent class needs to be overridden and specific agent properties
would be defined which can include: behavioral rules, memory, resource attributes, etc.



2.3 Places

“Places” is the environment where agents reside. It is a distributed matrix whose elements can reside on
separate GPU cores. Place elements make up a Places matrix such that a place can house a single agent or
multiple agents.

centra] cell centra] cell
/\ ighbors neighbors
L —
a) 5-cell von Neumann neighborhood b) 9-cell Moore neighborhood
) extended
centra{ cell neighb% central cell
N N P/
N
[~
“extended
ad neighbors of
neighbo == | >
neighbors/
¢) 1-cell extended 5-cell von Neumann d) 1-cell extended 9-cell Moore
neighborhood, i.e. boundary =2 neighborhood i.e. boundary =2

Figure 2.3: Neighborhood configurations in MASS library

When a Places object is created in a MASS library simulation, the boundary can be specified; otherwise it
defaults to a boundary of 1, which is the most efficient neighborhood configuration due to nearest
neighbor communications. The higher the number of neighbors, the more complex the possible transitions
from one state to another in a given neighborhood. For example, as illustrated in Fig. 2.3, a 5-cell
neighborhood with two possible states, on and off, has 2° possible states that the neighborhood can be
ranging from all on, all off, to the other 30 different combinations of states in between. A 9-cell
neighborhood, however, would have 2° possible states that would have to be evaluated to decide the next
state of the central cell.

The neighborhoods used in the MASS library are inherited from common neighborhoods [25] used in
Cellular Automata (CA) which is an ABM [3]. These neighborhoods consist of the 9-cell Moore
neighborhood and the 5-cell von Neumann neighborhood, while extended neighborhoods can be specified
by specifying boundary > 1, and overriding the offset calculation from any given central cell.



Chunk A Chunk B Chunk C

boundary —»

| shadow |

A Places object divided into 3 chunks, A, B, C
where boundary = 1, size[0] = 12, size[1] = 15

Figure 2.4: Places in MASS library divided into parallel chunks

The shadow is calculated according to the boundary specified. From Fig. 2.4, Chunk A’s shadow is on the
right size of the boundary line where the cells are shaded grey. This shadow is shared with Chunk B,
while Chunk B’s left shadow is shared with Chunk A, Chunk B’s right shadow is shared with Chunk C,
and Chunk C’s left shadow is shared with Chunk B. The concept of a shadow makes it possible for the
right neighbor of Chunk A’s boundary cells to be available to Chunk A’s thread block during parallel
execution.

2.4 Agents in their Places environment

Agents reside in Places. Upon an initialization, each agent needs to be mapped to their environment by
specifying what Place element an agent maps to. An agent’s place decides its environment, neighborhood,
and what computing core the current agent resides in. MASS library provides a map() function which
performs mapping by uniformly distributing the agents across the Places environment.

n
density = — 2.1

np
Where density is the number of agents per unit area of the Places array; n, is the total number of agents
assigned to the Places object; and n, is the size of the Places matrix. The higher the density of agents
present in a Places object, the more populated each place element becomes. A place element is processed
by a single parallel thread in a thread block, which is the smallest unit of parallelism achievable by the
MASS library, so when the number of agents present in a place is greater than one, they will be processed
sequentially by the thread assigned to the current place.
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Figure 2.5: Agents distributed in a Places object in a MASS library simulation after performing a map of
two agents’ bag — a blue agents bag, and a green agents bag

When an agent is defined by a specific implementation, the MASS library map() function can be
overridden to specify a different mapping desirable by the current application. The map() function
specifies how each agent is distributed in the Places matrix. For instance, in an ABM simulation that
requires at most one agent per Place, the map method would be invalid if it maps more than one agent per
place. The default map behavior in this implementation of MASS library is to check all neighbors for an
empty Place, and if none is found, then the whole Places matrix is walked though for a free space. If no
free space is found, then the agent allocation fails on the agent.

Listing 2.1: MASS library implementation of the map function that executes on the CPU

Algorithm map( P, A, np, na )
Input: P (a Places object of size np)
A (an Agents object of size na)
Qutput: P’ (a modified Places object containing Agents mapped to its Place elements)
A’ (a modified Agents object containing Place mapping for each mapped agent)
begin
density := na/np // determine the number of agent per place
offset := 0

// start distribution of each agent in A to the available place elements in P



foria := 0 to na do
if Afia] .status = alive AND A[ia].index != EMPTY then
if offset < np then
Ploffset].agent := Afia]
Alia].index := P[offset].index
//i.e.na =16, np = 8, gives max of 2 agents per place
//i.e.na =38, np = 16, gives max of 1 agent for every 2 place element
if density > 1 then
offset := offset + density — 1 // na > np
else if density == 1 then
offset := offset + density // na == np
else if density < I then
offset := offset + np/na — 1 //na < np

end

2.5 CallAll

This is a parallel function that executes on the GPU. CallAll() executes a user-defined function on every
Agent and Place elements in a Places matrix. The function name and arguments are passed in as a
parameter thereby calling the function on every element in the simulation space. Prior to this function
being executed, data should have already being allocated and copied to the GPU memory, and after the
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function exits, all data is copied back to main memory

CallAll( migrate, positionOffset[] )
function executed
\l, by all agent elements
O @)
@ o @
blue — | ®
agents~_| () @
) e | ola"t0 @
- | @ @ ()
| @) @ o
place
elements — () ry (&)
o) e O O
) (CRKC) @
green
agent ) ® @ .. @ &)
(@) (@)
O @ O el ¥
N
@@ o 20| @
boundar : —
! Y shadow oundary

Figure 2.6: CallAll() executed on Places matrix with a rule that only a single agent can occupy a place

In some ABMs, at most one agent can reside at a given position, i.e., at most one agent per place. Figure
2.6 shows the parallel CallAll function is executed on the Places object, passing “migrate” as a pointer to
the function to be executed on every agent resident in a place. Place elements do not have migrate()
defined on them so this function applies only to the agents that reside in the environment. All agents in
the specified Places object execute their migrate() function in parallel and decide their new location based

on the positionOffset[] array passed in corresponding to size of the agents that are alive in the Places
object.

After a CallAll() function has completed, the Places object (including resident agents), are in a dirty state
because the shadow column defined is inconsistent across boundaries. Figure 2.7 shows the logical state
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of Places after a CallAll has been executed.
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Figure 2.7: State of Places and Agents after CallAll( migrate, positionOffset[] ) is executed given three
parallel chunks: A, B, C

Each chunk contains a shadow copy of the adjacent chunk’s boundary cells. For example, Figure 2.7
shows an extra column matrix appended to chunk A’s parallel region, giving access to the last state of the
neighbors on the boundary to allow for parallel execution. Chunk B shows a green agent attempting to
migrate to its right neighbor (C’s shadow copy); while chunk C has no knowledge of this migration
attempt until boundary data has been synchronized. Also, chunk C has a blue cell migrating to the bottom
left neighbor but this would not be known to adjacent chunks until the call to ExchangeBoundary().

An agent migration on a shadow cell does not complete until the sequence of ExchangeBoundary(), and
ManageAll() functions have been executed, which is described in the following two subsections.

2.6 ExchangeBoundary
This function is used to synchronize the boundary elements of each chunk in the simulation to keep the
shadow copies synchronized across the parallel chunks. This synchronization is required because after the

call to CallAll has completed, the shadow copies of each chunk resident in adjacent chunks would be in
an inconsistent state as explained in the previous section.
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Figure 2.8: ExchangeBoundary() illustrating the effect of calls to ExchangeBoundaryLeftRight() and
ExchangeBoundaryRightLeft()

The ExchangeBoundary() function call is divided into two steps: 1) a call to the
ExchangeBoundaryLeftRight() function, 2) a call to the ExchangeBoundaryRightLeft() function. The
order of these functions are arbitrary, however, these calls execute one after the order.
ExchangeBoundaryLeftRight updates the left hand side of each parallel chunk by merging the states of
the boundary cells on the left with the shadow copy present in an adjacent chunk. Figure 2.8 shows chunk
A’s shadow present in chunk B updated to from A to A’ and B is updated to B’ in chunk C.
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ExchangeBoundaryRightLeft is similar to ExchangeBoundaryLeftRight except that it occurs in the
opposite direction where updated shadows include B’ in A’s chunk, and C’ in B’s chunk.

2.7 ManageAll

This function updates the state of the Places environment and resolves conflicts where applicable based
on the rules defined by the simulation.
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Figure 2.9: Places and Agents are updated with their current states after a call to ManageAll()

The state of the simulation space is updated by a call to ManageAll(). This function performs tasks that
include: conflict resolution, removal of dead agents from simulation, and creation of new agents in new
place location after spawn. An instance of a conflict in MASS library result when the agent density is
greater than the current resident agent in any place P[i]. For example, when two agents A[0] and A[1]
migrate to place P[2], given a density of 0, implying less than 1 agent per place. Here one of the agents
would be chosen to rollback its migration by random selection.
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3 Implementation

3.1 Compute Unified Device Architecture (CUDA)

CUDA is NVIDIA’s proprietary language developed as extensions to the C programming language.
These extensions tell the nvce compiler (NVIDIA’s CUDA compiler) when to execute a function on the
CPU or when to execute a function on the GPU. For example, the keyword _ global  prepended to a
function definition specifies that this function is to be executed on the GPU, while keyword _ host
prepended to a function definition specifies execution on the CPU (i.e. no data copy to GPU memory
required). The popularity of CUDA combined with its success and availability of its hardware played a
role in the decision to choose CUDA over other parallel computing APIs [14] like OpenCL, and
DirectCompute with similar functionality.

3.2 MASS-C++

MASS-C++ is an implementation of the MASS library in the C++ programming language using object
oriented programming concepts. A version of MASS-C++ was developed in this research effort to
validate the functionality of MASS-CUDA by establishing a C++-ported version of the MASS library that
can be easily ported and refactored into MASS-CUDA. Other versions of MASS-C++ exist in the
distributed systems laboratory but in order to remove dependency on parallel work-in-progress versions
of MASS-C++, the decision was made to rewrite a MASS-C++ version that can be easily extended to
MASS-CUDA.

This version of MASS-C++ uses the same specification [26] developed by Professor M. Fukuda of the
University of Washington, Bothell. This specification has been fully implemented as a multi-process,
multi-threaded version in the Java programming language, (which this paper labels MASS-Java in the
following discussions). The performance limitations of MASS-Java prompted this research effort into
redesigning some MASS library functions (e.g. replacing ExchangeAll with ExchangeBoundary).

3.3 MASS-CUDA

MASS-CUDA is similar to MASS-C++ except that it has the ability to execute its parallel functions on
the GPU. To avoid duplication of functionality and code, only functions that need to be run on the GPU
are implemented, while maintaining the MASS-C++ codebase defined in section 3.2.

3.3.1 Data structure
The Places object is represented as a flattened one-dimensional array according to the row-major [13]
addressing similarly implemented in the C language.
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Figure 3.1: Linear representation of Places in MASS library

Each index is calculated using a row, and column index, for example, index at i, j represents the ith row,
and jth colomn and is calculated with the formula below.

index = j+ iXsize 3.1

Where j is the column offset; i is row offset into the Places object; and size defines the total number of
Place elements in the Places object.

The data structure used to store agents is a vector implementation of a bag. Agents in a bag have no
predefined order and can be added or removed using their unique agent identifier.

3.3.2 Shared memory

Shared memory gives a faster alternative to global memory, which resides off-chip [10]. The parallel
functions defined in the MASS library have access to this memory in order to facilitate communication
across parallel boundaries when data outside a boundary needs to be read or written to. During an
ExchangeBoundary() call, data is made available for read/write by using the CUDA GPU shared memory.
This is defined by allocating shared memory on the GPU device by using the CUDA-specific _shared
keyword prepended to an array definition.

__shared  Place boundaryData[sharedSize]

sharedSize = 2xXnChunksx hChunk 3.2

Where sharedSize is the size of the shared memory allocated; nChunks is the number of chunks in which
the Places object has been divided based on the boundary defined on the Places (i.e. a default boundary
size of 1); and hChunk is the vertical height of the defined chunk that is usually the height of the Places
object which is the same as to the number of rows in a single Places column if Places where visualized as
a matrix.

Shared memory is also used to store data for the current parallel chunk to facilitate inter-thread
communication in cases where one thread needs access to data that is in another thread’s private memory.
The statement below shows the definition of a shared chunk in MASS-CUDA.

__shared  Place sharedChunk[sharedChunkSize]
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sharedChunkSize = wChunkXhChunk + (2XboundaryxhChunk) 33

Where wChunk is the size chunk width; hChunk is the chunk’s height; and the boundary chunk is
multiplied by 2 to account for most chunks being in the middle of the Places object having a left and right
shadow as described in Chapter 2 with chunk B having chunk A and chunk C’s shadows respectively.

3.4 Algorithms developed

The algorithms which this section defines make use of the CallAll(), ExchangeBoundary(), and
ManageAll() parallel functions described in Chapter 2. Communication, migration, and reproduction are
all accomplished by giving every agent and place an equal opportunity to perform its task using the
CallAll() method, and conflicts are resolved by only allowing a single write operation to be performed
based on who currently has the lock. In this case a write operation is performed by acquiring a lock,
writing data, and then releasing the lock. Any agent or place element that attempts to write to a locked
location, aborts its write operation.

3.4.1 Communication

A weak consistency model [27, 28] is used to guarantee mutual exclusion during parallel write operations.
In order to avoid the need for busy waits, agent or place elements attempting to write to a locked location
would abort their write operation. Read operations however, would succeed whether the location is locked
or not.

3.4.2 Agent migration
Migration of an agent from one place element to another is performed after a parallel CallAll passes this
migrate function as a parameter, and also specifying the offset location where the agent is migrating to.

Listing 3.1: Algorithm that describes agent migration in MASS-CUDA

Algorithm migrate( P, A, np, na, Offset )
Input: P (a Places object of size np)
A (an Agents object of size na)
Offset (array of relative positions corresponding to the number of agents na)
Qutput: P’ (a modified Places object with the new location of all migrated agents)
A’ (a modified Agents object with the positions of their target location updated)
Variables: ip (index of the current place element)
threadnum (GPU thread number)
chunknum (parallel chunk number given sequential numbering of chunks from 0 to n)
target (new position of agent after migration)

begin
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ip ;= threadnum X chunknum // unique index into each thread block
// migrate if there is room i.e. numAgents in current place is less than maximum acceptable
if ip < np AND (P[ip].numAgents < density OR P[ip].numAgents = () then
target := ip — Offset[ip] // destination index
Plip].agent.newindex := ip // agent.newlIndex will be assigned to agent.index
// by manageAll after synchronization across boundaries
P[target].addAgentToBag( P[ip].agent ) // add agent to destination Place

end

After the call to migrate completes, ExchangeBoundary() and ManageAll() manages the final position of
each agent depending on the rules of the simulation i.e. if more than one agent may reside in a given place
element (which depends on an ABM application), then all migrate operations would succeed. However, if
at most only a single agent can reside in a place, then ManageAll() would remove all agents who failed
their migration by performing a migrate operation from A[i].newIndex to A[i].index and deleting the
agent from the current place’s bag.

3.4.3 Agent reproduction

Agent reproduction is handled in the same way as agent migration such that a child agent gets a new
position when it is created and this position is defined by randomly selecting a neighboring cell where the
location of the parent agent is the central cell. Using the 9-cell Moore neighborhood, any one of the
neighboring cells can be chosen at random.

[

i = random() % numNeighbors

childIndex = neighbors[i]

A child agent’s status does not change to alive if its migration to its new position fails i.e. ManageAll
does not persist this child’s migration to its childIndex. Flipping the status of all child agents in a
generation is performed by the ManageAll parallel function. An application can override the specific
reproduction behavior by providing a destination for the spawned child agent to reside.

3.5 Experimental design

All experiments were conducted the UWB distributed systems laboratory. This environment simulated a
practical scenario where the system being used is also servicing other requests and not dedicated to my
experiments. My independent variables in this experiment are the number of threads used (GPU or CPU
threads) and number of iterations per run. The dependent variable is the total runtime.

Table 3.1: Experimental setup experiments

Conway’s Game of Life Wave simulation
Operating system Red Hat Enterprise Client Linux release 5.8 | Same

(Tikanga)
CPU Intel® Xeon® CPU E5520 @ 2.27 GHz Same
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GPU NVIDIA GeForce GTX-680 Same
Number of GPU cores | 1536 Same
Number of CPU cores 16 Same
Application type ABM Scientific application

3.5.1 Conway’s Game of Life
A summary of configurations used to run the experiment is:

Table 3.2: Experimental setup of Conway’s game of life

C++, MASS-C++ CUDA, MASS-CUDA
Up to 16 parallel threads Up to 1024 parallel threads
100 to 1000 generations with 100 generation Same

increments

100” up to 4000” agents size with increments of 100” Same

3.5.2 Wave simulation
A summary of the configuration used to perform the wave simulation experiment is given below:

Table 3.3: Experimental setup of Wave simulation

C++, MASS-C++ CUDA, MASS-CUDA
Up to 16 parallel threads Up to 1024 parallel threads
1000 iterations Same

100” up to 4000” places size with increments of 100 Same
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4 Performance Evaluation

4.1 Metrics

The metrics used in measuring performance improvement is the runtime trend with increasing values of:

* [terations (or generations for ABMs)
* Simulation size (size of Places object)

The baseline performance configuration was obtained in terms of the number of threads that gave the best
performance in the C++ or CUDA version of the application.

4.2 Results
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Figure 4.1: GPU versus CPU performance results

Figure 4.1-(a) compares CPU multithreading and GPU computing in the execution time of Conway’s
Game of Life. While the CPU version increases its execution time in proportion to the number of places,
the GPU version performs fast regardless of the place size.
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Figure 4.1-(b) compares CPU multithreading and GPU computing in speedup of Conway’s Game of Life.
The speedup result for the CPU version flattens at 10 times while the GPU version hovers above 100x
even for larger place sizes.

Figure 4.1-(c) compares CPU multithreading and GPU computing in the execution time of Wave
simulation. The CPU version increases proportional to the number of places showing a higher impact of
the size on its execution time as opposed to the GPU version which shows less impact in execution time
with increasing number of place elements.

Figure 4.1-(d) compares CPU multithreading and GPU computing in speedup of Wave simulation. The
GPU version shows a higher speedup of over 10 times while the CPU version is less than half of that.

4.3 Discussion & limitations

The results in the previous section show that Conway’s game of life shows close to 250x speedup while
running on the GPU versus about 10x speedup recorded by a multithreaded CPU run. Also, for the CPU-
only execution, the runtime increased linearly with increasing size of agents tapering at 450 seconds (or
7.5 minutes). The runtime of life on the GPU, however, stayed below 25 seconds for up to 16 million
agents. In the wave simulation application there is a little over 14x speedup when running on the GPU
versus CPU execution.

One reason for the difference in speedup between Conway’s game of life and the wave simulation is that
life is an ABM defined with three simple rules that determine the state of an agent. In the wave simulation
however, the current wave height is calculated by the knowledge of the last two wave heights. The wave
simulation also has three copies of the simulation space at any given time: current, previous, and height
that precedes the previous height. This means that the GPU has to store three times more data for wave
simulation as opposed to life.

The average memory size on the current GPU is 2 Gigabytes while the CPU used contain 16 Gigabytes of
RAM. This memory gap becomes a problem when the size of the simulation being loaded onto the GPU
exceeds 2 billion, in which case a higher memory GPU would be required, or multiple GPUs can be used
to manage the simulation data. A multi-GPU solution to the memory problem would use the same method
used split data across boundary by extending to ExchangeBoundary() function to manage data contained
across two GPU boundaries as well as across thread-chunk boundaries.
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S5 Related Work

In this research, other ABM frameworks were surveyed which provide a range of ways to successfully
implement an ABM. These frameworks are described below. The level of parallelism that can be
achieved when implementing an ABM in these frameworks sets MASS-CUDA apart.

5.1 Swarm & Repast

This is one of the earliest ABM simulation frameworks and it was initially written in Objective-C. Swarm
[29] is an ABM based on nested agent structures where agents can contain swarms of other agents. One
difference between Swarm and the MASS library is the absence of an environment; Swarm only has the
concepts of agents. Swarm is open source, and has analysis tools when running ABMs to keep track of
how many agents are alive in the simulation at a certain generation for example. Another difference and
limitation with Swarm is the sequential nature of underlying libraries. This sequential nature makes it
painful to run practical ABMs that require large agent sizes in the range of the millions to the hundreds of
millions.

Repast (recursive porous agent simulation toolkit) started out as a Java implementation of Swarm. It is
also free and open source, and is currently being developed by Argonne National Library [8]. Repast
focuses mostly on social simulation with C#.Net and Java implementations. Repast is different from
MASS library in its sequential nature, thereby inherently limited in agent size and modeling practical
systems that requires a large agent population.

5.2 NetLogo

Of all the ABM frameworks available, NetLogo is easier to use and is mainly for the novice ABM model
designers with functionality to rapidly prototype different ABMs with the intention of using a more
advance ABM framework to implement the actual model. In NetLogo, there is no agent defined, instead
turtles [30] represent the individual entities of the simulation. Similar to Swarm and Repast, NetLogo is
also sequential thereby inheriting the size limitations plagued by these frameworks.

53 MASON

MASON (Multi-Agent Simulator of Neighborhoods) is an ABM framework [9] that includes support for
parallel and distributed execution. Multiple MASON instances can be used to run a simulation in parallel
and improve the runtime as opposed to running the same simulation with a single instance as shown by
[31]. MASON supports parallel thread execution in its model layer by providing “Steppable” wrappers
which can group agents together and perform them in parallel on a separate thread [9]. There is still a size
limitation however, because millions of agents would need more threads (in the thousands) to work
cooperatively and therefore have a considerably lower runtime which the MASS library solution
addresses with MASS-CUDA.
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6 Conclusions

ABMs and many parallelizable scientific applications can be made more useful when there is little impact
on the agents’ size on the overall execution time. MASS-CUDA provides a massively parallel framework
library that takes advantage of GPU accelerators to improve the overall execution time and enable ABMs
to be run on commodity desktop or laptop computers that have a GPU.

6.1 Result statement

The GPU gives MASS library a platform to accelerate applications by providing a parallel ABM
framework that can be used to implement ABMs and other scientific applications. This research has
shown that a better runtime performance results when an ABM or scientific application is implemented
using the MASS-CUDA version of the MASS library as opposed to implementing the same application
using other ABM frameworks that depend on CPUs as accelerators.

6.2 Problems encountered & Future work

One desirable feature of MASS library is the ability to perform its acceleration on any computing device.
However, the CUDA programming language only works on NVIDIA’s GPUs, which makes it impossible
to perform GPU acceleration on non-NVIDIA devices such as AMD. OpenCL is another alternative that
has been developed by Khronos group, Apple, and NVIDIA, and it has the ability to run on any GPU
device, including NVIDIA GPUs.

Although CUDA is in constant development and continually adds support for C and C++, and a growing
list of other languages including Java, these new features require an updated hardware. For example,
devices with compute capability less than 2.x do not have support for function pointers, which is a
desirable feature of the MASS library parallel function. The function pointer problem is resolved by
requiring the user to define the function to be passed into the GPU as a GPU function so that it can be
executed on the GPU.

Another issue faced in this reresearch is decoupling the MASS-CUDA code from the user. It would
improve the usability if the users of MASS-CUDA do not have to see any GPU code (or any CUDA-
specific keywords) in the whole development cycle. The keywords used by CUDA should be hidden from
the user and instead a wrapper to these underlying GPU functions should be provided. However, the fact
that CUDA does not support the transfer of a CPU function to the GPU, this problem would have to be
solved by creating a source-to-source translator [32] that parses a user-defined CPU function and
generates a GPU version of the same function that can be run on the GPU. This gives room for more
research in this area.
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7 Appendix

7.1 Wave simulation — GPU version (Bare CUDA)

#include "util.h"

#define DEFAULT_SIZE 100

#define MAX_THREADS PER_SM 2048
#define MAX_THREADS PER_BLOCK 1024

class Wave2D

{

private:

//

public:

float* zo; // previous - 1
float* z1; // previous
float* z2; // current

int nthreads;

int threadsPerBlock;

int blocksPerGrid;

int interval;

int iterations;

float exectime;

int size;
Wave2D();
Wave2D( int _size, int _threadsPerBlock, int

_iterations );

}s

~Wave2D();
void doSimulation();
float getExectime(){ return exectime; }

_blocksPerGrid, int _interval, int

__global__ void doSimulation_kernel( float*, float*, float*, int size, int );
__device__ float compute_zt( float*, float*, float*, int size, int i, int j, int
time_unit );

int main( int argc, char* argv[] )

{

//

if( argc < 6 ) return -1;

int size = atoi( argv[1] );

int iterations = atoi( argv[2] );

int interval = atoi( argv[3] );

int threads = atoi( argv[4] );

int blocksPerGrid = atoi( argv[4] );
int threadsPerBlock = atoi( argv[5] );

Wave2D wave2d( size, threadsPerBlock, blocksPerGrid, interval, iterations );

// Perform simulation
wave2d.doSimulation();

printf( "exectime(ms)=%.2f\n", wave2d.getExectime() );

return 0;
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Wave2D: :Wave2D()

{

// printf( "Hello Wave2d in CUDA, " );
size = DEFAULT_SIZE;
int width = size, height = size;
z0 = new float[ width * height ];
z1 = new float[ width * height ];
z2 = new float[ width * height ];
threadsPerBlock = 1;
blocksPerGrid = 1;
interval = 1;
iterations = 1;
exectime = 0.0;

}

Wave2D: :Wave2D( int _size, int _threadsPerBlock, int _blocksPerGrid, int

_iterations )

{
// printf( "Hello Wave2d in CUDA, " );
size = _size;
int width = size, height = size;
z0 = new float[ width * height ];
z1 = new float[ width * height ];
z2 = new float[ width * height ];
threadsPerBlock = _threadsPerBlock > @ ? _threadsPerBlock :
blocksPerGrid = _blocksPerGrid > © ? _blocksPerGrid : 1;
interval = _interval;
iterations = _iterations;
}
Wave2D: :~Wave2D()
{
delete [] zO;
delete [] z1;
delete [] z2;
}
void Wave2D::doSimulation()
{
cudaEvent_t start, stop;
cudakEventCreate( &start );
cudakventCreate( &stop );
cudakEventRecord( start, 0 );
int width = size, height = size;
size_t sizelD = width * height * sizeof(float);
float* d_space®;
float* d_spacel;
float* d_space2;
cudaMalloc( &d_space@, sizelD );
cudaMalloc( &d_spacel, sizelD );
cudaMalloc( &d_space2, sizelD );
// int thrPerBlock = (int)sqrt(threadsPerBlock);
// int blkPerGrid = (int)sqrt(blocksPerGrid);
// thrPerBlock = thrPerBlock > 1 ? thrPerBlock : 1;
// blkPerGrid = blkPerGrid > 1 ? blkPerGrid : 1;

dim3 dimBlock( threadsPerBlock, threadsPerBlock, 1 );
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dim3 dimGrid( blocksPerGrid, blocksPerGrid, 1);
// threadsPerBlock = thrPerBlock * thrPerBlock;
// blocksPerGrid = blkPerGrid * blkPerGrid;

cudaMemcpy( d_space@, z@, sizelD, cudaMemcpyHostToDevice );
cudaMemcpy( d_spacel, zl, sizelD, cudaMemcpyHostToDevice );

cudaMemcpy( d_space2, z2, sizelD, cudaMemcpyHostToDevice );

for( int t = @; t < iterations; t++ )

{
doSimulation_kernel<<<dimGrid, dimBlock>>>( d_space®, d_spacel, d_space2,
size, t );
cudaMemcpy( z0, d_space®, sizelD, cudaMemcpyDeviceToHost );
cudaMemcpy( z1, d_spacel, sizelD, cudaMemcpyDeviceToHost );
cudaMemcpy( z2, d_space2, sizelD, cudaMemcpyDeviceToHost );
// if( size <= 20 && t % interval == 0 )
// printld<float>( z2, size );
// else if( t == iterations-1 )
// printld<float>( z2, size );
}

cudakventRecord( stop, 0 );
cudakEventSynchronize( stop );
cudakventElapsedTime( &exectime, start, stop );

// Select GPU device with the most cores i.e. with Compute Capability of at least

int deviceNum;

cudaGetDevice( &deviceNum );

cudaDeviceProp deviceProp;

memset( &deviceProp, ©, sizeof( cudaDeviceProp ) );

deviceProp.major = 1;

deviceProp.minor = 3;

cudaChooseDevice( &deviceNum, &deviceProp );
cudaGetDeviceProperties( &deviceProp, deviceNum );
cudaSetDevice( deviceNum );

// iterations == # of iterations
printf( "GPU=%s, size=%d, iterations=%d, blocksPerGrid=%d, threadsPerBlock=%d, ",
deviceProp.name, size, iterations, blocksPerGrid, threadsPerBlock );

cudaFree( d_spaceo );
cudaFree( d_spacel );
cudaFree( d_space2 );
}
__device__ float compute_zt( float* spaced, float* spacel, float* space2, int size, int
i, int j, int time_unit )
{
float zt = 9.0;
float ¢ = 1.0, dt = 0.1, dd = 2.9;
= | =

if(i==0|| i==size-1 || j==20]| j==size-1)
{
return zt;
}
if( time_unit == 0 )
{

if( (1 > 90.4*size & i < 0.6*size) && (j > 0.4*size && j < 0.6*size) )
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zt = 20.0;
return zt; // Initializing disturbance in the middle of the water.
}
return zt;
}
else if( time_unit == 1)
{
zt = spacel[i*size + j] + c*c/2.0*(dt/dd)*(dt/dd)*(spacel[ (i+1l)*size + j] +
spacel[(i-1)*size + j] + spacel[i*size + j+1] + spacel[i*size
+ j-1] -
4.0 * spacell[i*size + j]);
return zt;
}
else if( time_unit >= 2 )
{
zt = 2.0 * spacel[i*size + j] - space@[i*size + j] + c*c*(dt/dd)*(dt/dd) *
(

spacel[ (i+1l)*size + j] + spacel[(i-1)*size + j] +
spacel[i*size + j+1] +
spacel[i*size + j-1] -
4.0 * spacell[i*size + j]);
return zt;
}
return space2[i*size + j];
}
// NOTE: space@, spacel, and space2 are 2D arrays in device memory
__global__ void doSimulation_kernel( float* space@, float* spacel, float* space2, int
size, int time_unit )
{
int x threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
inti=x,3=y;
int index = j + i*size;

if( index < (size*size) )

{

space2[i*size + j] compute_zt( space@, spacel, space2, size, i, j,

time_unit );

}
__syncthreads();
if( index < (size*size) )
{
space@[i*size + j] = spacel[i*size + j];
spacel[i*size + j] = space2[i*size + j];
}

__syncthreads();
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7.2 Wave simulation — GPU version (MASS-CUDA)

#include "util.h"
#tdefine DEFAULT_SIZE 100

#include "places.h"

class Wave2D : public Places<float>
{
private:
float* zo; // previous - 1
float* z1; // previous
float* z2; // current
// int nthreads;
int threadsPerBlock;
int blocksPerGrid;
int interval;
int iterations;
float exectime;
public:
int size;
Wave2D();
Wave2D( int _size, int _threadsPerBlock, int _blocksPerGrid, int _interval, int
_iterations );
~Wave2D();
void doSimulation();
float getExectime(){ return exectime; }

}s

__global__ void doSimulation_kernel( Wave2D*, float*, float*, float*, int size, int );
__device__ float compute_zt( float*, float*, float*, int size, int i, int j, int
time_unit );

int main( int argc, char* argv[] )
{
if( argc < 6 ) return -1;
int size = atoi( argv[1] );
int iterations = atoi( argv[2] );
int interval = atoi( argv[3] );
// int threads = atoi( argv[4] );
int blocksPerGrid = atoi( argv[4] );
int threadsPerBlock = atoi( argv[5] );

Wave2D wave2d( size, threadsPerBlock, blocksPerGrid, interval, iterations );
// Perform simulation
wave2d.doSimulation();

printf( "exectime(ms)=%.2f\n", wave2d.getExectime() );

return 0;

Wave2D: :Wave2D()

{
// printf( "Hello Wave2d in CUDA, " );

size = DEFAULT_SIZE;
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}
Wave2D:

int width = size, height = size;
z0 = new float[ width * height ];
z1 new float[ width * height ];
z2 = new float[ width * height ];
threadsPerBlock = 1;
blocksPerGrid = 1;

interval = 1;

iterations = 1;

exectime = 0.0;

:Wave2D( int _size, int _threadsPerBlock, int _blocksPerGrid, int _interval, int

_iterations )

{
//

}
Wave2D:

{

}

printf( "Hello Wave2d in CUDA, " );

size = _size;

int width = size, height = size;

z0 = new float[ width * height ];

z1 new float[ width * height ];

z2 = new float[ width * height ];

threadsPerBlock = _threadsPerBlock > @ ? _threadsPerBlock : 1;
blocksPerGrid = _blocksPerGrid > © ? _blocksPerGrid : 1;

interval = _interval;
iterations = _iterations;
:~Wave2D()

delete [] z0;
delete [] z1;
delete [] z2;

void Wave2D::doSimulation()

{

/*

cudaEvent_t start, stop;
cudakEventCreate( &start );
cudakventCreate( &stop );
cudakEventRecord( start, 0 );

int width = size, height = size;
size_t sizelD = width * height * sizeof(float);
size_t sizeOfWave2D = sizeof(Wave2D);
Wave2D* d_wave2d;

float* d_space®;

float* d_spacel;

float* d_space2;

cudaMalloc( &d_wave2d, sizeOfWave2D );
cudaMalloc( &d_space@, sizelD );
cudaMalloc( &d_spacel, sizelD );
cudaMalloc( &d_space2, sizelD );

// Max threads per multiprocessor = 2048, (hercules = 8 MP, max threads = 16384)
// Max threads per block = 1024

nthreads = nthreads < (int)sqrt(1024) ? nthreads : 32;

dim3 dimBlock( nthreads, nthreads, 1 );

int gridx = (size + dimBlock.x - 1)/dimBlock.x;

int gridy = (size + dimBlock.y - 1)/dimBlock.y;

gridx = gridx < (int)sqrt(1024) ? gridx : (int)sqrt(1024);

gridy = gridy < (int)sqrt(1024) ? gridy : (int)sqrt(1024);
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//gridx = 1; gridy = 1;
dim3 dimGrid( gridx, gridy, 1 );

*/

// int threadsPerBlock = dimBlock.x * dimBlock.y;

// int blocksPerGrid = dimGrid.x * dimGrid.y;

// int totalThreads = threadsPerBlock * blocksPerGrid;

dim3 dimBlock( threadsPerBlock, threadsPerBlock, 1 );
dim3 dimGrid( blocksPerGrid, blocksPerGrid, 1);

for( int t = @; t < iterations; t++ )
{
doSimulation_kernel<<<dimGrid, dimBlock>>>( d_wave2d, d_space@, d_spacel,
d_space2, size, t );
cudaMemcpy( z0, d_space®, sizelD, cudaMemcpyDeviceToHost );
cudaMemcpy( z1, d_spacel, sizelD, cudaMemcpyDeviceToHost );
cudaMemcpy( z2, d_space2, sizelD, cudaMemcpyDeviceToHost );

// if( size <= 20 && t % interval == 0 )
// printld<float>( z2, size );
// else if( t == iterations-1 )
// printld<float>( z2, size );
}

cudakventRecord( stop, 0 );
cudakventSynchronize( stop );
cudakventElapsedTime( &exectime, start, stop );

// Select GPU device with the most cores i.e. with Compute Capability of at least

int deviceNum;

cudaGetDevice( &deviceNum );

cudaDeviceProp deviceProp;

memset( &deviceProp, ©, sizeof( cudaDeviceProp ) );

deviceProp.major = 1;

deviceProp.minor 3;

cudaChooseDevice( &deviceNum, &deviceProp );
cudaGetDeviceProperties( &deviceProp, deviceNum );
cudaSetDevice( deviceNum );

// iterations == # of iterations

printf( "GPU(MASS)=%s, size=%d, iterations=%d, blocksPerGrid=%d,
threadsPerBlock=%d, ",

deviceProp.name, size, iterations, blocksPerGrid, threadsPerBlock );

cudaFree( d_wave2d );
cudaFree( d_spaceo );
cudaFree( d_spacel );
cudaFree( d_space2 );
}
__device__ float compute_zt( float* spaced, float* spacel, float* space2, int size, int
i, int j, int time_unit )
{
float zt = 9.0;

<Y,
float ¢ = 1.0, dt = 0.1, dd = 2.9;

if(i==0|| i==size-1 || j==0]| j==size-1)
{
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space2[i*size + j] = zt;

return zt;
}
if( time_unit == 0 )
{
if( (1 > 0.4*size & i < 0.6*size) && (j > 0.4*size && j < @.6*size) )
{
zt = 20.0;
space2[i*size + j] = zt;
return zt; // Initializing disturbance in the middle of the water.
}
space2[i*size + j] = zt;
return zt;
}
else if( time_unit == 1)
{
zt = spacel[i*size + j] + c*c/2.0*(dt/dd)*(dt/dd)*(spacel[ (i+1l)*size + j] +
spacel[(i-1)*size + j] + spacel[i*size + j+1] + spacel[i*size
+ j-1] -
4.0 * spacell[i*size + j]);
space2[i*size + j] = zt;
return zt;
}
else if( time_unit >= 2 )
{
zt = 2.0 * spacel[i*size + j] - space@[i*size + j] + c*c*(dt/dd)*(dt/dd) *
(

spacel[ (i+1l)*size + j] + spacel[(i-1)*size + j] +
spacel[i*size + j+1] +
spacel[i*size + j-1] -
4.0 * spacell[i*size + j]);
space2[i*size + j] = zt;
return zt;
}
return space2[i*size + j];

}

// NOTE: space@, spacel, and space2 are 2D arrays in device memory
__global__ void doSimulation_kernel( Wave2D* wave2d, float* space@, float* spacel, float*
space2, int size, int time_unit )

{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
inti=y, j=x;
int index = j + i*size;
wave2d->callAll( compute_zt, space@, spacel, space2, size, time_unit );
__syncthreads();
if( index < (size*size) )
{
space@[i*size + j] = spacel[i*size + j];
spacel[i*size + j] = space2[i*size + j];
}
__syncthreads();
}
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7.3  Wave simulation — CPU version (C++)

#include <stdio.h>
#include <stdlib.h>
#include "util.h"
#include <omp.h>

#tdefine DEFAULT_SIZE 100

class Wave2D
{
private:
int N;
float** zo; // previous - 1
float** z1; // previous
float** z2; // current
int nthreads;
int interval;
int iterations;
float exectime;
public:
Wave2D();
Wave2D( int _N, int _nthreads, int _interval, int _iterations );
~Wave2D();
int getSize(){ return N; }
int getNumThreads(){ return nthreads; }
void doSimulation();
double getExectime(){ return exectime; }
float compute_zt( float**, float**, float**, int i, int j, int time_unit );

}s

int main( int argc, char* argv[] )

{
if( argc < 5 ) return -1;
int size = atoi( argv[1] );
int iterations = atoi( argv[2] );
int interval = atoi( argv[3] );
int threads = atoi( argv[4] );

Wave2D wave2d( size, threads, interval, iterations );

// Perform simulation

wave2d.doSimulation();

printf( "CPU, size=%d, iterations=%d, threads=%d, exectime(ms)=%.2f\n",
wave2d.getSize(), iterations, wave2d.getNumThreads(), wave2d.getExectime()*1000 );

return 0;

}

Wave2D: :Wave2D()
{
// printf( "Hello Wave2D, " );
N = DEFAULT_SIZE;
z0 = new float*[ N ];
z1 = new float*[ N ];
z2 = new float*[ N ];
for( int i = 0; i < N; i++ )
{
z0[i] = new float[ N ];
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z1[i]
22[i]

new float[ N ];
new float[ N ];

}

nthreads
interval
iterations
exectime =

1;
1;
= 1;
0.0;
}
Wave2D: :Wave2D( int _N, int _nthreads, int _interval, int _iterations )
{

N = N;

z0 = new float*[ N ];

z1 = new float*[ N ];

z2 = new float*[ N ];

for( int i = 0; i < N; i++ )

{
z0[i] = new float[ N ];
z1[i] = new float[ N ];
z2[i] = new float[ N ];
}
nthreads = _nthreads < 1 ? 1 : _nthreads;

#ifdef OPENMP
nthreads = nthreads <= omp_get max_threads() ? nthreads : omp_get_max_threads();
omp_set_num_threads( nthreads );

#tendif
interval = _interval;
iterations = _iterations;
}
Wave2D: :~Wave2D()
{
for( int i = 0; i < N; i++ )
{
delete [] z0[i];
delete [] z1[i];
delete [] z2[i];
}

delete [] z0;
delete [] z1;
delete [] z2;

}

void Wave2D::doSimulation()

{

double start = cpu_time_omp();
inti=90, j=20;

for( int t = @; t < iterations; t++ )
{
#ifdef OPENMP
#pragma omp parallel for \
private( i, j )

// shared( z0, z1, z2 )
#tendif
for( i =0; i < N; i++ ) // Compute wave
{
for( j =0; j < N; j++ )
{

z2[i][7] compute_zt( z0, z1, z2, i, j, t );
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}
#ifdef OPENMP

#pragma omp barrier
#tendif

/*

#ifdef OPENMP
#pragma omp parallel for \
private( i, j )

// shared( z0, z1, z2 )
#tendif
*/
for( i = @; i < N; i++ ) // Copy
{
for( j =0; j < N; j++ )
{
z0[i][J] = z1[i][31;
z1[i][3] = z2[i][31;
}
}
}

exectime = cpu_time_omp() - start;

}

float Wave2D::compute_zt( float** space@, float** spacel, float** space2, int i, int j,
int time_unit )
{

float zt = 9.0;

float ¢ = 1.0, dt = 0.1, dd = 2.0;
if(i==0 ]| i==N-1]]j==0]]3==N1)
{
return zt;
}
if( time_unit == 0 )
{
if( (1 > 0.4*N && 1 < 0.6*N) && (j > ©.4*N & j < 0.6*N) )
{
zt = 20.0;
return zt; // Initializing disturbance in the middle of the water.
}
return zt;
}
else if( time_unit == 1)
{
zt = spacel[i][j] + c*c/2.0*(dt/dd)*(dt/dd)*(spacel[i+1][]] +
spacel[i-1][j] + spacel[i][j+1] + spacel[i][j-1] -
4.0 * spacel[i][7]);
return zt;
}
else if( time_unit >= 2 )
{

zt = 2.0 * spacel[i][j] - space@[i][j] + c*c*(dt/dd)*(dt/dd) * (
spacel[i+1][j] + spacel[i-1][j] + spacel[i][j+1] +
spacel[i][j-1] -
4.0 * spacel[i][7]);

return zt;
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}

return space2[i][j];
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7.4 Game of Life — GPU version (Bare CUDA)

#ifndef GAMEOFLIFE_H_
#define _GAMEOFLIFE_H_

// Constants

#tdefine DEFAULT_SIZE 10
#define DEFAULT_GENERATIONS 10
#define ON 'O’
#tdefine OFF ' '
#tdefine LEFT
#define RIGHT
#tdefine DOWN 2
#define UP 3
#tdefine UPLEFT
#tdefine UPRIGHT 5
#tdefine DOWNLEFT 6
#tdefine DOWNRIGHT 7

R o

IN

#include <time.h>
#include <fstream>
using namespace std;

class Cell
{
private:
char state; // ON or OFF
public:
Cell(){ state = OFF; }
void SetState( char _state ){ state = _state; }
char GetState(){ return state; }

3
struct Grid
{
int size;
Cell* cells;
3

// Life is based on Cellular Automata (CA). Macal and North mentioned that CA is the
simplest
// way to illustrate the basic ideas of agent-based modeling and simulation.

// Apply Rules (Macal and North, 2009)

// 1. The cell will be On in the next generation if exactly three of its eight
// neighboring cells are currently On

// 2. The cell will retain its current state if exactly two of its neighbors
// are On.

// 3. The cell will be Off otherwise

class GameOfLife
{
private:
int size;
int generations;
Grid space;
void Init( int _size, int _generations );
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// Mutators
void Set( Grid, int i, int j, int _index, char state );

// Accessors
char Get( Grid, int i, int j, int _index );

char Get( Grid grid, int i, int j, int _index, int direction );

int GetOnCells();
int GetOffCells();

public:
GameOfLife();
GameOfLife( int _size, int _generations );
~GameOfLife();
void Start();
void Print( Grid );
void WriteToFile( char*, float );

s
#tendif
// Implementation

GameOfLife: :GameOfLife()
{

}

GameOfLife::GameOfLife( int _size, int _generations )

{

Init( DEFAULT_SIZE, DEFAULT_GENERATIONS );

Init( _size, _generations );

}
GameOfLife: :~GameOfLife()
{
delete [] space.cells;
}

void GameOfLife::Init( int _size, int _generations )
{

// Initialize random seed

srand( time(NULL) );

size = _size;

generations = _generations;
space.size = size;

space.cells = new Cell[ size*size ];
for( int i = @0; i < size; i++ )

{
for( int j = 0; j < size; j++ )
{
int num = rand() % 2; // range @ to 1
space.cells[j+i*size].SetState( num == 1 ? ON
}
}

}

void GameOfLife::Start()
{

Print( space );
int interval = generations / 4;
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for( int gen = @ ; gen < generations; gen++ )

{

for( int i = @; i < size; i++ )

{
for( int j = 0; j < size; j++ )
{
int countOn = ©; // neigbhors who are On.
int index = j+i*size;
// Check neigbors: left, right up, down, upleft, upright,
downleft, downright
if( ON == Get( space, i, j, index, LEFT ) ) countOn++;
if( ON == Get( space, i, j, index, RIGHT ) ) countOn++;
if( ON == Get( space, i, j, index, UP ) ) countOn++;
if( ON == Get( space, i, j, index, DOWN ) ) countOn++;
if( ON == Get( space, i, j, index, UPLEFT ) ) countOn++;
if( ON == Get( space, i, j, index, UPRIGHT ) ) countOn++;
if( ON == Get( space, i, j, index, DOWNLEFT ) ) countOn++;
if( ON == Get( space, i, j, index, DOWNRIGHT ) ) countOn++;
// Apply Rules
// 1. The cell will be On in the next generation if exactly
three of its eight
// neighboring cells are currently On
if( countOn == 3 )
{
Set( space, i, j, j+i*size, ON );
}
// 2. The cell will retain its current state if exactly two of
its neighbors
// are On.
else if( countOn == 2 ) ; // Do nothing.
// 3. The cell will be Off otherwise
else
{
Set( space, i, j, j+i*size, OFF );
}
}
}
if( gen % interval == @ || gen == generations-1 )
{
printf( "Generation %d:\n", gen );
Print( space );
}

}
}

void GameOfLife::Set( Grid grid, int i, int j, int index, char state )

{
if( i <0 || i>= grid.size || j <0 || j >= grid.size ) return;
if( index >= (grid.size * grid.size) ) return;

grid.cells[index].SetState( state );
}

// Accessors
char GameOfLife::Get( Grid grid, int i, int j, int index )
{

if( i <0 || i>= grid.size || j < © || j >= grid.size ) return '\n';
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if( index >= (grid.size * grid.size) ) return '\n';

return grid.cells[index].GetState();

char GameOfLife::Get( Grid grid, int i, int j, int _index, int direction )

switch( direction )

case LEFT:

case RIGHT:

case UP:

case DOWN:

case UPLEFT: return
case UPRIGHT: return
case DOWNLEFT:

case DOWNRIGHT:

int GameOfLife::GetOnCells()

int onCells = 9;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )

if( space.cells[j+i*size].GetState() == ON ) onCells++;
return onCells;

int GameOfLife::GetOffCells()

int offCells = 0;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )

if( space.cells[j+i*size].GetState() == OFF ) offCells++;
return offCells;

return Get( grid, i, j-1, i*size + (j-1) );
return Get( grid, i, j+1, i*size + (j+1) );
return Get( grid, i-1, j, (i-1)*size + j );
return Get( grid, i+1, j, (i+l)*size + j );
Get( grid, i-1, j-1, (i-1)*size + (j-1) );
Get( grid, i-1, j+1, (i-1)*size + (j+1) );
return Get( grid, i+1, j-1, (i+l)*size + (j-1) );
return Get( grid, i+1, j+1, (i+l)*size + (j+1) );

void GameOfLife::Print( Grid grid )

}
{
{
}
}
{
}
{
}
// Display
{
{
}
}

if( size > 50 ) return;
printf( "On Cells: %d, Off Cells: %d\n", GetOnCells(), GetOffCells() );
for( int i = @0; i < size; i++ )

for( int j = 0; j < size; j++ )

{

printf( "%c ", grid.cells[j+i*size].GetState() );

}
printf( "\n" );

printf( "\n" );

void GameOfLife::WriteToFile( char* file, float runtime )

{

ofstream myfile;
myfile.open( file, ios::out | ios::app );
if( myfile.is_open() )

{

myfile << size << "\t" << generations << "\t" << runtime << endl;

myfile.close();
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}

else
printf( "Unable to open file\n" );
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7.5 Game of Life — GPU version (MASS-CUDA)

#include "gameoflife_masscuda.h"

__global__

void callAll kernel( Grid grid, int* d_functionId );

__device__

void compute_kernel( Grid grid, int tid, int i, int j, int stride );

void callAll( int _threads, int _threadspblock, Grid d_space, int* d_functionId );

// Implementation

GameOfLife: :GameOfLife()
{

}

GameOfLife::GameOfLife( int _size, int _generations, int _nthreads )

{

init( DEFAULT_SIZE, DEFAULT_GENERATIONS, 1 );

init( _size, _generations, _nthreads );

}
GameOfLife: :~GameOfLife()
{
delete [] space.cells;
}

void GameOfLife::init( int _size, int _generations, int _nthreads )
{

// Initialize random seed

srand( time(NULL) );

size = _size;

generations = _generations;
space.size = size;

space.cells = new Cell[ size*size ];
for( int i = @0; i < size; i++ )

{
for( int j = 0; j < size; j++ )
{
int num = rand() % 2; // range @ to 1
space.cells[j+i*size].state = num == 1 ? ON : OFF;
}
}

SetThreads( _nthreads );

void GameOfLife::Start()

{
Print( space );
int interval = generations / 4;
int* functionId = new int[1];
functionId[@] = COMPUTE;

// Allocate memory on the GPU

int* d_functionld;

Grid d_space;

d_space.size = space.size;

size t sizeofCells = size*size * sizeof( Cell );
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cudaMalloc( &d_space.cells, sizeofCells );
cudaMalloc( &d_functionId, sizeof(int) );
cudaMemcpy( d_functionId, functionId, sizeof(int), cudaMemcpyHostToDevice );

for( int gen = @ ; gen < generations; gen++ )
{
// Copy to GPU memory
cudaMemcpy ( d_space.cells, space.cells, sizeofCells,
cudaMemcpyHostToDevice );

// Perform computation on GPU
callAll( blockspergrid, threadsperblock, d_space, d_functionld );

// Copy results from GPU memory to main memory
cudaMemcpy( space.cells, d_space.cells, sizeofCells, cudaMemcpyDeviceToHost

)s
if( gen % interval == @ || gen == generations-1 )
{
printf( "Generation %d:\n", gen );
Print( space );
}
}
// Destroy allocated memory on the GPU
cudaFree( d_functionId );
cudaFree( d_space.cells );
// Destroy memory on CPU
delete [] functionId;
}
void GameOfLife::SetThreads( int _nthreads )
{
nthreads = _nthreads < 1 ? 1 : _nthreads;
blockspergrid = (nthreads + BLOCK_SIZE-1)/BLOCK_SIZE;
threadsperblock = BLOCK_SIZE;
}

// Accessors
int GameOfLife::GetOnCells()

{
int onCells = 9;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )
if( space.cells[j+i*size].state == ON ) onCells++;
return onCells;
}
int GameOfLife::GetOffCells()
{
int offCells = 0;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )
if( space.cells[j+i*size].state == OFF ) offCells++;
return offCells;
}
// Display
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void GameOfLife::Print( Grid grid )

{
if( size > 50 ) return;
printf( "On Cells: %d, Off Cells: %d\n", GetOnCells(), GetOffCells() );
for( int i = @0; i < size; i++ )
{
for( int j = 0; j < size; j++ )
{
printf( "%c ", grid.cells[j+i*size].state );
}
printf( "\n" );
}
printf( "\n" );
}
void GameOfLife::WriteToFile( char* file, float runtime )
{
ofstream myfile;
myfile.open( file, ios::out | ios::app );
if( myfile.is_open() )
{
myfile << size << "\t" << generations << "\t" << nthreads << "\t" <<
runtime
<< "\t" << "MASS-CUDA" << endl;
myfile.close();
}
else
printf( "Unable to open file\n" );
}
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7.6 Game of Life — CPU version (C++)

#ifndef GAMEOFLIFE_OMP_H_
#define GAMEOFLIFE_OMP_H_

// Constants

#tdefine DEFAULT_SIZE 10
#define DEFAULT_GENERATIONS 10
#define ON 'O’
#tdefine OFF ' '
#tdefine LEFT
#define RIGHT
#tdefine DOWN 2
#define UP 3
#tdefine UPLEFT
#tdefine UPRIGHT 5
#tdefine DOWNLEFT 6
#tdefine DOWNRIGHT 7

R o

IN

#include <omp.h>
#include <time.h>
#include <fstream>
using namespace std;

class Cell
{
private:
char state; // ON or OFF
public:
Cell(){ state = OFF; }
void SetState( char _state ){ state = _state; }
char GetState(){ return state; }

3
struct Grid
{
int size;
Cell* cells;
3

// Life is based on Cellular Automata (CA). Macal and North mentioned that CA is the
simplest
// way to illustrate the basic ideas of agent-based modeling and simulation.

// Apply Rules (Macal and North, 2009)

// 1. The cell will be On in the next generation if exactly three of its eight
// neighboring cells are currently On

// 2. The cell will retain its current state if exactly two of its neighbors
// are On.

// 3. The cell will be Off otherwise

class GameOfLife

{

private:
int nthreads;
int size;
int generations;
Grid space;
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void Init( int _size, int _generations, int _nthreads );

// Mutators
void Set( Grid, int i, int j, int _index, char state );

// Accessors

char Get( Grid, int i, int j, int _index );

char Get( Grid grid, int i, int j, int _index, int direction );
int GetOnCells();

int GetOffCells();

public:
GameOfLife();
GameOfLife( int _size, int _generations, int _nthreads );
~GameOfLife();
void Start();
void SetThreads( int nthreads );
int GetThreads(){ return nthreads; }
void Print( Grid );
void WriteToFile( char*, float );

s
#tendif
// Implementation

GameOfLife: :GameOfLife()
{

}

GameOfLife::GameOfLife( int _size, int _generations, int _nthreads )

{

Init( DEFAULT_SIZE, DEFAULT_GENERATIONS, 1 );

Init( _size, _generations, _nthreads );

}
GameOfLife: :~GameOfLife()
{
delete [] space.cells;
}

void GameOfLife::Init( int _size, int _generations, int _nthreads )
{

// Initialize random seed

srand( time(NULL) );

size = _size;

generations = _generations;
space.size = size;

space.cells = new Cell[ size*size ];
for( int i = @0; i < size; i++ )

{
for( int j = 0; j < size; j++ )
{
int num = rand() % 2; // range @ to 1
space.cells[j+i*size].SetState( num == 1 ? ON : OFF );
}
}

SetThreads( _nthreads );
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void GameOfLife::Start()
{
Print( space );
int interval = generations / 4;
for( int gen = @ ; gen < generations; gen++ )
{
inti=90, j=20;

#ifdef OPENMP
#pragma omp parallel for \
private( i, j )

#tendif
for( 1 =0; i < size; i++ )

{
for( j = 0; j < size; j++ )
{
int countOn = ©; // neigbhors who are On.
int index = j+i*size;
// Check neigbors: left, right up, down, upleft, upright,
downleft, downright
if( ON == Get( space, i, j, index, LEFT ) ) countOn++;
if( ON == Get( space, i, j, index, RIGHT ) ) countOn++;
if( ON == Get( space, i, j, index, UP ) ) countOn++;
if( ON == Get( space, i, j, index, DOWN ) ) countOn++;
if( ON == Get( space, i, j, index, UPLEFT ) ) countOn++;
if( ON == Get( space, i, j, index, UPRIGHT ) ) countOn++;
if( ON == Get( space, i, j, index, DOWNLEFT ) ) countOn++;
if( ON == Get( space, i, j, index, DOWNRIGHT ) ) countOn++;
// Apply Rules
// 1. The cell will be On in the next generation if exactly
three of its eight
// neighboring cells are currently On
if( countOn == 3 )
{
Set( space, i, j, j+i*size, ON );
}
// 2. The cell will retain its current state if exactly two of
its neighbors
// are On.
else if( countOn == 2 ) ; // Do nothing.
// 3. The cell will be Off otherwise
else
{
Set( space, i, j, j+i*size, OFF );
}
}
}
if( gen % interval == @ || gen == generations-1 )
{
printf( "Generation %d:\n", gen );
Print( space );
}

}
}

void GameOfLife::Set( Grid grid, int i, int j, int index, char state )

{
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if( i <o || i>= grid.size || j <0 || j >= grid.size ) return;

if( index >= (grid.size * grid.size) ) return;

grid.cells[index].SetState( state );

}
void GameOfLife::SetThreads( int _nthreads )

{

nthreads = _nthreads < 1 ? 1 : _nthreads;

#ifdef OPENMP
nthreads = nthreads <= omp_get _max_threads() ? nthreads : omp_get_max_threads();
omp_set_num_threads( nthreads );

#tendif

}

// Accessors

char GameOfLife::Get( Grid grid, int i, int j, int index )

return Get( grid, i+1, j-1, (i+l)*size + (j-1) );
return Get( grid, i+1, j+1, (i+l)*size + (j+1) );

{
if( i <0 || i>= grid.size || j <0 || j >= grid.size ) return '\n';
if( index >= (grid.size * grid.size) ) return '\n';
return grid.cells[index].GetState();
}
char GameOfLife::Get( Grid grid, int i, int j, int _index, int direction )
{
switch( direction )
{
case LEFT: return Get( grid, i, j-1, i*size + (j-1) );
case RIGHT: return Get( grid, i, j+1, i*size + (j+1) );
case UP: return Get( grid, i-1, j, (i-1)*size + j );
case DOWN: return Get( grid, i+1, j, (i+l)*size + j );
case UPLEFT: return Get( grid, i-1, j-1, (i-1)*size + (j-1) );
case UPRIGHT: return Get( grid, i-1, j+1, (i-1)*size + (j+1) );
case DOWNLEFT:
case DOWNRIGHT:
}
}
int GameOfLife::GetOnCells()
{
int onCells = 0;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )
if( space.cells[j+i*size].GetState() == ON ) onCells++;
return onCells;
}
int GameOfLife::GetOffCells()
{
int offCells = 9;
for( int i = @0; i < size; i++ )
for( int j = 0; j < size; j++ )
if( space.cells[j+i*size].GetState() == OFF ) offCells++;
return offCells;
}
// Display

void GameOfLife::Print( Grid grid )

{

if( size >

50 ) return;

printf( "On Cells: %d, Off Cells: %d\n", GetOnCells(), GetOffCells() );
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for( int i = @; i < size; i++ )

{ for( int j = 0; j < size; j++ )
t printf( "%c ", grid.cells[j+i*size].GetState() );
grintf( "\n" );
grintf( "\n" );
3oid GameOfLife::WriteToFile( char* file, float runtime )
{

ofstream myfile;

myfile.open( file, ios::out | ios::app );
if( myfile.is_open() )

{

myfile << size << "\t" << generations << "\t" << nthreads << "\t" <«
runtime << endl;

myfile.close();
}

else
printf( "Unable to open file\n" );
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