
 

 
 
 

© Copyright 2024 
 

Warren Liu 
  



 

 

Programmability and Performance Enhancement of MASS CUDA 
 
 
 

Warren Liu 
 
 
 
 

A capstone report 
 

submitted in partial fulfillment of the 
 

requirements for the degree of 
 
 
 

Master of Science in Computer Science & Software Engineering 
 
 
 
 

University of Washington 
 

2024 
 
 
 
 

Reading Committee: 
 

Professor Munehiro Fukuda, Chair 
 

Professor Kelvin Sung 
 

Professor Clark Olson 
 
 
 
 
 

Program Authorized to Offer Degree:  
 

Computer Science & Software Engineering 
  



 

 
University of Washington 

 
 
 

Abstract 
 
 
 
 

 Programmability and Performance Enhancement of MASS CUDA 
 
 
 

Warren Liu 
 
 
 

Chair of the Supervisory Committee: 
Professor Munehiro Fukuda 

School of STEM Computing and Software Systems Division 

 

 

Agent-based modeling (ABM) has proven valuable across various fields for capturing the 

intricacies and heterogeneity of real-world systems. However, as ABM simulations become more 

sophisticated and larger in scale, the need for efficient parallelization arises. Graphics Processing 

Units (GPUs) have emerged as a compelling alternative for parallelizing ABM simulations, 

offering high computational power and parallelism. In this project, we aimed to enhance the 

MASS CUDA library, a GPU-accelerated ABM framework, by improving its programmability 

and performance. We implemented essential agent functions, redesigned data structures to enable 

coalesced memory access, and introduced a dynamic attribute setting mechanism. These 

enhancements led to significant improvements in programmability and performance, as 

demonstrated through benchmarking against a previous version of MASS CUDA and a 



 

competing library, FLAME GPU 2, using four diverse applications. The evaluation showcased 

MASS CUDA’s effectiveness in terms of programmability, performance, and scalability. The 

improved programmability and performance of MASS CUDA enable users to focus on the 

modeling aspects of their simulations while harnessing the computational capabilities of GPUs. 

By offering a scalable and accessible framework for GPU-accelerated ABM, MASS CUDA has 

the potential to accelerate scientific discovery and decision-making processes in numerous fields. 
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Chapter 1. INTRODUCTION  

Agent-based Modeling (ABM) is an approach to simulating complex systems by defining the 

behavior and interactions of individual agents within a shared environment. Agents are 

autonomous entities that operate based on their own set of rules and characteristics [1]. As these 

agents interact with each other and their surroundings, complex behaviors and system-level 

patterns emerge. ABM has proven valuable across a wide range of fields, from social sciences to 

biology, due to its ability to capture the intricacies and heterogeneity of real-world systems. 

As ABM simulations become more sophisticated and larger in scale, the need for 

parallelization arises. By distributing the computational workload across multiple computing 

nodes, parallelization enables faster execution times and the ability to handle more complex 

simulations. Researchers can explore a broader range of scenarios, run multiple simulations 

concurrently, and obtain results more quickly by leveraging parallel computing techniques. 

Parallelization in ABM has relied on CPU cluster-based approaches, where the simulation is 

spread across multiple interconnected computers or nodes [2] [3]. Each node typically contains 

one or more CPUs that work together to process the simulation. While this approach can yield 

significant performance improvements, it also presents challenges as the number of nodes 

increases. The overhead associated with distributing data and managing communication between 

nodes can limit the scalability and efficiency of the simulation. 

In contrast, Graphics Processing Units (GPUs) have emerged as a compelling alternative for 

parallelizing ABM simulations [4]. GPUs are specialized processors designed for highly parallel 

workloads, boasting a large number of cores that can execute many threads simultaneously. While 

an individual GPU core may be slower than a modern CPU core, the cumulative processing power 
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of a GPU can vastly outpace that of a modestly-sized CPU cluster. By harnessing the parallelism 

of GPUs, ABM simulations can achieve significant performance gains without the need for 

extensive hardware infrastructure.  

However, the choice between GPU and CPU-based solutions is not always straightforward 

and depends on the nature of the ABM tasks. Tasks with high parallelism and low inter-thread 

communication may benefit more from a GPU’s parallelism, such as large-scale simulations where 

agents operate independently, while others that require complex inter-agent interaction or frequent 

synchronization might still require the scalability and flexibility of a distributed CPU-based system 

[4]. It’s important to note that CPU clusters can scale by adding more computing nodes to acquire 

more memory space and computational resources. In contrast, current GPU solutions typically 

support only a single GPU card with limited memory space (usually 16 or 32 GB), making them 

more suitable for relatively small simulations that prioritize computational speed over size. As a 

result, GPU-based solutions are often chosen when the primary concern is the speed of 

computation rather than the scale of the simulation. 

MASS CUDA is an agent-based modeling framework that leverages the power of GPUs to 

enable massive parallelization while preserving the core principles and ease of use of ABM [5]. 

Built upon the foundation of the Multi-Agent Spatial Simulation (MASS) library, MASS CUDA 

offers a flexible and intuitive platform for developing and executing ABM simulations on GPUs. 

We aimed to maintain a consistent API between the distributed CPU and GPU versions of the 

library. However, due to the inherent differences in data structures and memory management 

between CPUs and GPUs, programs need to be modified before they can be moved from one 

version to another, as the usage becomes completely different. 
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Our work on the enhancement of MASS CUDA focuses on several key areas: implementing 

agent functions to ensure that the framework supports the core concepts of ABM, such as agent 

termination, spawning, and migration; optimizing algorithms and data structures to fully utilize 

the parallel processing capabilities of GPUs; and creating comprehensive documentation to 

facilitate the adoption and usability of MASS CUDA.  

Chapter 2. BACKGROUND 

In this section, we introduce the MASS library, discuss its basic components, functionalities, and 

how it is parallelized on CPU clusters. We then explore the transition to the GPU platform with 

the development of MASS CUDA, its current status, and the challenges faced during this process. 

Finally, we highlight the problems in the previous implementation that are addressed in the project. 

2.1 MASS CUDA 

MASS is a specialized ABM framework on the CPU platform for developing agent-based models 

in parallel and distributed computing environments [6]. The MASS library is structured around 

two fundamental concepts: Place and Agent. Place serves as the spatial container or environment 

where agents operate, holding relevant data and defining spatial relationships. Agents are the 

dynamic, computational units that contain user-defined logic and can move from one place to 

another, executing computations that influence their own state and the state of the places they 

interact with. 

MASS introduces the Agents and Places classes to manage agent and place objects, offering 

a high-level API for user interaction and manipulation of the agent-based model. These classes 

provide essential functions such as callAll(), which executes a passed-in function on all place or 

agent objects, and exchangeAll(), which facilitates information exchange among place objects. 
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Agents also have a manageAll() function to manage the behavior of all agent objects, including 

migration, spawning, and termination. 

To enhance performance, MASS can be run on a cluster of multiple computing nodes, 

parallelizing the computation by distributing the workload across nodes. In this setup, place objects 

are stored in shared memory accessible by all nodes, while agent objects reside in each node’s 

local memory. 

MASS CUDA extends the library to leverage the computational power of GPUs, particularly 

NVIDIA GPUs with CUDA technology. By allocating place and agent objects on the device 

memory (GPU memory) and assigning each thread to handle one or more objects’ computation, 

MASS CUDA achieves massive parallelization compared to CPU clusters.  

2.2 CURRENT STATUS & CHALLENGES 

At the start of this project, the Places-related functions in MASS CUDA were fully functional. 

However, the Agents-related functions, while structurally in place, had incomplete or non-

functional implementations due to algorithmic bugs in agent migration, spawning, and termination. 

Additionally, the existing algorithm and data structure, along with previous hardware 

restrictions, limited the scalability of MASS CUDA to a single GPU. The ultimate goal was to 

extend the library to run on multiple GPU cards for even greater parallelization. 

2.3 PROBLEMS IN THE PREVIOUS WORK 

The primary issues in the previous work included the incomplete implementation of agent-related 

functions and performance problems caused by uncoalesced memory access. Uncoalesced memory 

access occurs when threads in a warp (a group of threads executed simultaneously on a GPU) 

access non-contiguous memory locations, leading to suboptimal memory bandwidth utilization 
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and increased memory latency [7]. Profiling the complete implementation revealed that MASS 

CUDA was significantly slower than its main competitor, FLAME GPU 2. Moreover, the lack of 

up-to-date and comprehensive documentation made it challenging to understand, develop, and use 

the library effectively. 

By tackling these problems, we aim to enhance the functionality, performance, and usability 

of MASS CUDA, making it a more powerful and accessible tool for agent-based modeling on 

GPU platforms.  

Chapter 3. RELATED WORKS 

In this section, we explore various ABM platforms and libraries, focusing on their key features, 

performance, and scalability. We discuss three widely-used CPU-based ABM platforms: MASON, 

Repast, and NetLogo, and evaluate their strengths and weaknesses based on a comparative study. 

Additionally, we examine the growing trend of utilizing graphics processing units (GPUs) to 

accelerate agent-based simulations, introducing three notable GPU-based ABM libraries: FLAME 

GPU, FLAME GPU 2, and TurtleKit, and assessing their unique features and scalability 

limitations. Finally, we introduce MASS CUDA, our novel approach to GPU-based ABM that 

aims to address the limitations of existing libraries, highlighting its key features, intuitive 

programming model, and the trade-offs between performance and ease of use. 

3.1 CPU BASED ABMS 

MASON (Multi-Agent Simulator of Neighborhoods or Networks) is a Java-based discrete-event 

multi-agent simulation library core [8]. It is designed to be a fast and lightweight simulation 

platform, focusing on computational efficiency and extensibility. MASON offers a variety of 

features, including a discrete-event scheduler, a 2D and 3D visualization suite, and a range of 
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utilities for model development and analysis. It supports both grid-based and continuous space 

models, as well as network-based models. However, it does not support scaling on a cluster, 

limiting its ability to handle large-scale simulations. 

Repast (Recursive Porous Agent Simulation Toolkit) is another widely-used Java-based ABM 

platform [9]. It provides a comprehensive set of tools for developing, executing, and analyzing 

agent-based models. Repast offers three main implementations: Repast Simphony (Java), Repast 

for Python (Python), and Repast for High-Performance Computing (C++). Repast Simphony is the 

most widely used implementation and provides a rich set of features for ABM development in 

Java. It includes a fully concurrent discrete event scheduler, a variety of agent architectures (e.g., 

grid, continuous space, network), and built-in tools for adaptive behavior and learning [10]. Same 

as MASON, the Java version is not scalable on a cluster, Repast for High-Performance Computing 

does support cluster scaling. 

NetLogo is a multi-agent programmable modeling environment developed at Northwestern 

University [11]. It is designed to be an accessible and user-friendly platform for ABM 

development, particularly well-suited for educational purposes and rapid prototyping. NetLogo 

uses its own custom programming language, which is based on the Logo language and provides a 

simple and intuitive syntax for defining agent behaviors and interactions. It is not scalable either. 

Railsback et al. [12] conducted a comparative study of these three ABM platforms, along with 

a Java version of Swarm. They implemented a series of 16 example models using each platform 

and evaluated their performance, ease of use, and available features. The study found that NetLogo 

stood out for its ease of use and extensive documentation, making it a good choice for those new 

to ABM. MASON and Repast offered good performance and a wide range of features, making 

them suitable for more complex models. The study also highlighted the importance of 
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documentation and user support in the adoption and effective use of ABM platforms. The authors 

provided recommendations for future development of ABM platforms, emphasizing the need for 

improved documentation, standardized model description formats, and better tools for model 

analysis and visualization. 

Most papers do not mention Java-based parallel ABM simulators running on cluster systems. 

Typically, Java-based ABM simulators like Repast Simphony and MASON are designed to run on 

a single computer, not a cluster. 

Repast HPC is a C++ implementation of the Repast Simphony modeling system, designed for 

large-scale distributed computing platforms. It uses MPI for process communication and 

synchronization. In Repast HPC, each process is responsible for a set of local agents, and the 

simulation environment is shared across processes. Agents can be migrated between processes to 

optimize performance. Repast HPC provides a ReLogo-like language to allow a Logo-like model 

specification in a parallel environment, aiming to make it easier for modelers to scale up their 

simulations without dealing with the low-level details of parallel programming [13]. 

The EURACE project, implemented using the Flexible Large-scale Agent Modeling 

Environment (FLAME) [14], implemented in C++, aims to construct a large-scale agent-based 

model of the European economy with up to 107 agents [15]. FLAME leverages the fact that much 

agent communication is local, and by clustering “neighboring” agents on the same process, costly 

inter-process communication can be reduced.  

3.2 GPU BASED ABMS 

In addition to the CPU-based ABM platforms, there has been an increasing trend of utilizing 

graphics processing units (GPUs) to accelerate agent-based simulations. GPUs offer high 

computational power and parallelism, making them well-suited for large-scale ABMs with many 



8 
 

 

agents and complex interactions. Several GPU-based ABM libraries have been developed to 

harness the power of GPUs.  

FLAME GPU [16] is an extension of the FLAME (Flexible Large-Scale Agent-Based 

Modeling Environment) framework that allows agent-based models to be executed on GPUs. It 

provides a high-level abstraction layer for defining agents and their behaviors using an XML-based 

language called XMML (X-Machine Markup Language). FLAME GPU automatically translates 

the XMML model specification into optimized CUDA code for execution on NVIDIA GPUs. 

However, using XMML results in a high learning curve for development, especially for people 

who are not code-focused, such as scientists. 

FLAME GPU 2 [17] is a significant advancement over its predecessor, FLAME GPU. It 

provides a more flexible and efficient framework for building complex agent-based simulations 

on GPUs. FLAME GPU 2 introduces a new agent-based modeling approach that allows users to 

define agent behavior using the Agent API. This API enables the creation of more sophisticated 

and dynamic agent-based models by providing a set of functions and data structures for defining 

agent properties, behaviors, and interactions. But the same tradeoff as its predecessor occurs, and 

the message-based communication within the simulation environment introduces some 

restrictions. 

Another notable platform in the realm of agent-based modeling is TurtleKit [18], a simulation 

platform that combines a Logo-based simulation model with high-level programming languages. 

TurtleKit is built on top of the MadKit multi-agent platform and provides a simple yet powerful 

environment for developing agent-based simulations. While TurtleKit has extended its capabilities 

to utilize GPUs [19], the lack of clear documentation and guidance on GPU usage has hindered its 

adoption.  
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As of the writing of this report, the latest resource available about FLAME GPU 2 from 2021, 

in a showcase video [20], the FLAME GPU 2 developers clearly stated that the library can only 

be run on a single GPU due to technical constraints such as data exchange between different GPUs. 

The same constraints apply to the MASS CUDA library. In the current implementation and design, 

device memory space for all data needed during the simulation must be allocated when initializing. 

To achieve data exchange between two GPUs, a larger memory allocation is required on each 

device, contradicting the goal of scaling to multiple GPUs to utilize more memory space for larger 

simulations.  

3.3 OUR WORKS 

In contrast, we present MASS CUDA, which offers a different approach to constructing 

simulations. Instead of requiring users to describe agent behavior using a specific API, our library 

allows developers to create classes as they would in traditional object-oriented programming. 

Users can define agent classes and assign functions to them, which encapsulate the agent’s 

behavior. MASS CUDA then wraps the agent class and automates the parallel execution on the 

GPU, abstracting away the complexities of GPU programming. We believe this approach is much 

easier to develop and understand, especially for developers who may not have domain-specific 

knowledge of GPU programming. By providing a more intuitive and familiar programming model, 

our library lowers the barrier to entry for researchers and practitioners who want to leverage the 

power of GPUs for their ABM simulations without the need to become experts in GPU 

programming. 

One of the key features we have introduced into MASS CUDA is the separation of execution 

instances (Agents) and data storage (Places). In our library, a Place object serves as an attribute 

storage in the simulation, representing spatial elements in the real world that contain large amounts 
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of data but don’t move during the simulation. On the other hand, an Agent object carries minimal 

data but encapsulates the algorithms and functions necessary for execution. We believe this 

separation of concerns makes it easier for users to identify, maintain, and implement objects in 

their simulations. 

Moreover, we developed comprehensive and up-to-date documentation to facilitate 

understanding, development, and usage of MASS CUDA. 

Chapter 4. IMPLEMENTATION OF MASS ENHANCED FEATURES 

In our work on MASS CUDA, we focused on two main aspects: enhancing the programmability 

of the library and improving its performance. We began by addressing the functionality and bug 

fixes related to the Agent class, which is a crucial component of the MASS CUDA library. Our 

efforts included implementing essential features such as Agent spawning, termination, and 

migration. 

Once we had a fully functional version of MASS CUDA, we conducted performance analysis 

using the NVIDIA Nsight Compute profiling tool [21]. Through this analysis and comparison with 

our main competitor, FLAME GPU 2, we identified significant performance gaps between the two 

libraries. Consequently, the second part of our work involved analyzing the MASS CUDA library, 

identifying performance bottlenecks in the algorithms and data structures, and rewriting the 

relevant sections. In this part, we focused on addressing the memory access pattern issues caused 

by the data structures, which were the root cause of the performance discrepancies. 

4.1 PROGRAMMABILITY ENHANCEMENT 

Agents in the MASS library serve as the execution instances, carrying minimal data and capable 

of moving between Places. They are characterized by two essential functions: Agents::callAll() 
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and Agents::manageAll(). These functions play a vital role in enabling parallel execution and 

efficient management of Agents within the simulation. 

The Agents::callAll() function operates similarly to Places::callAll(), allowing users to pass 

functions and arguments that are executed concurrently by all Agents. This parallel execution is 

crucial for implementing uniform operations across the entire set of Agents quickly and efficiently. 

Moreover, each Agent in the MASS library is equipped with three primary functions: migrate, 

spawn, and kill. The Agent::migrate() function enables an Agent to move from its current Place to 

another, facilitating dynamic interactions within the virtual environment. The Agent::spawn() 

function allows an Agent to create offspring either at its current location or at a different Place (the 

first generation of Agent objects must be created by user via our API), contributing to the 

complexity of the simulation. The Agent::kill() function is used to terminate an Agent, freeing up 

space for new Agents and excluding the terminated Agents from future parallel operations. 

To illustrate these functions more clearly, let’s consider a simulation of ants living in a specific 

environment. The environment would be represented by the Place objects, while the ants would 

be the Agent objects. In each iteration, ants can move to another location in the environment (using 

Agent::migrate()), give birth to new ants (using Agent::spawn()), or die in certain cases (using 

Agent::kill()). 

MASS CUDA enables efficient batch operations on Agent objects by leveraging these 

functions in conjunction with Agents::callAll(). After using any of these functions, it is necessary 

to call Agents::manageAll(), which instructs the MASS library to execute the actual operations as 

per the given instructions in parallel. The detailed functionality and application of 

Agents::manageAll() is explained in Section 4.1.3. 
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4.1.1 Agent Spawn 

The Agent::spawn() function enables Agent objects to spawn new Agent instances on any Place 

objects. When a MASS simulation is created, agents are initialized in GPU memory by allocating 

an array of Agent objects to hold the specified number of agents. During the simulation, users may 

terminate or spawn new agents, which involves adding or removing Agent instances from this 

allocated array. The previous implementation tracked the number of alive agents to determine 

where to place new agents: when a new agent was spawned, the count of alive agents increased, 

and the new agent was placed into the array based on this count. 

However, this approach had a significant bug, as illustrated in Figure 4.1. Initially, the agent 

array is populated with 5 live agents and has a maximum capacity of 10. When agent 2 is 

terminated, reducing the count of alive Agents to 4, the algorithm determines that the next new 

Agent should be placed at index 4. However, an alive agent already occupies this index, revealing 

a significant bug (Figure 4.1). 

 

Figure 4.1: Using alive agents count to place new agent, which revealing a significant bug 
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After discussing this issue with Dr. Fukuda, he pointed out that the original design for 

managing the agent array involved sorting the array using CUDPP’s radix sort after each case of 

agent termination [22]. This sorting would position alive agents at the beginning and dead agents 

at the end of the array, while simultaneously counting the number of alive agents (as shown in 

Figure 4.2). New spawn agents would then be placed at the index indicated by the counter. The 

existing implementation had not fully realized this original design. 

 
Figure 4.2: Original design for managing the agent array: sorting the array using CUDPP’s 

radix sort to place alive agents in the front and dead agents at the end of the array  

 

However, implementing this sorting algorithm within the existing architecture of the MASS 

CUDA library led to more problems than solutions. To understand these issues, we need to first 

examine the data structure of the previous MASS CUDA Agent and Place objects. 

In the previous MASS CUDA implementation [23], four arrays were used to hold Place and 

Agent objects (Figure 4.3). The Places array stores Place objects, which contain minimal essential 

functions. The related data of a Place object is instead held in the PlaceState object, connected to 

the Place object via a pointer. Another PlaceState array is allocated in GPU memory, having the 

same length as the Places array due to their one-to-one mapping. Similarly, the agent array consists 
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of Agent objects that encapsulate the necessary functions for the agents’ actions within the 

simulation, while the AgentState array holds the essential data for each Agent object.  

 
Figure 4.3: Four arrays to hold Place and Agent objects  

 

To illustrate the relationship between agents and places, let’s consider an example where we 

have 3 agents and 3 places, with Agent 0, 1, and 2 assigned to Place 0, 1, and 2, respectively. Since 

the data of a Place/Agent object is stored in a PlaceState/AgentState object, a pointer in the 

AgentState points to the Place to indicate that an agent resides on a place. Conversely, a pointer in 

the PlaceState points to the Agent to indicate that the agent resides on it, forming a double link 

between them (Figure 4.4).  

 

Figure 4.4: Linked Agent and Place objects. Although Place 1 is linked to Agent 1 and Place 

2 is linked to Agent 2. For simplicity, only the link between Place 0 and Agent 0 is shown 
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If we decide to terminate agent 0, according to the previously explained algorithm, we first 

break the links (pointers) in both the AgentState and PlaceState objects and then sort the Agent 

array to move Agent 0 to the end. As a result, the order in the agent array would be Agent 1 (alive), 

Agent 2 (alive), and Agent 0 (dead). However, since pointers reference addresses and not the 

objects themselves, after the AgentState objects in the AgentState array are switched, the Place 2 

still points to its original index (3rd index) in the Agent array, but the data at each index may have 

been switched (Figure 4.5).  

 

Figure 4.5: Terminate Agent 0, and then move the Agent 0 & AgentState 0 to the end of the 

array. But Place 2 is still pointing to the 3rd index of the Agent array (it originally pointed to 

Agent 2) 

 

Several solutions were considered to address this problem, such as sorting all four arrays 

together or re-linking the places with the correct agents after any movements. However, neither 

solution was deemed acceptable. Sorting all four arrays would require extra resources and cannot 

be done in constant time. Additionally, if we change the pointer as soon as an agent is moved, 
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there is an overhead of relinking the Place and Agent objects, which causes a small latency. When 

moving a large number of agents at a time, the cumulative effect of these small latencies can create 

a noticeable overall latency. To mitigate this issue, the MASS library employs a two-stage 

operation, which will be explained in Section 4.1.3. The first stage involves planning the operation, 

while the second stage commits the plan in parallel, minimizing the latency associated with 

relinking Place and Agent objects. 

Another potential solution involved using a queue to maintain the available indices in the 

agent array, allowing terminated agents to enqueue their index to show the availability, and newly 

spawned agents to dequeue values from the queue to find an index to place themselves. However, 

implementing queue-like data structures and queue operations, such as dequeue and enqueue, on 

a GPU is extremely difficult and can significantly impact performance. GPUs are not designed 

like CPUs, which are better suited to these complex data structures and operations. 

Therefore, we proposed an alternative solution that eliminates the sorting step altogether. In 

this new approach, we no longer sort the agent array to position available agents at the beginning 

and newly spawned agents after them. Instead, we keep all agents in place after some agents are 

killed and simply find the available index in the array to place newly spawned agents. By 

leveraging the parallelism capability of the GPU, we can avoid scanning the entire array to find 

available spots, resulting in an O(N) algorithm as described next. 

As illustrated in Figure 4.6, we first create an integer array with the same length as the agent 

array, initialized with -1s. Then, all inactive agent locations report their availability to this array: 

if the location is available, the corresponding index in the integer array is updated with its index. 

After the reporting step, we have an integer array containing either -1 or the available index of the 
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agent array where new agents can be spawned. We then remove all -1s using a reduction operation, 

leaving only the available indexes. 

 

Figure 4.6: Agent array reports its available index to the integer array, then use CUDA 

Thrust Library to perform the reduction, and get the start and end index 

 

This method allows for the direct placement of new Agents in the available indexes. The 

reporting step is executed as a CUDA kernel function, enabling all agents to perform the reporting 

concurrently, making it an O(1) operation. Additionally, the CUDA Thrust Library [24], which 

provides a well-developed reduction function using CUDA, is employed for the reduction process, 

rendering the removal of all -1s an O(N) operation as well. Moreover, since we directly obtain the 

available indexes in the agent array and no longer switch any indexes, the pointers in the 

Agent/Place objects remain pointing to their original locations, maintaining the integrity of the 

object relationships and avoiding the need for additional pointer updates. 
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4.1.2 Agent Migrate 

The Agent::migrate() function enables agents to move from one place to another within the MASS 

CUDA simulation. When a user intends to migrate an agent, a series of operations are executed to 

facilitate this movement. 

Firstly, in the Agent::migrate() function, the agent does not start the migration immediately. 

Instead, it is added to the destination place’s potentialAgents array, indicating its intention to 

migrate to that specific place. 

Subsequently, in the Agents::manageAll() function, the library resolves any conflicts that may 

arise when multiple agents express their intention to migrate to the same place. Since each place 

has a maximum capacity for agents, the current algorithm selects the agents with the lowest N 

index for migration, where N represents the maximum number of agents a place can accommodate. 

For example, if agents 1, 2, and 3 all wish to migrate to place 1, but the MASS library is configured 

to allow a maximum of 2 agents per place, one of the agents is not migrated and remains at its 

original location. In this scenario, agents 1 and 2 successfully migrate to place 1, while agent 3 

stays at its original place. After resolving these conflicts, a kernel function is executed to migrate 

all eligible agents to their desired destinations in parallel. 

However, in the previous implementation, we identified a significant bug when adding agents 

to the place’s potentialAgents array. The addMigrationAgent function, used in Agent::migrate(), 

was responsible for expressing an agent’s interest in migrating to a specific place. This process 

involved iterating through the potentialAgents array of the place and placing the agent in the first 

empty location found, as shown in the algorithm (Figure 4.7): 
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1. __device__ void Place::addMigratingAgent(Agent* agent, int relativeIdx) { 
2.     for (int i = 0; i < N_DESTINATIONS; i++) { 
3.         if (state->potentialAgents[i] == NULL) { 
4.             state->potentialAgents[i] = agent; 
5.             break; 
6.         } 
7.     } 
8. } 
9.   

Figure 4.7: Previous algorithm to add agents to a place’s potentialAgents array to express the 

intention to move to this place 

 

While this function performed well when executed sequentially, it posed a challenge when 

implemented using CUDA, as it would be executed in parallel by multiple agents (each agent is 

managed by a thread). Therefore, when several agents were interested in migrating to the same 

place, they would attempt to add themselves to the potentialAgents array simultaneously, leading 

to a race condition: they might find the same empty location and update the same index 

concurrently, causing inconsistencies.  

To address this race condition, we introduced an additional local variable to the Place object 

called numPotentialAgents. This variable keeps track of the number of agents that have been added 

to the potentialAgents array and serves as the index for adding the next agent. By utilizing the 

atomicAdd() function provided by CUDA, we ensure that this variable is thread-safe, allowing 

only one agent to modify it at a time. The updated code is as follows (Figure 4.8): 

1. __device__ void Place::addMigratingAgent(Agent* agent, int relativeIdx) { 
2.     int index = atomicAdd(state->numPotentialNextAgents, 1); 
3.     state->potentialNextAgents[index] = agent; 
4. } 
5.   

Figure 4.8: A new algorithm to add agents to a place’s potentialAgents array to express the 

intention to move to this place, utilizing a new variable with the atomic function 
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4.1.3 Agent Kill 

Before explaining the last core function of Agent, Agent::kill(), it is crucial to introduce the 

Agents::manageAll() function to better understand how these core functions work together. 

In sections 4.1.1 and 4.1.2, we illustrated the functionality of Agent::spawn() and 

Agent::migration(). We also mentioned the Agents::callAll() function, which is similar to 

Places::callAll(). Functions and arguments can be passed to Agents::callAll(), and MASS CUDA 

manages the parallel execution on all Agent or Place objects. It is important to distinguish between 

Agent functions and Agents functions: Agent functions are executed on a single Agent object, 

while Agents functions serve as the API for users to manipulate all Agent objects in parallel. 

To utilize the Agent::spawn() and Agent::migrate() functions, we first need to create an Agent 

function that contains these functions. Then, we pass this customized function to Agents::callAll() 

to perform the manipulation on all Agents simultaneously. Let’s revisit the example of ants living 

in an environment. In each iteration, we want the ants to have the possibility of moving to a new 

location. For instance, in the customized function “Agent::move()”, we generate a random integer. 

If it’s odd, the ant moves upwards; if it’s even, the ant moves downwards. By passing the 

“Agent::move()” function to Agents::callAll(), all ants in the simulation call the function 

concurrently, deciding on a direction to move. 

However, it’s important to note that the ants do not actually move to a new place immediately 

after calling “Agent::move()”. They have only “decided” on the new place to move to. As 

mentioned in section 4.1.2, we need to resolve any conflicts that may arise when several ants want 

to move to the same location. Additionally, we need to perform the actual movement of all ants 

simultaneously (executed in parallel). To achieve this, we introduce the Agents::manageAll() 

function, which handles the actual execution of these actions. 
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To better distinguish between the “expressing intention” functions (Agent::kill(), 

Agent::spawn(), and Agent::migrate()) and the “actual action” function (Agents::manageAll()), we 

define that the Agent::kill(), Agent::spawn(), and Agent::migrate() functions set pre-operation 

instructions for the agents, while Agents::manageAll() reads these instructions and performs the 

actual operations (Figure 4.9).  

 

Figure 4.9: Agent functions set pre-operation instructions and Agents::manageAll() read 

instructions and perform the actual actions 

 

For example, when Agent::spawn() is used, agents set the pre-operation instruction: birth N 

agents at place X. Then, in the subsequent Agents::manageAll() function, N agents are generated 

and placed at place X. Similarly, Agent::migrate() sets the pre-operation instruction: move this 

agent to place X. In the following Agents::manageAll () function, the agent is moved to place X. 

Therefore, an Agents::manageAll() function call is necessary after each time any of Agent::kill(), 



22 
 

 

Agent::spawn(), or Agent::migrate() is used (one of these functions per time is allowed, such as 

one kill, one migrate, and one spawn, followed by an Agents::manageAll()). 

However, Agent::kill() is slightly different from the other two functions. While 

Agent::spawn() and Agent::migrate() set pre-operation instructions because many attributes of the 

Agent and Place objects need to be changed to execute the operation, terminating an agent is a 

simpler task. The “alive” attribute of an agent indicates whether it is alive or not. To terminate an 

agent, we simply need to change the “alive” attribute to False, which is a single step and can be 

finished in one Agents::callAll() execution. Therefore, the Agent::kill() function is excluded from 

the Agents::manageAll() function and is intentionally left blank (Figure 4.9). 

4.2 PERFORMANCE ENHANCEMENT 

After completing the implementation of MASS CUDA with fully functional agents and places, as 

described in section 4.1, we benchmarked the library using the Game of Life application. The 

Game of Life is a zero-player game, meaning that its evolution is determined solely by its initial 

state, requiring no further input [25]. It computes the next state of each simulation instance based 

on the status of the surrounding instances. Although the Game of Life does not involve 

sophisticated computations, it consists of a large number of computation instances that can be 

parallelized, making it an ideal starting point for our benchmark. 

We compared the performance of MASS CUDA with FLAME GPU 2, our main competitor 

and another well-known GPU-based ABM library, which was also used to build the Game of Life. 

Surprisingly, we found that MASS CUDA’s performance was 9 times slower than FLAME GPU 

2 for a simulation size of 2000 instances and 20 times slower for a simulation size of 2500 

instances. Moreover, the performance gap increased exponentially as the simulation size grew. 

The detailed comparison can be found in Section 5. This significant performance difference caught 
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our attention, and we further investigated using NVIDIA Nsight Compute, the official benchmark 

application, to gather more details about the performance bottlenecks. We noticed that the primary 

issue was related to the memory access pattern, and Nsight Compute suggested that using 

coalesced memory access could potentially boost the performance by 98.19%. 

Next, we discuss how the data structure used for Agent and Place objects in the previous 

implementation of MASS CUDA contributed to the uncoalesced memory access issue. We also 

present our approach to address this problem and the updates made to MASS CUDA after this 

revision. 

4.2.1 Transition from AOS to SOA 

In the previous implementation of MASS CUDA [23], the data for both Agent and Place objects 

(referred to as “object” in the following context) was stored in separate state objects (referred to 

as “state” in the following context), named AgentState and PlaceState. The object itself was 

connected to its corresponding state via a pointer (Figure 4.3). The minimum size of a state was 

280 bytes due to the minimum required data to support the MASS CUDA simulation. 

This initial data structure setup of the MASS library is known as Array of Structures (AOS) 

because we have an array of state objects. Due to the nature of MASS CUDA, we utilize the GPU 

to execute parallel manipulations on the data stored in the state. In this scenario, each time we 

execute a kernel function, each thread is responsible for manipulating a single state. Before 

performing the manipulation, each thread needs to read the specific data of its assigned state. In 

this context, we must consider two important aspects of data access (memory access): spatial 

locality and prefetching, and coalesced memory access. 

When CPUs and GPUs look for data that is not in their immediate cache (such as L1/L2 cache 

on CPU and local memory on GPU), they search for the data in “further” memory, such as RAM 
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in the context of CPUs and global memory on GPUs. Once the required data is located, it is 

transferred to the immediate cache.  

However, when a single data element is needed and moved, CPU and GPU architectures 

preemptively fetch a contiguous block of data around the requested index. This approach, based 

on the principle of spatial locality, assumes that data near a recently accessed item is soon needed. 

For example, if we have an array of length 10 and the program reads array[0], array[0] is 

transferred to the cache, and the data of the first 5 indexes. This spatial locality and prefetching 

strategy of hardware significantly reduces the need for costly “further” memory accesses. 

Another unique optimization within GPUs is coalesced memory access. This technique 

specifically optimizes how threads within a warp access global memory. When threads in a warp 

simultaneously request data from sequential or suitably aligned memory addresses, as shown in 

Figure 4.10, the GPU is able to combine these requests into a single memory transaction. This 

consolidation significantly decreases the total number of memory transactions required, thereby 

accelerating the process of memory access. Using the previous example, when 10 threads access 

each index of the array simultaneously, the GPU can combine these 10 requests, and the data of 

all 10 indexes is transferred at once. 

 
Figure 4.10: Coalesced memory access and Uncoalesced memory access [26] 
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We discovered that the minimum size of a state, which was 280 bytes, significantly hindered 

the utilization of these two hardware optimizations. When each thread on the GPU accessed the 

same single piece of data within each state, although a continuous block of data was transferred, 

due to the large size of a single state, the prefetching strategy could only transfer a few states at 

once. Moreover, the single piece of data each thread accessed was not sequential in memory. For 

example, if we were accessing the int index attribute of the state, since the size of the state was 

280 bytes, the index attribute of the first state and the second state was 280 bytes apart in memory, 

which prevented the use of coalesced memory access (Figure 4.11). 

 

Figure 4.11: An array of PlaceState objects, the data structure of the object, and an attribute 

of each object is 280 bytes apart in the memory 

 

To solve this problem, we focused on making all attributes of the state contiguous in memory. 

Therefore, we changed the data structure from Array of Structures (AOS) to Structure of Arrays 

(SOA). We “flattened” the state such that if the state had three attributes, instead of having an array 

of the state, we used three arrays, each containing only one attribute of each Agent/Place object 

(Figure 4.12). 
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Figure 4.12: “Flatten” the state, so that the data structure is changed from AOS to SOA, and 

no extra pointer is needed 

 

Due to the nature of MASS CUDA, which involves batch processing the same instructions on 

all Agent/Place objects (SIMD), if an Agent is manipulating attribute A, all Agents are 

manipulating attribute A, meaning all objects are accessing the same attribute. After this change, 

since the same attribute is stored in the same array, we can fully utilize the hardware optimizations 

mentioned earlier: prefetching and coalesced memory access. Since every object has the same 

attributes, the length of the array for an attribute is the same as the Agent/Place objects array. 

Therefore, we can fetch the attribute by the index of the Agent/Place objects in their array without 

the need for an extra pointer. 

4.2.2 Dynamic Attribute Setting Solution 

The transitioning from the Array of Structures (AOS) to the Structure of Arrays (SOA) in the 

MASS library eliminated the PlaceState and AgentState classes. This change posed a challenge 

for users who were accustomed to customizing their own PlaceState or AgentState. Previously, 

users could inherit the MASS state object base class and add customized attributes. Now, since we 

no longer have the state objects, we proposed a new way for users to add and use attributes 

dynamically during the simulation. 
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The solution involves introducing three arrays in Agent/Place: an attributeTags array for 

storing attribute names, an attributeDevPtrs array for holding pointers to the attribute arrays on the 

device, and an attributePitches array for tracking the pitch size when allocating the attribute arrays 

on the device, used to correctly access the attribute array internally by MASS CUDA. 

By utilizing these three new arrays, users can create and use attributes. When creating an 

attribute, users invoke the setAttribute() function, specifying the attribute’s tag, length, and an 

optional default value. The MASS middleware (MASS.Dispatcher) then allocates memory on the 

device for the attribute array and updates attributeDevPtrs, attributePitches, and attributeTags 

accordingly (Figure 4.14). Here’s an illustrative pseudo-code (Figure 4.13): 

 1. setAttribute(attributeTag, attributeLength, defaultValue): 
 2.     if (attributeTag exists in attributeTags):  
 3.         return false 
 4.     else: 
 5.         ptr, pitch = allocate memory on the device 
 6.         if (allocate success): 
 7.             attributeTags.push_back(attributeTag) 
 8.             attributeDevPtrs.push_back(ptr) 
 9.             attributePitches.push_back(pitch) 
10.              
11.             if (defaultValue): 
12.                 set default value (defaultValue) 
13.             return true 
14.         return false 
15.   

Figure 4.13: Algorithm of creating attributes on the device for Place/Agent objects 
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Figure 4.14: Algorithm of creating attributes on the device for Place/Agent objects within the 

MASS CUDA library 

 

However, by using the setAttribute() function, although the memory is allocated on the device, 

all the information is currently saved in the host API store. We need to update this information to 

the Agent/Place objects on the device so that they can use the attribute in the kernel function 

executing on the GPU. Before utilizing an attribute, users must execute finalizeAttributes(), 

prompting MASS to distribute these array data across all Agent/Place objects on the device (Figure 

4.14). Subsequently, within kernel functions, retrieving an attribute is simplified through 

getAttribute(), enabling threads to access relevant attributes efficiently (Figure 4.15). The adapted 

data structure ensures coalesced memory access, significantly enhancing overall performance, 

which is introduced in Section 5. 

 

 

 

 

 



29 
 

 

1. getAttribute(attributeTag, attributeLength): 
2.     if (attributeTag not in attributeTags): 
3.         raise an error 
4.     else: 
5.         index = get the index of attributeTag in attributeTags 
6.         attributeDevicePointer = attributeDevPtrs[index] 
7.         attributeValue = attributeDevicePointer[object index] 
8.     return attributeValue 
9.   

Figure 4.15: Algorithm for getAttribute() function, which is used on the device inside 

Agent/Place functions to retrieve attributes 

 

This dynamic attribute setting mechanism restores the flexibility of the original 

implementation and aligns with the optimized SOA data structure, ensuring efficient memory 

access and computation. From the user’s perspective, they are still able to dynamically add 

customized attributes to objects as before. However, instead of inheriting the base class and adding 

variables to the class, they can now manage the attributes in the main program during the 

simulation without the need to inherit the base class. This change simplifies the process of 

extending object attributes for users, as they no longer need to create and manage separate derived 

classes. 

It’s important to note that while the section describing the dynamic attribute setting 

mechanism may appear relatively short, the actual implementation of this feature was highly 

complex and required a significant portion of the MASS CUDA library to be rewritten. The 

transition from AOS to SOA and the introduction of the dynamic attribute setting mechanism 

necessitated extensive modifications to the library’s core architecture, data structures, and memory 

management systems. This effort involved careful design, implementation, and testing to ensure 

the correctness and efficiency of the new approach. 

From the MASS developer’s point of view, this transition increased the need for more 

complex data and memory management. The dynamic attribute setting mechanism requires careful 
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handling of memory allocation, deallocation, and synchronization between the host and device 

memory. Developers must ensure that the attributeTags, attributeDevPtrs, and attributePitches 

arrays are properly maintained and updated to reflect the current state of the attributes. 

Additionally, the use of separate arrays for each attribute and the distribution of arrays to every 

Agent/Place object may result in increased memory usage compared to the previous AOS 

approach, especially when dealing with a large number of attributes or objects. 

Chapter 5. EVALUATION 

We have benchmarked MASS CUDA on a Linux server equipped with two NVIDIA A5000 GPUs. 

However, since our library currently supports only one GPU card, one GPU remained idle during 

the simulation benchmark. The server is powered by an AMD EPYC 7232P 8-Core Processor, 

128GB RAM, and runs on Linux version 4.18.0-425.3.1.el8.x86_64. 

For each benchmark, we employ two types of timers: one for the CPU clock time and one for 

the GPU clock time. The CPU clock time reflects the total program execution time, while the GPU 

clock time represents the time the GPU is actively involved during the simulation, as measured by 

the timer provided by CUDA for capturing Cuda Event time [27]. As a result, each benchmark 

program provides three key metrics: (i) The total time, which is the total CPU time of the program 

from initialization to shut down; (ii) The initialization time, which is the total CPU time taken to 

initialize the library for starting the simulation; (iii) The simulation per-step time, which is the 

GPU time taken for calculating each step. The total time and initialization time are measured using 

the CPU time since it records the total real-world time passed for the simulation and initialization. 

The per-step time is measured using the GPU clock time, as it focuses on the performance of the 

parallel execution of the kernel function. 
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To verify benchmark programs, as in our previous work on the MASS C++ version, we have 

implemented all these benchmark programs, and they were validated. Now, in MASS CUDA, we 

compare the results with these programs to ensure correctness and consistency. This approach 

helps us to confirm that the new implementation in MASS UCDA faithfully replicates the expected 

behaviors and outputs of the validated benchmarks. 

To compare the execution performance of MASS CUDA with that of our main competitor, 

FLAME GPU 2, we implemented the same benchmark applications using FLAME GPU 2, 

employing the aligned simulation algorithm as matched as we can. All three times are recorded in 

the same manner for both libraries. 

In this section, we use a benchmark program to compare the MASS CUDA library’s 

performance before and after the optimization mentioned in Section 4.2, showcasing the 

performance improvements achieved. Subsequently, we compare the programmability and 

execution performance of MASS CUDA with FLAME GPU 2 using four different benchmark 

applications. 

5.1 BENCHMARK APPLICATIONS 

Each of the four benchmark applications we used are introduced, including why we selected them. 

(A) Game of Life 

Game of Life is a cellular simulation devised by the British mathematician John Horton 

Conway in 1970. In the simulation, each place represents a live cell, which can be either live or 

dead. In each iteration, the live cell can become dead or live based on the number of dead and live 

cells around it. This simulation is a zero-player game, requiring no input, and each iteration 

represents one evolutionary step [28]. 
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From a computational perspective, in each iteration, we need to compute the next state of each 

cell. If we are simulating 1000 x 1000 cells, we have to compute 1 million cells in each iteration, 

making it an ideal application for parallelization and inclusion in our benchmark. This simulation 

involves only the Place object and neighborhood communication operations. 

(B) Heat2D 

Heat2D is a simulation of heat transfer in a two-dimensional space. In each iteration, the next 

state heat of each two-dimensional space is calculated based on the surrounding spaces’ heat, 

simulating how heat is transferred in the two-dimensional space. It is very similar to the Game of 

Life but employs a different algorithm to calculate the next state. This simulation also involves 

only the Place object and neighborhood communication operations. 

(C) Sugarscape 

Sugarscape involves both the Place and Agent objects. It is a model for artificially intelligent 

agent-based social simulation following some or all rules presented by Joshua M. Epstein & Robert 

Axtell in their book Growing Artificial Societies [29]. In this simulation, we use Agent objects to 

represent ants and Place objects to represent the places containing sugar. In each iteration, agents 

move to a place containing sugar, consume sugar, collect sugar, and leave pollution, while places 

generate sugar. 

From a computational perspective, in each iteration, we need to update both the place’s next 

state and the agent’s next state. Since agents represent ants and they move continuously, it is an 

excellent benchmark application. This simulation involves agents’ migration and termination, 

Place object, and neighborhood communication operations. 

(D) Social Net 
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Social Net is an application that simulates the social network among people. In each iteration, 

we need to find the Nth degree friends of each person in the simulation. To calculate the Nth degree 

friends of hundreds of thousands of people, we use ABM to perform the parallel calculation. This 

simulation utilizes graph structure and the place exchangeAll() function. 

5.2 MASS CUDA ENHANCEMENTS AFTER DATA STRUCTURE REVISING 

We use the Game of Life to benchmark the performance of MASS CUDA before and after the 

data structure revision mentioned in section 4.2. The detailed data are listed in the tables in 

Appendix A. 

This simulation only involves places’ operations. We run the application in 5 sizes for 250 

iterations: 500 x 500 places, 1000 x 1000 places, 1500 x 1500 places, 2000 x 2000 places, and 

2500 x 2500 places, and compare the total simulation time (CPU time) in Figure 5.1, simulation 

initialization time (CPU time) in Figure 5.2, and per-step time (GPU time) in Figure 5.3. 

 

Figure 5.1: Game of Life total simulation time before and after data structure revising 
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Figure 5.2: Game of Life initialization time before and after data structure revising 

 

 
Figure 5.3: Game of Life total per-step time before and after data structure revising 
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The performance enhancement achieved through the data structure revision is remarkable. 

The initialization time reveals that the simulation’s initialization is no longer influenced by the 

size of the simulation, a result of the asynchronous execution design of the data allocation on the 

device. This improvement will be further highlighted in the subsequent experiments comparing 

MASS CUDA to FLAME GPU 2. Furthermore, the per-step execution time has decreased 

significantly, as expected, benefiting from the coalesced memory access design. This optimization 

has led to a substantial reduction in the total simulation time, with the new implementation taking 

only 1/7 of the time required by the old one when the simulation size reaches 2500. These results 

clearly demonstrate the effectiveness of our data structure revision in optimizing the performance 

of MASS CUDA, showcasing its potential for efficiently handling large-scale agent-based 

simulations on GPUs. 

5.3 PROGRAMMABILITY COMPARISONS 

We compare the programmability of MASS CUDA and FLAME GPU 2 for each benchmark 

application using four main metrics: the Line of Code (LoC) needed to implement the application, 

Cyclomatic Complexity (representing the complexity to develop or maintain a program, measured 

by a Python package lizard [30]), Boilerplate Code (representing the repeated code needed in the 

implementation), and Boilerplate Percentage (representing the percentage of repeated code in the 

total lines of code in the implementation). 

(A) Game of Life 

Table 5.1: Programmability Comparison of Game of Life 

Framework LoC Cyclomatic 
Complexity 

Boilerplate 
Code LoC 

Boilerplate 
Code % 

MASS CUDA 171 3.00 8 4.678% 
FLAME GPU 2 122 5.67 24 19.672 
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(B) Heat2D 

Table 5.2: Programmability Comparison of Heat2D 

Framework LoC Cyclomatic 
Complexity 

Boilerplate 
Code LoC 

Boilerplate 
Code % 

MASS CUDA 214 3.64 20 9.346% 
FLAME GPU 2 252 8.60 77 30.556% 

 

(C) Sugarscape 

Table 5.3: Programmability Comparison of Sugarscape 

Framework LoC Cyclomatic 
Complexity 

Boilerplate 
Code LoC 

Boilerplate 
Code % 

MASS CUDA 441 3.37 27 6.122% 
FLAME GPU 2 353 6.25 103 29.178% 

 

(D) Social Net 

Table 5.4: Programmability Comparison of Social Net 

Framework LoC Cyclomatic 
Complexity 

Boilerplate 
Code LoC 

Boilerplate 
Code % 

MASS CUDA 424 2.47 30 7.075% 
FLAME GPU 2 228 8.00 38 16.667% 

 

Overall, the programmability comparisons between both libraries across all applications 

present similar patterns. The LoC required for both libraries is comparable, with MASS CUDA 

requiring slightly more code. This is because MASS CUDA is still in its development process, 

where certain functionalities are not yet implemented (such as updating attributes and generating 

random numbers on the device), requiring users to manually achieve some features that are built-

in in FLAME GPU 2. FLAME GPU 2 consistently exhibits a higher percentage of boilerplate code, 

primarily due to its built-in functions for setting, reading, and updating simulation variables. As 

MASS CUDA has not yet implemented these functions, its boilerplate code percentage is 
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comparatively lower. However, it is important to note that a definitive conclusion cannot be drawn 

until MASS CUDA incorporates these built-in functions, enabling a more equitable comparison. 

Despite the absence of certain built-in functions, MASS CUDA demonstrates lower 

cyclomatic complexity compared to FLAME GPU 2, indicating that our library is more 

straightforward to develop and maintain. This advantage is expected to persist and potentially 

improve as additional built-in functions including updating attributes and generating random 

numbers on the device are implemented in MASS CUDA. The lower cyclomatic complexity can 

be attributed to our core design philosophy, which prioritizes an object-oriented programming 

approach to benefit users who are primarily focused on performing simulations rather than coding, 

such as scientists. 

5.4 EXECUTION PERFORMANCE COMPARISONS 

To compare the execution performance of MASS CUDA and FLAME GPU 2, we evaluate each 

benchmark application using three key metrics: total simulation time (CPU time), initialization 

time (CPU time), and per-step execution time (GPU time). These metrics provide a comprehensive 

understanding of the performance characteristics of both frameworks. However, for the Social Net 

benchmark application, we only measure the total simulation time. This decision is based on the 

specific characteristics and requirements of the Social Net simulation, where the initialization time 

and per-step execution time are not as relevant nor informative for performance comparison 

purposes. The detailed data are listed in the tables in Appendix A. 
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(A) Game of Life 

 

Figure 5.4: Initialization time comparison of Game of Life 

 

 

Figure 5.5: Per-step execution time comparison of Game of Life 
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Figure 5.6: Total simulation time comparison of Game of Life 

 

As demonstrated by the improvement in performance after the data structure revision, MASS 

CUDA achieves a more efficient initialization time that is not significantly influenced by the 

simulation size. Although MASS CUDA exhibits a better total simulation time compared to 

FLAME GPU 2, it is crucial to acknowledge that the per-step execution time of MASS CUDA is 

worse than that of FLAME GPU 2. The advantageous overall simulation time can be attributed to 

the specific number of iterations used in the simulation. If the number of iterations were to increase, 

the total simulation time of MASS CUDA could potentially surpass that of FLAME GPU 2. 

Considering that the Game of Life program primarily involves place operations, and its 

algorithm is relatively straightforward, the performance discrepancy can be mainly attributed to 

the execution time required to launch the kernel function in each iteration. Further analysis reveals 

that MASS CUDA currently adopts a simple approach of executing the kernel functions 
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this optimization has the potential to significantly enhance the per-step execution time and overall 

performance of the library. 

(B) Heat2D 

 

Figure 5.7: Initialization time comparison of Heat2D 

 

 

Figure 5.8: Per-step execution time comparison of Heat2D 
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Figure 5.9: Total simulation time comparison of Heat2D 

 

The Heat2D benchmark, while similar to the Game of Life in terms of involving only place 

operations, presents a more complex algorithm in each iteration. Despite this difference, the same 

performance issue arises: the overhead of kernel function execution. Additionally, further analysis 

reveals that although the data structure revision has been successfully implemented, it represents 

an initial step in the optimization process. To further enhance performance, it is necessary to 

consider other aspects of data management, such as utilizing faster memory types like constant 

memory or local memory on the device for more efficient data access. This optimization becomes 

particularly relevant in the Heat2D simulation, where frequent data reading from surrounding 

environments (doubling the data access required in the Game of Life, which reads four attributes 

from four neighbors, whereas Heat2D reads eight attributes from neighbors in each iteration) acts 

as a performance bottleneck. The significant amount of data access required in Heat2D highlights 

the need for continued refinement of the data structure and memory management strategies. 
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(C) Sugarscape 

 

Figure 5.10: Initialization time comparison of Sugarscape 

 

 

Figure 5.11: Per-step execution time comparison of Sugarscape 
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Figure 5.12: Total simulation time comparison of Sugarscape 

 

The Sugarscape simulation stands out as the program with the highest degree of Agent/Place 
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In each iteration, places need to update the environment, including multiple variables, while agents 

migrate from one place to another. 

It is important to note that the simulation initialization time of FLAME GPU 2 is exceptionally 

high in this simulation, especially when compared to MASS CUDA. This discrepancy can be 
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overhead of kernel function execution. While this approach significantly benefits its per-step 

execution performance, it comes at the cost of an extremely higher initialization time compared to 
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agents (Find Next Dest), which are Places::callAll() functions; moving agents to another place 

(Move), which is an Agents::manageAll() function; and metabolizing sugars (Metabolize), which 

is an Agents::callAll() function. 

Table 5.5: Sugarscape simulation per-step detailed execution time distribution 

Size Update Env Find Next Dest Move Metabolize 
256 0.096 0.4 0.907 0.021 
500 0.276 1.443 2.971 0.024 
1000 0.936 5.419 11.584 0.067 
1500 2.042 12.086 28.795 0.168 
2000 6.514 21.422 45.985 0.239 
2500 5.361 32.872 71.53 0.367 
3000 7.757 47.555 103.163 0.521 

 

While the execution time of the Update Env, Find Next Dest, and Metabolize functions 

increases linearly with respect to the simulation size, we observed that the Move function’s 

execution time increases non-linearly, or nearly quadratically, as the simulation size grows. Further 

analysis reveals that the Agent::manageAll() function executes all agent spawn, migrate, and kill 

functions, regardless of whether they are used in the simulation or not. Moreover, the agent spawn 

function currently takes a considerable amount of time due to its algorithm. Although the 

improvements made in Section 4.1.1 have enhanced its performance compared to the previous 

implementation, it is still not optimal. To address this issue, future implementations may need to 

focus on refining the algorithms of both the Agents::manageAll() function and the agent spawn 

function to further optimize their performance and scalability. 

For example, attributes could be added to MASS to track whether any agents move or spawn 

during an iteration; if not, the corresponding functions in the Agents::manageAll() function call 

would not be executed. Furthermore, the current algorithm for finding the available index is 

executed by two separate kernel functions, which could be combined into one to save the overhead 



45 
 

 

of starting kernel functions. This was not implemented due to time constraints, but doing so could 

further enhance performance. 

(D) Social Net 

 

Figure 5.13: Total simulation time comparison of Social Net 
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we identified a bug in the current program where the algorithm may unnecessarily search for (N-

1)th degree friends each time it looks for an Nth degree friend, leading to increased execution time. 

Consequently, given that the benchmark program is not fully functionally correct, we do not 

consider the execution performance comparison to be valid. However, it is important to address 

the current functionality restrictions of MASS CUDA. 

5.5 DISCUSSIONS 

From the programmability comparison, we see that the programming complexity of MASS CUDA 

is lower than FLAME GPU 2, matching our original design and target to benefit non-code focused 

individuals. The usage and understanding of the MASS CUDA library are more straightforward, 

and easier to maintain. While we understand that there needs to be a balance between ease of use 

and performance, implying that ease of use may come with some performance trade-offs, we also 

discovered major issues that impacted the performance. 

Further analysis of the benchmark results reveals that most of these performance issues can 

be attributed to the current functional prematurity of MASS CUDA. While FLAME GPU 2, 

developed by a team at the University of Sheffield, has undergone extensive development and is 

now sophisticated and complete, it is obvious that MASS CUDA needs to catch up FLAME GPU 

2. By comparing our implementation with FLAME GPU 2, we have identified the following areas 

for improvement. 

First, we need to continue working on data structure revisions to utilize more hardware 

optimizations and boost data access on the device. Optimizing data structures can significantly 

impact the performance of memory-bound applications. 

Second, we should implement the kernel execution at a lower level to better cooperate with 

the hardware, such as utilizing CUDA streams and PTX (a low-level parallel thread execution 
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virtual machine and instruction set architecture used for CUDA) [31]. By leveraging these low-

level features, we can potentially improve the efficiency of kernel execution and reduce overhead. 

Third, as we continue to develop the MASS CUDA library, we need to support more 

functionalities to ease the usage for users while potentially increasing performance by avoiding 

the need for users to create complex customized functions. By providing a comprehensive and 

optimized set of functionalities, we can enable users to focus on their application logic rather than 

low-level implementation details. 

Chapter 6. CONCLUSIONS AND FUTURE WORK 

Throughout the course of this project, we have successfully completed all the required 

functionalities of MASS CUDA, ensuring that all components are working as intended. To further 

enhance the library’s performance and usability, we have made significant revisions to the 

underlying algorithms and data structures. These optimizations focused on minimizing data 

transfer, identifying opportunities for parallelization, and leveraging the unique capabilities of 

GPU hardware. As a result, both the programmability and performance of MASS CUDA have 

been improved significantly. To facilitate seamless development and integration, we have also 

produced comprehensive documentation tailored for both developers and users, ensuring that 

future contributors can work on MASS CUDA with ease and users can quickly integrate the library 

into their projects. 

6.1 LIMITATIONS 

Despite the progress made, we have identified several limitations in the current implementation. 

Firstly, the library is not yet capable of scaling to multiple GPUs. However, given the recent 

advancements in GPU hardware, this functionality can be achieved in the near future by 
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implementing data exchange mechanisms between GPUs. Secondly, the object-oriented design of 

MASS CUDA has restricted the ability for users to fine-tune parameters based on different models. 

While this design choice simplifies integration and is well-suited for our target audience of 

scientists who prioritize simulation construction and results over performance optimization, 

exposing certain parameters via API may be considered in future iterations to provide more 

flexibility. Moreover, the current implementation of Agents::manageAll(), particularly the 

Agent::spawn() function invoked within it, introduces performance overhead. To address this, we 

need to develop a more efficient algorithm that minimizes the impact on overall performance. 

Additionally, the revised data structure currently consumes more memory compared to the 

previous design, which can be attributed to the early stage of MASS CUDA’s development and 

will be addressed in future optimizations. 

6.2 FUTURE WORK 

Although the development of MASS CUDA has spanned several years, the recent revision of the 

data structure marks a significant milestone, establishing a solid foundation for the library to fully 

leverage the capabilities of GPU hardware through the use of optimized algorithms and data 

structures. Moving forward, our focus should be on profiling the library using tools like NVIDIA 

Nsight Compute to identify further opportunities for improvement in areas such as memory access 

patterns and kernel function execution. Moreover, we should explore dynamic memory allocation 

on the device based on user requirements to minimize unnecessary memory allocation overhead. 

Additionally, utilizing faster caches on the device for variables that remain constant throughout 

the simulation, such as simulation parameters and pointers to attributes, can further boost 

performance. Besides, none of the benchmark applications currently utilize agent spawn function, 

we plan to implement Tuberculosis in order to benchmark it. Furthermore, our current 
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implementation requires users to employ functions to set and manually distribute data on the GPU, 

which exposes unnecessary complexity. We need to continue developing the library to abstract 

away these low-level details and provide a more user-friendly interface. Most importantly, while 

we have achieved the expected basic design and functionalities in the current phase, we have yet 

to fully harness a key component of CUDA: streams. Many operations within the library can 

benefit from being executed using different streams to reduce the overhead of kernel function 

execution.  

In conclusion, the current version of MASS CUDA represents a significant milestone in its 

development, with a solid foundation in place for future optimizations and enhancements. By 

focusing on performance profiling, dynamic resource management, algorithm optimization, and 

the utilization of CUDA streams, we can unlock the full potential of GPU hardware and provide 

users with a high-performance, user-friendly library for agent-based modeling. This will allow 

users to focus on the modeling aspects of their simulations while seamlessly harnessing the 

computational capabilities of GPUs. As we move forward, it is essential to prioritize scalability, 

flexibility, and continuous optimization to ensure that MASS CUDA remains at the forefront of 

GPU-accelerated agent-based modeling solutions. 
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APPENDIX A. DETAILED PERFORMANCE RESULTS 
All times are in milliseconds (ms). 

 

Appendix Table A-1: MASS CUDA execution performance of Game of Life before data 

structure revising 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

500 3356 0.338 3443 
1000 3413 1.277 3536 
1500 4084 2.763 4213 
2000 11346 4.909 14590 
2500 27575 7.612 29484 

 

Appendix Table A-2: MASS CUDA execution performance of Game of Life after data 

structure revising 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

500 3238 0.178 3286 
1000 3248 0.557 3399 
1500 3252 1.155 3537 
2000 3257 1.988 3786 
2500 3300 3.035 4122 

 

Appendix Table A-3: FLAME GPU 2 execution performance of Game of Life 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

500 3856.695 0.197 3906 
1000 3876.693 0.453 3990 
1500 3993.211 0.891 4216 
2000 4283.149 1.451 4646 
2500 4538.715 2.221 5094 

 

Appendix Table A-4: MASS CUDA execution performance of Heat2D 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

256 3228 0.115 3596 
500 3233 0.399 4452 
1000 3263 1.523 7855 



 

 

1500 3255 3.379 13417 
2000 3281 5.899 21003 
2500 3275 9.294 31181 
3000 3258 13.238 42999 

 

Appendix Table A-5: FLAME GPU 2 execution performance of Heat2D 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

256 3845.313 0.236 4555 
500 3931.931 0.339 4951 
1000 4008.55 0.590 5781 
1500 4227.504 1.017 7280 
2000 4479.782 1.623 9350 
2500 4786.135 2.410 12017 
3000 5169.638 3.368 15274 

 

Appendix Table A-6: MASS CUDA execution performance of Sugarscape 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

256 3.537 1.469 1472.537 
500 6.773 4.784 4790.773 
1000 17.367 18.156 18173.37 
1500 35.465 40.333 40368.47 
2000 62.8 71.601 71663.8 
2500 93.79 110.826 110919.8 
3000 133.383 159.975 160108.4 

 

Appendix Table A-7: FLAME GPU 2 execution performance of Sugarscape 

Simulation Size Initialization Time Per-step Time Total Simulation 
Time 

256 19,385.57 1.716 21101.573 
500 5,168.11 3.419 8587.11 
1000 7,049.09 9.554 16603.094 
1500 18,493.21 20.087 38580.206 
2000 48,794.21 34.62 83414.211 
2500 111,596.62 54.153 165749.615 
3000 225,681.51 77.942 303623.51 

 

 



 

 

Appendix Table A-8: MASS CUDA execution performance of Social Net 

Simulation Size Total Simulation Time 
100 316.73 
150 425.136 
200 568.272 
250 615.743 
500 1268.705 
750 1781.945 

 

Appendix Table A-9: FLAME GPU 2 execution performance of Social Net 

Simulation Size Total Simulation Time 
100 5.166 
150 6.214 
200 8.131 
250 8.461 
500 14.491 
750 20.605 

 
  



 

 

APPENDIX B. SOURCE CODE DETAILS 
B1. MASS CUDA Library Source Code 

The source code for the MASS CUDA Library can be found at 

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/main/. As of submitting this 

project report, the latest version is v0.7.2. Specific versions can be found in the Branches and 

Tags. 

 

B2. Getting Started 

Prerequisites: NVCC and C++ 17+ must be set. If running on our school's Juno server, no 

environment setup is needed. 

Building project: 

1. In the source code root folder, where the Makefile is located, use make develop to install all 

necessary dependencies for library development and testing. 

2. Type make build to compile the library. 

3. When testing each modification, after executing step 2, type make test to build the test 

program and execute unit tests. The source code for the tests is located in the test folder. 

 

For more information, please visit the source code repository and read the README. The user 

manual is available on the Wiki page. Additionally, we have developed benchmark applications 

to benchmark the MASS CUDA Library as described in Section 5.1, which are detailed below. 

 

 

 

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/main/


 

 

B3. MASS CUDA Application Source Code 

The source code for the MASS CUDA applications can be found at 

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/main/. Execution details 

for each application are provided in their respective folders. 

 

Details About Each Application 

1. AppTemplate: A template for developing new applications. Details are in the README and 

should be followed. 

2. Game of Life: 

a. GameOfLife_GPU and GameOfLife_MASS: Not tested, and details are unknown. 

b. GameOfLife_dev: Only compatible with MASS CUDA versions < v0.7.0. 

c. GameOfLife_PlaceV2: The newest implementation, compatible with MASS CUDA 

versions v0.7.0+. 

3. Heat2D: 

a. Heat2D_FLAME: The FLAME GPU 2 implementation of Heat2D. 

b. Heat2D_MASS: Compatible with MASS CUDA versions < v0.7.0. 

c. Heat2D_PlaceV2: The newest implementation, compatible with MASS CUDA versions 

v0.7.0+. 

4. SocialNetwork: 

a. SocialNetwork_FLAME: The FLAME GPU 2 implementation. 

b. SocialNetwork_PlaceV2: The newest implementation, compatible with MASS CUDA 

v0.7.0+. 

5. SugarScape: 

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/main/


 

 

a. SugarScape_GPU: Not tested and unknown. 

b. SugarScape_MASS: Compatible with MASS CUDA versions < v0.7.0. 

c. SugarScape_MASS_2024 and SugarScape_MASS_2024_Aligned_FLAME: The newest 

implementations, with the latter aligned as closely as possible to the FLAME GPU 2 

implementation. Both are compatible with MASS CUDA versions > v0.7.0. 

  



 

 

APPENDIX C. LIBRARY CLASSES INVOKE FLOW 

 
Figure C1.1 Main classes invoke flow of MASS CUDA Library 

 

The MASS CUDA Library exposes three main classes (APIs) to users: MASS, Agents, and Places. 

When any of these APIs are invoked, they call the Dispatcher class, which then executes the 

corresponding kernel functions on the device to achieve parallel computation. Therefore, when 

developing MASS CUDA, it is recommended to start by exploring the MASS class and following 

the function invocations to the Agents and Places classes to better understand the library’s structure. 

 

Below is a brief description of each class in MASS CUDA: 

1. Agent: Represents an individual agent object. 

2. AgentAttributes: Stores the default attributes of an agent that are used in MASS CUDA. 

3. Agents: The API exposed to users for managing all agents on the device. 

4. CudaEventTimer: Records the time the GPU is invoked in a specific portion of the program. 

5. DeviceConfig: Contains configurations and functions for objects on the device. 

6. Dispatcher: Contains all kernel functions that are executed on the device and is invoked by 

other classes. 

7. Mass: The API exposed to users for starting and ending simulations. 



 

 

8. Place: Represents a single place object. 

9. PlaceAttributes: Stores the default attributes of a place that are used in MASS CUDA. 

10. Places: The API exposed to users for managing all places on the device. 

 


