

Construction of Agent-Navigable

Multi-Dimensional Spaces from File Inputs

Yuna Guo

Term report of work done as CSS600

Master of Science in Computer Science & Software Engineering

University of Washington, Bothell

Spring 2020

Project Committee:

Munehiro Fukuda, Ph.D., Committee Chair

Min Chen, Ph.D., Committee Member

Robert Dimpsey, Ph.D., Committee Member

1. Introduction

Parallel data analysis has been widely used in Big Data Analytics as increasing amount of

data volumes and demand in processing speeds. A variety of software tools such as MapReduce,

Spark and Storm have been used by scientist for easy parallelization of user applications, with

key concepts of data streaming through analyzing units (e.g., map/reduce function in MapReduce,

lambda expressions in Spark, and spouts/blots objects in Storm). However, these big data tools

flatten and shuffle dataset and the structure of data couldn’t be maintained. In contrast, scientific

datasets usually have complex structures, such as array or graph. For example, climate analysis

uses NetCDF datasets that maintain data in a multi-dimensional array and should be scanned

several times to detect a climate change. Thus, developing tools of data streaming which

preserve a data structure in distributed memory is necessary [1].

To apply parallel big data analysis in specific scientific dataset, Prof. Fukuda’s group

developed parallel agent-based models (ABMs) simulator named multi-agent spatial simulation

(MASS) to apply agent-based data discovery in various scientific fields, such as bioinformatics,

climate science, space cognition and environmental data science. The current specification of the

MASS library includes two classes: Places and Agents. The Places are simulation spaces with a

multi-dimensional array that is distributed over a cluster system. The Agents are simulation

entities with a set of mobile objects that can migrate over Places. MASS library performs parallel

execution of Places and Agents using multi-thread communicating processes forked over cluster

nodes through JSCH and connected via TCP sockets. Prof. Fukuda’s group has successfully

applied MASS library to parallel data analysis – a global-warming analysis based on NetCDF

climate data [2] and biological network motif search [3]. These previous work facilitates our

development of agent-based algorithms and infrastructure technologies to identify more features

in agent-based data discovery.

However, the only data structure that is supported by current MASS is multi-dimensional

distributed array. In order to handle different data structures such as contiguous space, trees or

graphs, we should derive Space, Tree and Graph class from Places. In this individual study, I

focused on designing Space class from MASS Places. Compared to current Places, the Space

class is a continuous space which creates Place dynamically based on input file. The contiguous

multi-dimensional Space class is able to distribute data points in an optimal way and be used in a

variety of applications, such as Closest Pair Of Points and Voronoi Diagrams.

2. Progress

The Space has been implemented and tested in the application of Closest Pair of Points.

The modified MASS with Space class was successfully executed in single node, and the program

was under debugging in multi-nodes. I expect to finish the implementation and testing of Space

MASS in multi-nodes in next quarter.

3. Methods

By deriving contiguous Spaces from Places, the MASS reads input file directly and

distributes a set of given data points over a geometric space.

1) SpacePlaces.java : The SpacePlaces class is derived from Places, which reads data points from

input file. In this class, SpacePlace object is instantiated and the number of SpacePlace is

determined by the input data point. In addition, the fineness of SpacePlace object could be set by

user defined granularity.

public SpacePlaces extends Places (int handle, String classname, int
dimension, int granularity, String filename)

- classname: user’s class name (e.g. SpacePlace)

- dimension: int
- granularity: int
- filename: String
- Places : SpacePlace[]
- numOfPlace : int (equals number of points)

public SpacePlace extends Place (Object args)

-index: int[]
-coordinates: double[]
-min: double[]
-max: double[]
-agentsMap : Hashtable<Integer, Set<Integer>>
<key, value> = <(linear sub-index of sub-place), (a set of agents which
reside in the sub-place)>

+ setIndex(int[] index)
+ addAgent(int agentId, int[] subIndex)
(add agent to the HashMap)

+ removeAgent(int agentId, int[] subIndex)
(remove agent from HashMap)

Internal Design: The internal structure of Space is the same as Places, but the init_algorithm

identifies the original data space in a continuous manner. Each Spaces constructs SpacePlace

which is partitioned into sub-SpacePlace. The finesse of sub-SpacePlace is defined by the

granularity. Since the SpacePlace has a range in each dimension, agent migration must be

recorded to detect collision. A HashMap will be used to trace agent and its corresponding sub-

index in Place. If another agent moves to the same sub-SpacePlace, two agents collide. The

current SpacePlaces is able to read data points from text file.

2) SpaceAgent.java: The SpaceAgent class is derived from Agent, which includes its coordinates,

corresponding index and sub- index of Place. The function of SpaceAgent includes spawn, kill,

migrate and propagate.

public SpaceAgent extends Agent(Object args)

-originalCoordinates: double[]
-nextCoordinates: double[]
-index: int[]
-subIndex: int[]

+ spawnAgent()
+ killAgent()
+ migrateAgent()
+ propogateAgent()

Internal design: The internal structure of SpaceAgent is the same as Agent. The attributes include

originalCoordinates which is the input data point, nextCoordinates which is the location agent

migrating and subIndex which is the sub-index of Place it resides. There are two patterns of

agent migration – Moore and Von Neumann. For example, in 2D space, the agent migrates in

eight directions (N, S, W, E, NE, NW, SE and SW) in Moore-Neighbor or in four directions (N,

S, W, E) in Von Neumann-Neighbor. In migrateAgent(), agent migrates only in Moore-Neighbor;

in propagateAgent(), agent migrates in Moore-Neighbor and Von Neumann-Neighbor alternately.

4. Results

Comparison of Space MASS and original MASS

The continuous Space MASS library was tested using Closest Pair of Point and the

execution performance was compared to the original MASS library. Table 1 shows the results of

comparison between Space MASS and original MASS.

Table 1. Performance of MASS in Closest Pair of Points (single core)

 original MASS Space MASS

Input

points
of Places # of Agents

Execution Time

(ms)
of Places # of Agents

Execution Time

(ms)

256 points 999*798 2304 9214 17*17 2304 491

128 points 999*797 72918 19036 13*13 1152 365

64 points 999*797

>131672000

*

N/A 9*9 576 234

32 points N/A N/A N/A 7*7 288 173

16 points N/A N/A N/A 5*5 144 135

8 points N/A N/A N/A 4*4 72 109

4 points N/A N/A N/A 3*3 36 84

*java.lang.ArrayIndexOutOfBoundsException due to the # of agent in node exceeds capacity (n = 1000)

This result shows that the original MASS only executed successfully in 256 points and

128 points. When the input points = 64, as the points are more dispersed, more agents need to be

spawned until they collide, which exceeds the capacity of agents in each node. Therefore, the

original MASS is not suitable for dispersed input points. In addition, the execution time of 128

points is greater than 256 points because more agents need to be spawned for collision.

In Space MASS, this issue is avoided because the number of Places is dynamically

determined by the number of input points. Because the range of SpacePlace is continuous, fewer

Places and Agents are needed when there are fewer input points. And the execution time is

reduced as less Places and Agents are created.

Compared to original MASS, the execution time using Space MASS is about 20 times

faster in 256 points and >50 times faster in 128 points. And the number of Place and Agent

created in program is dramatically reduced. Overall, the Space MASS has a better performance

(less execution time and less memory usage) than the original MASS.

Comparison of migrate() and propagate() in Closest Pair of Points

Table 2. Performance of migrate() and propagate() in Closest Pair of Points (single core)

 propagate() migrate()

Input

points
of Agents Execution Time (ms) # of Agents Execution Time (ms)

256 points 1280 384 2304 491

128 points 640 265 1152 365

64 points 320 188 576 234

32 points 160 150 288 173

16 points 80 118 144 135

8 points 40 87 72 109

4 points 20 76 36 84

In Table 2, the execution time using propagate() method is shorter than migrate(). In

propagate(), agents are spawned in Moore Neighbor (n = 8) and Von Neumann Neighbor (n = 4)

alternately while agents are spawned in Moore Neighbor only in migrate() method. In migrate(),

more agents are created which increases execution time. To further improve the performance, a

boolean attribute could be added to the SpacePlace class which tracks whether the Place has been

visited by an agent which is spawned from the same original data point. In this way, agent will

only ‘spread out’ from the original point without ‘move back’ and less agents will be created.

5. Project Package

Right now all Source code can be found under the Project directory. Link to the

repository: https://drive.google.com/drive/u/2/folders/1xj3PTnUWqm5kFqTkzw2oCVmjjxqDROIv

6. Conclusion and Discussion

Conclusions

From the result for the Closest Pair of Points application, the execution performance of

Space MASS implementation outperforms original MASS. With this continuous multi-

dimensional Space class, users are able to distribute data points in an optimal way that minimizes

the number of Place and Agent. This functionality could be used in a variety of geometric

application, such as Closest Pair of Points and Voronoi Diagrams application.

Limitations and Future Work

Unfortunately, the current program was not able to execute in multi-nodes. When the

program was tested in two nodes, the connection was established successfully but the master

node was not able to receive message from remote node. I am trouble shooting this problem and

expect to include the multi-nodes execution with other applications in next quarter.

Space MASS gives the best performance when the input points are evenly distributed and

may not be suitable for clustered points. To solve this problem, a Tree class (e.g. quad/octo tree)

needs to be implemented which dynamically adds or deletes node. For example, a quad-tree

construction reads points and divides a space quarterly if a new point resides on a space that

includes another point and the division can be done in parallel.

https://drive.google.com/drive/u/2/folders/1xj3PTnUWqm5kFqTkzw2oCVmjjxqDROIv

In current Space MASS library, when the program runs in multiple nodes, each

computing node reads the entire input file. In order to read file more efficiently, each SpacePlace

should read/write file in parallel. For divisible file, such as text or CVS file, the text/CSV file can

be partitioned and stored at a different computing node’s /tmp which can be accessed by local

MASS process. For reading non-divisible file, such as NetCDF, each MASS process should be

set with a different offset and each MASS process jumps to its partitioned data.

The current Space MASS has only been tested by Closest Pair of Points. In order to test

the programmability and execution performance, it will also need to be verified using other

applications, such as computational geometry application (Voronoi Diagrams) and data science

application (e.g. KNN). The LOC and number of instances will be used to test the

programmability and the run time will be used to test the execution performance. In addition, the

programmability and execution performance of Space MASS needs to be evaluated in

comparison to Spark.

6. References

1. Munehiro Fukuda, Collin Gordon, Utku Mert, and Matthew Sell. Computational Framework

for Distributed Data Analysis. Computer. 53(3):16-25.

2. Jason Woodring MS, Munehiro Fukuda, Hazeline Asuncion, Eric Salathe. A Multi-Agent

Parallel Approach to Analyzing Large Climate Data Sets. In 37th IEEE International

Conference on Distributed Computing Systems;Atlanta, GA, June 2017:1693-48

3. Matthew Kipps WK, Munehiro Fukuda. Agent and Spatial Based Parallelization of Biological

Network Motif Search. In Proc. 17th IEEE International Conference on High

Performance Computing and Communication - HPCC 2015;New York, NY, August

2015:786-91

