

Agent-Based Models Library Over Multiple GPUs: Term Report

Warren Liu

School of STEM, Computer Science & Software Engineering

University of Washington

CSS 595: Master’s Project, Autumn 2023

12/12/2023

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Kelvin Sung, Committee Member

Professor Clark Olson, Committee Member

WL Agent-Based Models Library Over Multiple GPUs: Term Report

1

TABLE OF CONTENTS

1 Introduction .. 2

2 Overview .. 2

3 Goals .. 3

4 Achievements This Quarter ... 3

4.1 Places .. 4

4.1.1 Update of Neighbor’s Array Based on Relative Index .. 4

4.1.2 ExchangeAll() .. 5

4.2 Agents ... 5

4.2.1 Spawn ... 6

4.2.2 Migration.. 9

4.2.3 Termination .. 10

5 Results .. 11

6 Next Quarter’s Plan.. 11

7 Summary .. 12

8 Appendix .. 12

8.1 Function Implementation .. 12

8.2 How to Run ... 15

References ... 16

WL Agent-Based Models Library Over Multiple GPUs: Term Report

2

1 Introduction

This term report summarizes the progress made on my capstone project during the Autumn 2023 quarter.

It marks the first quarter where I began implementing the MASS CUDA library. My work involved

familiarizing myself with the library's implementation, identifying issues within the single-GPU

framework, testing and providing solutions, refactoring the implementation, and building a fully

functional single-GPU version of the MASS CUDA library.

2 Overview

MASS is a parallel computing library for Multi-Agent Spatial Simulation. As implied by its name, the

foundational design principle of MASS revolves around the concept of multi-agents, each acting as an

individual simulation entity within a designated virtual space [1].

At the heart of the MASS library are two fundamental components: “Places” and “Agents” as shown in

Figure 1. “Places” refers to a matrix of elements distributed across multiple GPUs within a single machine,

where each element, known as a “Place”, is identifiable by matrix indices and capable of engaging in

information exchange with other places. In contrast, “Agents” represent a collection of execution instances.

These agents are not only able to inhabit a place but also possess the mobility to migrate across different

places, potentially replicating themselves in the process. Moreover, agents have the capability to interact

with both other agents and various places simultaneously [1]. In our current implementation of MASS

using CUDA, the library is operational on a single GPU.

Figure 1 MASS CUDA Architecture

WL Agent-Based Models Library Over Multiple GPUs: Term Report

3

My primary goal was to extend the MASS CUDA library's functionality from a single GPU to multiple

GPUs. The plan for this quarter was to analyze the existing code base, design a new architecture, and

begin the implementation phase. However, numerous challenges arose.

The first major challenge was the lack of documentation. The source code had few comments, and the

only developer guide, written in 2014, did not reflect the actual implementation. Consequently,

understanding the interaction of files and functions took considerably longer than anticipated.

Secondly, the existing source code differed from its intended design. Previous students' term reports and

theses, particularly this work on MASS CUDA [2], suggested functionalities that were absent in the actual

code. The real issue was that the MASS CUDA library was not fully operational on a single GPU,

particularly in terms of Agent functionalities, which were only partially working and bug-ridden.

As a result, my focus shifted from developing a multi-GPU version to first establishing a fully functional

single-GPU version, benchmarking it, identifying potential issues, and exploring performance

improvements. Despite these challenges, I view this experience as a valuable opportunity to deepen my

understanding of the MASS CUDA library, which will benefit future performance tuning and multi-GPU

development.

3 Goals

My goals for this quarter were divided into three main categories:

1. Become familiar with the code base and understand the library.

2. Refactor the code base for full functionality on a single GPU:

a. Refactor Place-related code for consistent function naming across different MASS library

implementations and to support new functionalities.

b. Implement Agent-related code, including termination, migration, and spawning.

c. Address any issues that arise during the implementation process.

3. Analyze potential issues and prepare for implementing the multi-GPU version:

a. Examine code related to GPU usage.

b. Identify code that hinders the library's operation on multiple GPUs.

c. Seek potential performance improvements.

4 Achievements This Quarter

Despite minor issues, there were several major achievements:

WL Agent-Based Models Library Over Multiple GPUs: Term Report

4

4.1 Places

The MASS library is characterized by two essential functions within its Places component:

Places::callAll() and Places::exchangeAll(). These functions are integral to the library's operation,

offering parallel processing capabilities that significantly enhance simulation efficiency.

The Places::callAll() function enables users to execute specific functions across all Places in parallel. By

passing a user-defined function and optional arguments to Places::callAll(), each Place executes this

function concurrently.

In contrast, the Places::exchangeAll() function is designed for updating neighbor information of Places in

a parallel manner. Neighbor information is vital in the MASS library, facilitating information exchange

between Places and enabling Agents to migrate to neighboring Places.

4.1.1 Update of Neighbor’s Array Based on Relative Index

In MASS CUDA, Places::ExchangeAll() enables users to update neighbors' information, specifically, to

define neighboring Places. Users input an integer vector to specify the relative index of neighbors. For

instance, in a row-major index system, [-1, 0] indicates a relative index "top", and [0, 1] indicates "right",

as illustrated in Figure 2 on the left.

Figure 2 Relative Index in Row-major (left) and Column-major (right)

However, upon implementing test cases and reviewing the source code of existing tests and applications

built using the MASS CUDA library, I discovered that the library defaults to using column-major indexing.

This means [-1, 0] translates to a relative index of "left" and [0, 1] to "bottom", as shown in Figure 2 on

the right. Consequently, some tests and applications input column-major indices for

Places::ExchangeAll(). Developers in later projects created their own functions to convert "relative index

to real offset" before passing it to Places::ExchangeAll().

To address this, I implemented an override of the MASS::createPlaces() function, which includes an

additional parameter for specifying the indexing major. When users specify this major, the Places object

and subsequent relative index to offset translations use the specified major. If the major is not specified,

column-major is used by default. This override not only preserves the functionality of existing applications

using the MASS CUDA library but also provides future users with more development flexibility.

The modified function signatures are as follows:

template <typename PlaceType, typename PlaceStateType>

 static Places *createPlaces(int handle, void *argument, int argSize,

 int dimensions, int size[], int majorType);

WL Agent-Based Models Library Over Multiple GPUs: Term Report

5

template <typename PlaceType, typename PlaceStateType>

 static Places *createPlaces(int handle, void *argument, int argSize, dimensions, int size[]);

4.1.2 ExchangeAll()

As previously mentioned, the Places::ExchangeAll() function allows users to update the neighbor

information of Places. Originally, this function was designed to accept relative indices in integer vector

format. However, some applications prefer using the real offset of Places instead of relative indices. In

earlier solutions, Brian Luger implemented the Places::updateNeighborhoodWithLocalOffsets() function

to handle offsets [3]. This, however, resulted in inconsistencies in function naming across all MASS

libraries and confusion regarding the usage of different functions. To resolve this, I integrated the

functionalities of Places::updateNeighborhoodWithLocalOffsets() into two new overrides of the

Places::ExchangeAll() function. This approach not only provides users with more options but also

maintains consistency in function naming:

void exchangeAllPlaces(int placeHandle, std::vector<int*> *destinations);

void exchangeAllPlaces(int handle, std::vector<int*> *destinations, int functionId,

 void *argument, int argSize);

void exchangeAllPlaces(int handle, int nNeighbors);

void exchangeAllPlaces(int handle, int nNeighbors, int functionId, void *argument, int argSize);

4.2 Agents

In the MASS library, the Agents component is characterized by two essential functions: Agents::callAll()

and Agents::manageAll(). These functions are integral in enabling parallel execution and efficient

management of Agents within the simulation.

The Agents::callAll() function operates similarly to Places::callAll(), offering users the capability to pass

functions and arguments that are executed by all Agents concurrently. This parallel execution is crucial

for implementing uniform operations across the entire set of Agents swiftly and efficiently.

Additionally, each Agent in the MASS library comes equipped with three primary functions: migrate,

spawn, and kill. The Agent::migrate() function allows an Agent to move from its current Place to another,

adding dynamic interactions within the virtual environment. The Agent::spawn() function lets an Agent

create offspring either at its current location or at a different Place, contributing to the complexity of the

simulation. The Agent::kill() function serves to terminate an Agent, thereby freeing up space for new

Agents and excluding the terminated Agents from future parallel operations.

To conduct batch operations like migration, spawning, or termination of Agents effectively, these

functions can be utilized in conjunction with Agents::callAll(). Following the use of any of these functions,

it is imperative to use Agents::manageAll(). This function commands the MASS library to execute the

actual operations as per the given instructions. The detailed functionality and application of

Agents::manageAll() is further elaborated in Section 4.2.2 and 4.2.3.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

6

4.2.1 Spawn

When initializing Agents on the GPU, an array of Agent objects is allocated to hold the specified number

of Agents. Throughout the program, users may terminate or spawn new Agents. In the existing

implementation, we track the number of alive Agents. When a new Agent is spawned, the count of alive

Agents increases, and vice versa. The Agent array is then updated based on this count.

An example of this implementation is depicted in Figure 3. Initially, the Agents array is populated with 5

alive Agents and a maximum capacity of 10. When Agent 2 is terminated, reducing the count of alive

Agents to 4, the next new Agent should be placed at index 4. However, an alive Agent already occupies

this index, revealing a significant bug.

Figure 3 Existing Algorithm of Agent Spawn

After discussing this issue with Dr. Fukuda, he suggested the original design for managing the Agents

array, which involved sorting the array using CUDPP’s radix sort to position alive Agents at the beginning

and dead Agents at the end (as shown in Figure 4), while simultaneously counting the number of alive

Agents [4].

Figure 4 Original Proposed Algorithm of Agent Spawn

However, the implementation of this sorting algorithm in the existing architecture of the MASS CUDA

library led to more problems than solutions. The MASS library primarily consists of Places and Agents

arrays. Places are arrays of Place objects in GPU memory holding data, and Agents are arrays of Agent

objects dynamically allocated in GPU memory, each assigned to different Place objects as real execution

instances.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

7

In the MASS CUDA library, unlike other MASS implementations, four arrays are used to hold Places and

Agents (Figure 5). The Places array stores Place objects, which uniquely focus on housing functions rather

than containing data such as indices or neighborhood information. This data is instead held in the

PlaceState array, where each index aligns with a Place object in the Places array, ensuring that all relevant

data is kept in a corresponding and orderly manner. Similarly, the Agents array consists of Agent objects

that encapsulate the necessary functions for the agents' actions within the simulation. Complementing this,

the AgentState array holds all the data for each Agent object, effectively separating the agents' functional

aspects from their state data. To ensure cohesion and efficient access between these functional and state

aspects, each Place is linked to its PlaceState, and each Agent to its AgentState, through pointers.

Figure 5 Place and Agent object in MASS CUDA Library

Let's consider an example where we assign Agent 1, 2, and 3 to Place 1, 2, and 3, respectively. In this

scenario, each Agent pointer in the PlaceState object points to the corresponding Agent object, and each

Place pointer in the AgentState object points to the corresponding Place object. This forms a link between

them, as illustrated in Figure 6. For simplicity, the PlaceState object is omitted in the figure.

Figure 6 Linked Place and Agent Object

Now, if we decide to terminate Agent 2, as per the previously explained algorithm, we need to sort the

Agent array to move Agent 2 to the end. As a result, the order in the Agents array would be Agent 1 (alive),

Agent 3 (alive), and Agent 2 (dead). It's important to note that all data of an Agent are stored in the

AgentState object, so the actual sorting happens in the AgentState array, not the Agents array. However,

since pointers reference addresses and not the objects themselves, the Agent still points to its original

index in the AgentState array. Consequently, if we search for an Agent from a Place object, the results

WL Agent-Based Models Library Over Multiple GPUs: Term Report

8

may not align with expectations, as shown in Figure 7. The PlaceState object is again omitted for

simplicity.

Figure 7 Sort Linked Place and Agent Object

My initial solution was to sort both the Agents and AgentState arrays. However, this did not resolve the

issue of Place objects not pointing to the correct Agents. The ultimate solution seemed to involve sorting

all arrays, including Place, PlaceState, Agent, and AgentState, which would have necessitated a complete

library refactor.

Another solution considered was to sort the Agents array alongside the AgentState array, excluding the

Place and PlaceState arrays. After sorting, we would then “re-link” Places to the correct Agents. This

algorithm, however, required each Place object to loop through the entire Agent array, resulting in an O(n2)

algorithm.

I then devised a new algorithm for obtaining available indexes in the Agents array. As shown in Figure 8,

we created an integer array, the same length as the Agents array, initialized with -1s. Agents report their

availability to this array. We then remove all -1s, leaving only available indexes.

Figure 8 New Algorithm of Agent Spawn

WL Agent-Based Models Library Over Multiple GPUs: Term Report

9

This method allows for the direct placement of new Agents in the available indexes. The reporting step is

executed as a CUDA kernel function, rendering it an O(1) operation. Additionally, the CUDA Thrust

Library [5], which provides a well-developed deduction function using CUDA, is employed for the

deduction process, also an O(1) operation. Although this solution may not be optimal, it is more effective

than the originally proposed one.

4.2.2 Migration

When a user intends to migrate an Agent from one Place to another, the MASS CUDA library executes a

series of operations as follows:

1. In the Agent::migrate():

• The Agent is added to the destination Place’s potentialAgents array. This action signifies the

Agent's intention to migrate to that Place.

2. In the Dispatcher::manageAll() -> Dispatcher:: migrateAgents():

• Since there is a maximum number of Agents that can reside in a Place, conflicts must be resolved

first. For example, if Agents 1, 2, and 3 all wish to migrate to Place 1, but Place 1 can only

accommodate two Agents, one of the Agents will not be migrated and will remain at its original

Place. The current algorithm selects the Agent with the lowest N index for migration, where N

represents the maximum number of Agents a Place can accommodate.

• After resolving these conflicts, eligible Agents are removed from their source Place and added to

their destination Place.

During the implementation, I identified a significant bug in the Agent::migrate() function. The existing

implementation involved adding an Agent to the Place’s local potentialNextAgents array, which stored

Agents expressing interest in migrating to that Place. This process involved iterating through the

potentialNextAgents array and placing the Agent in the first found empty location.

__device__ void Place::addMigratingAgent(Agent* agent, int relativeIdx) {

 for (int i = 0; i < N_DESTINATIONS; i++) {

 if (state->potentialNextAgents[i] == NULL) {

 state->potentialNextAgents[i] = agent;

 break;

 }

 }

}

This function performed adequately when executed sequentially. However, it's crucial to remember that

we were implementing the library using CUDA, which meant this function would be executed in parallel

by multiple Agents attempting to migrate to the same Place simultaneously. This parallel execution posed

a risk of a race condition, where multiple Agents could identify the same empty location in the array at

WL Agent-Based Models Library Over Multiple GPUs: Term Report

10

the same time.

To mitigate this race condition, I introduced an additional local variable to the Place object, named

numPotentialNextAgents. This variable tracks the number of Agents added to the potentialNextAgents

array and serves as the index for adding the next Agent. By employing the atomicAdd() function provided

by CUDA, this variable is made thread-safe, ensuring that only one Agent can modify it at a time. The

updated code is as follows:

__device__ void Place::addMigratingAgent(Agent* agent, int relativeIdx) {

 int index = atomicAdd(state->numPotentialNextAgents, 1);

 state->potentialNextAgents[index] = agent;

}

4.2.3 Termination

In the MASS CUDA implementation, Agents possess three core functions: termination, migration, and

spawn. To manage the execution of these functions on the GPU (also known as kernel functions), we have

introduced a class named “Dispatcher.” This class is pivotal in leveraging the GPU's capabilities to

perform calculations in parallel, thereby enhancing performance.

When users employ Agent functions for different purposes, these functions cannot be executed

immediately. This is because it is necessary for all Agents to receive their orders in a single step.

Consequently, we set what can be termed as “pre-operation” attributes for each Agent. The Dispatcher

class then takes over, executing these operations in parallel.

For instance, if there is a need to spawn children for some Agents, the first step involves using the

Agents::callAll() function. This function sets the number of new children and the destination Place

information for each Agent intended to spawn children. Following this, the Agents::manageAll() function

is called to perform the actual spawn operation. Within this function, the specified number of new children

are spawned at the destination Place. Similarly, if there is a requirement to migrate Agents to different

Places, the Agents::callAll() function is once again utilized to set the destination Place information for

each Agent. This is followed by invoking the Agents::manageAll() function, which facilitates the actual

movement of Agents in parallel. Agents::manageAll() invokes Dispatcher functions directly.

However, the process of termination significantly differs from migration and spawn. In the case of

termination, only a single operation step is involved: setting the status of an Agent to “False” to signify

its termination. This simplicity means that no further actions are required post this setting. Therefore, the

Dispatcher::terminateAgents() function is intentionally left blank. This approach is purposeful and aligns

with the streamlined nature of the termination process.

WL Agent-Based Models Library Over Multiple GPUs: Term Report

11

Figure 9 Relationship Between Agents and Dispatcher Classes

5 Results

All the required functions of MASS, Places, and Agents have been successfully implemented and have

passed various tests. However, we currently lack new applications built using the updated MASS CUDA

library. I anticipate that additional potential issues might be identified when students commence

benchmarking of the library. To date, each function has undergone thorough testing, and all tests have

been successfully passed.

6 Next Quarter’s Plan

Despite NVIDIA’s official documentation recommending performance tuning towards the end of the

implementation phase to avoid repetitive work (owing to potential reversion of code changes due to

performance issues), several areas are identified where performance can be significantly enhanced. These

enhancements include using local memory instead of global memory in kernel functions, removing

redundant code that allocates unnecessary memory (leftover from previous implementation changes), and

optimizing data padding on the GPU for accelerated processing. My immediate focus, before delving into

multi-GPU implementation, will be on these performance tuning and benchmarking tasks.

Furthermore, the documentation for the MASS CUDA library, last updated in 2014, does not accurately

WL Agent-Based Models Library Over Multiple GPUs: Term Report

12

reflect our current implementation. I plan to update this documentation concurrently with ongoing library

development.

Additionally, now that the single GPU version is operational, I intend to proceed with the development of

the multi-GPU version. I have identified several areas to begin this work, such as addressing parts of the

code that currently prevent the library from running on multiple GPUs. If new students join to benchmark

the single GPU version of the MASS CUDA library, I will also engage in debugging this version.

Moreover, all functions in the MASS CUDA library are currently defined as MASS_FUNCTION, which

translates to __device__ __host__ functions, indicating their capability to execute on both the device and

the host. However, most of these functions are required only on the device. Thus, it’s essential to revise

the definition of these functions. Although this change might not directly impact function performance, it

will clarify the function's usage for users and developers. Furthermore, specifying the correct and

necessary execution location for each function will aid in optimizing memory space utilization within our

library.

7 Summary

Although I am currently behind the initially planned schedule due to unforeseen challenges in

implementation and documentation, this project has afforded me the opportunity to develop the MASS

CUDA library from the ground up. This approach has been instrumental in deepening my understanding

of the library's functionalities. With this invaluable experience, I am confident in my ability to implement

the multi-GPU version more efficiently and with fewer potential bugs. Consequently, I am optimistic

about catching up with the schedule in the near future. Reflecting on the timeline outlined in my proposal,

I am confident that I can complete the forthcoming tasks on time, given my current proficiency with the

MASS CUDA library.

8 Appendix

8.1 Function Implementation

Below are detailed implementations of key functions discussed in the report.

Dispatcher::spawnAgents()

Description: This function handles the spawning of new agents. It calculates available indexes and then

uses these indexes to spawn agents efficiently.

Linked Section: Section 4.2.1

Implementation:

void Dispatcher::spawnAgents(int handle) {
 Agent **a_ptrs = deviceInfo->getDevAgents(handle);
 dim3* dims = deviceInfo->getAgentsDims(handle);
 int maxAgents = deviceInfo->getMaxAgents(handle);

WL Agent-Based Models Library Over Multiple GPUs: Term Report

13

 // Find the available indexes of the agents array to boost the performance of the
spawnAgentsKernel
 int* availableIndexesArray = new int[maxAgents];
 size_t size_availableIndexesArray = sizeof(int) * maxAgents;
 cudaMalloc(&availableIndexesArray, size_availableIndexesArray);
 cudaMemset(availableIndexesArray, -1, size_availableIndexesArray);
 countAvailableIndexKernel<<<dims[0], dims[1]>>>(a_ptrs, maxAgents, availableIndexesArray);
 CHECK();

 // Reduce the availableIndexesArray to get the number of available indexes
 thrust::device_ptr<int> dev_availableIndexPtr(availableIndexesArray);
 thrust::device_ptr<int> new_end;
 new_end = thrust::remove(dev_availableIndexPtr, dev_availableIndexPtr + maxAgents, -1);
 int nAvailableIndexes = new_end - dev_availableIndexPtr;
 logger::debug("Number of available indexes: %d", nAvailableIndexes);
 logger::debug("Number of max agents: %d", maxAgents);

 // Pass this information to spawnAgentsKernel to boost the performance
 int* nAliveAgents = new int (maxAgents - nAvailableIndexes);
 int* startIdx;
 int* h_startIdx = new int(0);
 CATCH(cudaMalloc(&startIdx, sizeof(int)));
 CATCH(cudaMemcpy(startIdx, h_startIdx, sizeof(int), H2D));
 int* availableIndexesArrayReduced = new int[nAvailableIndexes];
 cudaMalloc(&availableIndexesArrayReduced, sizeof(int) * nAvailableIndexes);
 cudaMemcpy(availableIndexesArrayReduced, availableIndexesArray, sizeof(int) * nAvailableIndexes,
D2D);
 CHECK();

 // Launch the spawnAgentsKernel
 spawnAgentsKernel<<<dims[0], dims[1]>>>(
 a_ptrs, maxAgents, availableIndexesArrayReduced, nAvailableIndexes, startIdx
);
 CHECK();

 // Copy back the startIdx to calculate the new number of agents
 CATCH(cudaMemcpy(h_startIdx, startIdx, sizeof(int), D2H));
 if (*h_startIdx > nAvailableIndexes) {
 throw MassException("Trying to spawn more agents than the maximun set for the system");
 }

 deviceInfo->devAgentsMap[handle].nAgents += *h_startIdx;
 // deviceInfo->devAgentsMap[handle].nextIdx += *h_startIdx;

 // Clean up
 delete nAliveAgents;
 delete h_startIdx;
 CATCH(cudaFree(availableIndexesArray));
 CATCH(cudaFree(availableIndexesArrayReduced));
 CATCH(cudaFree(startIdx));
}

__global__ void countAvailableIndexKernel(Agent **ptrs, int maxAgents, int* availableIndexes) {
 int idx = getGlobalIdx_1D_1D();

 if(idx < maxAgents && !ptrs[idx]->isAlive()) {
 availableIndexes[idx] = idx;
 }

WL Agent-Based Models Library Over Multiple GPUs: Term Report

14

}

__global__ void spawnAgentsKernel(
 Agent **ptrs, int maxAgents, int* availableIndexesArray, int numAvailableIndexes, int* startIdx)
{

int idx = getGlobalIdx_1D_1D();

 if (idx < maxAgents) {
 int numChildren = ptrs[idx]->state->nChildren;
 // If the agent is alive and has children to spawn:
 if ((ptrs[idx]->isAlive()) && (numChildren > 0)) {
 // Find a spot in Agents array:
 int idxStart = atomicAdd(startIdx, numChildren);
 if (idxStart+numChildren > numAvailableIndexes) {
 return;
 }

 for (int i=0; i< numChildren; i++) {
 int childIdx = availableIndexesArray[idxStart + i];
 // Instantiate with proper index
 ptrs[childIdx]->setAlive();
 // Link to a place
 ptrs[childIdx] -> setPlace(ptrs[idx]->state->childPlace);
 ptrs[idx]->state->childPlace -> addAgent(ptrs[childIdx]);
 }

 // restore Agent spawning data:
 ptrs[idx]->state->nChildren = 0;
 ptrs[idx]->state->childPlace = NULL;
 }
 }
}

Place::resolveMigrationConflicts()

Description: This function resolves migration conflicts by selecting agents with the lowest index when

multiple agents attempt to migrate to the same place.

Linked Section: Section 4.2.2

Implementation:

MASS_FUNCTION void Place::resolveMigrationConflicts() {
// The real algorithm is simply sort the potentialNextAgents array and

 // select the first N agents
 // @note by Warren: currently using the simply insertion sort
 // which is efficient for small array
 // if we design to allow large number of agents to reside in a place
 // we should use more efficient sorting algorithm
 for (int i = 1; i < N_DESTINATIONS; i ++) {
 Agent* key = state->potentialNextAgents[i];
 int j = i - 1;

 while (j >= 0 && (state->potentialNextAgents[j] == NULL ||
 (key != NULL && state->potentialNextAgents[j]->getIndex() > key->getIndex()))) {
 state->potentialNextAgents[j + 1] = state->potentialNextAgents[j];
 j = j - 1;
 }

WL Agent-Based Models Library Over Multiple GPUs: Term Report

15

 state->potentialNextAgents[j + 1] = key;
 }

 if (MAX_AGENTS == 1) {
 // If only 1 agent can reside in a place
 // we select the agent with the lowest index
 if (state->potentialNextAgents[0] != NULL) {
 addAgent(state->potentialNextAgents[0]);
 }
 }
 else {
 // If more than 1 Agent can reside in a place, we select the fist N Agents
 // with the lower index
 for (int i = 0; i < MAX_AGENTS; i++) {
 if (state->potentialNextAgents[i] != NULL) {
 addAgent(state->potentialNextAgents[i]);
 }
 else{
 break; // Early termination
 }
 }

}

 // Clean potentialNextAgents array
 for (int i = 0; i < N_DESTINATIONS; i ++) {
 state->potentialNextAgents[i] = NULL;
 }
 // Reset numPotentialNextAgents
 *state->numPotentialNextAgents = 0;
}

8.2 How to Run

The code for the MASS CUDA library is available at Bitbucket. Detailed instructions on how to set up

and run the code can be found in the README file in the repository. This includes information on

installation, dependencies, and execution of the library.

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/main/

WL Agent-Based Models Library Over Multiple GPUs: Term Report

16

References

[1] N. Hart, "MASS CUDA: Parallel-Computing Library for Multi-Agent Spatial," 2014. [Online].

Available: https://depts.washington.edu/dslab/MASS/docs/MassCuda.pdf. [Accessed 11 December

2023].

[2] B. Luger, "Parallelization of Agent-based Models over," 16 March 2023. [Online]. Available:

https://depts.washington.edu/dslab/MASS/reports/BrianLuger_wi23.pdf. [Accessed 9 December

2023].

[3] B. Luger, "Dispatcher.cu," [Online]. Available:

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/v0.6.0/src/Dispatcher.cu#lines-

291.

[4] E. S. W. K. H. A. Munehiro Fukuda, "CDS&E:small:Agent-Based Parallelization of Micro-

Simulation and Spatial Data Analysis".

[5] NVIDIA, "Thurst 12.3 documentation," NVIDIA, 10 October 2023. [Online]. Available:

https://docs.nvidia.com/cuda/thrust/index.html#sorting. [Accessed 10 December 2023].

