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Abstract 

 

Construction of Agent-navigable Data Structure from Input Files 

 

Yuna Guo 

 

Chair of the Supervisory Committee: 

Dr. Munehiro Fukuda 

Computing and Software Systems 

 

The multi-agent spatial simulation (MASS) library is an agent-based parallelizing library 

for analyzing structured datasets over a cluster of computing nodes. The current version of 

MASS library supports distributed multi-dimensional arrays and graphs. In this capstone project, 

we aim to develop three distributed data structures in MASS, including Continuous Space, Quad 

Tree, and Binary Tree. First, we designed and implemented these three data structures. Second, 

we used two geometric applications – Closest Pair of Points and Voronoi Diagram to evaluate 

the programmability and execution performance of Continuous Space and Quad Tree. Third, we 

implemented a searching application – Range Search with Binary Tree. Thereafter, we measured 

programmability, execution time, and memory consumption for performance evaluation. In 

comparison to the original MASS or MASS Graph, the programmability result shows that all 

three implementations reduce LOC (line of codes), the number of classes, and the number of 

methods. The performance evaluation shows that all the three implementations reduce execution 

time and memory consumption for the applications. The project successfully carried out two 

achievements: (1) the Continuous Space and Quad Tree facilitate users apply MASS to 

geometric problem and (2) the Binary Tree allows users to apply a log N search and divide-and-

conquer algorithm to their applications.   
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Chapter 1. Introduction 

1.1  Background and Motivation  

Distributed data analysis has been widely used in big-data analytics as increasing amount 

of data volumes and demands in processing speeds. A variety of software tools such as MapReduce, 

Spark, and Storm have been used by scientist for easy parallelization of user applications. The key 

concept of data streaming is analyzing units (e.g., map/reduce functions in MapReduce, lambda 

expressions in Spark, and spouts/blots objects in Storm). To achieve the best performance, these 

tools read input and process data in parallel within multi-threaded computing cluster systems. 

However, the structure of data couldn’t be maintained as these tools flatten and shuffle dataset [1-

3]. Scientific datasets usually have complex structures, such as arrays, tree or graph, and they may 

not always fit data streaming supported by these software tools [4-5]. Therefore, it is necessary to 

develop tools of parallel data analysis which preserves data structures in distributed memory.  

Agent-based model (ABM) is a class of computing models for simulating the actions and 

interactions of agents within a system [6]. The ABM has been successfully applied to many 

applications, including transportation, ecological, and biological simulations [7-8]. Multi-agent 

spatial simulation (MASS), which is a parallel ABM simulator, distributes a given dataset by 

creating a multidimensional array of objects (Places) over a computing cluster, and simulates 

entities with a set of mobile objects (Agents) that migrate over Places. The MASS performs parallel 

execution of Places and Agents using multi-threaded processes over a cluster of computing nodes 

[9-10]. The MASS has been successfully applied agent-based data analysis on a structured data set 

in many scientific fields, such as biological networks, computational geometry, and environmental 

data analysis [11-13].  
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Our previous work has confirmed the feasibility of MASS in agent-based programming, in 

which MASS shows performance advantages in parallel data analysis in comparison to other 

available parallel data streaming tools in some types of applications [11-14]. However, there are 

still performance challenges. For instance, Gokulramkumar evaluated the performance of MASS 

in computational geometry applications in comparison to MapReduce and Spark [14]. In Closest 

Pair of Points (CPP) application, the MASS implementation outperforms MapReduce and has 

comparable performance to Spark. In Voronoi Diagram (VD) application, the MASS execution is 

slower than Spark and MapReduce, which is due to the huge size of Place objects created by MASS. 

In MASS, the Places are discrete grids where each Place has integer coordinates with an index 

interval of 1 in each dimension. If the number of geometric data points is small but their distances 

are large, a huge size of Places are instantiated but only a small portion of them contain data points, 

which wastes memory and slows down the execution. One strategy to solve this problem is to 

develop a continuous space of Places in which each Place covers a certain range of coordinates. 

Furthermore, in order to optimize the Place instantiation (e.g. avoid allocating multiple agents onto 

a particular Place), Quad Tree data structure is implemented.   

Beyond the Continuous Space and Quad Tree classes, users would like to use a more 

variety of data structures. To address their demands, we also implemented Binary Tree that is 

distributed over a cluster system. Although the Continuous Space and Quad Tree in MASS will 

improve the performance of the current MASS implementation by reducing the number of Places, 

if users would like to apply MASS on a data structure different from an array, it is still 

inconvenience as the users have to implement the data structure extending from Place in their own 

application. Therefore, it is necessary to implement other data structures in MASS which users 
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could use directly. As tree is used in various applications, including data storage, searching, and 

sorting algorithm [15], we firstly focus on the simplest tree structure - Binary Tree. 

1.2   Research Objective  

This project aims to implement and evaluate three data structures in MASS: (1) 

Continuous Space, (2) Quad Tree, and (3) Binary Tree.  

1. Design and implementation of agent-navigable and distributed data structures. We 

aim to derive Continuous Space, Quad Tree, and Binary Tree from Place in MASS 

library, which will facilitate users to apply MASS in structured data analysis.  

2. Evaluation of the programmability and execution performance. We aim to improve 

the programmability and execution performance of applications, particularly testing 

Continuous Space and Quad Tree in geometric problems (e.g., Closest Pair of Points and 

Voronoi Diagram) and Binary Tree in searching problems (e.g., Range Search).  

1.3   Project Overview 

In order to achieve these project objectives, we modify MASS library by deriving 

Continuous Space, Quad Tree, and Binary Tree from Place class. In the Continuous Space class, 

instead of a discrete grid, the Place is a continuous geometric space with user-defined range. 

Similarly, in the Quad Tree, the range of each Place is optimized automatically by program 

based on input data distribution. The Place is divided into sub-places and agents in sub-places are 

recorded by an agentsMap, which is maintained using a hash table whose key/value pair is a 

linear index of sub-place and the corresponding agent reference. Both Continuous Space and 

Quad Tree classes are verified with the Closest Pair of Points and the Voronoi Diagram. In 

Binary Tree, the tree node is the Place that is added dynamically. The Binary Tree data structure 
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is verified with Range Search. We evaluate the implementation of above three data structures 

using three metrics: programmability, execution time, and memory usage.   
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Chapter 2. Related Work  

In this chapter, we discuss the current approaches for big-data analysis and challenges of 

these tools, including data-streaming approach (e.g., MapReduce, Spark, and Storm) and agent-

based model (ABM) (e.g., Repast Simphony and FLAME). We also introduce our own parallel 

ABM simulator – MASS and its applications.  

2.1 Data-streaming approach 

 Hadoop MapReduce is a framework for processing and generating large datasets in a 

parallel and distributed way. MapReduce is composed of two phases: Map and Reduce. Key-

value pairs are the basic data structure in MapReduce. Before the Map operation, the master 

node firstly splits a dataset and distributes it across the computing nodes. The Map function is 

performed to <key, value> pairs and produces a set of intermediate <key, value> pairs. The 

results are grouped and redistributed across the cluster. The Reduce phase applies a Reduce 

function to each list value and produces a single output. All these processes are executed in 

parallel [1, 16]. Because MapReduce writes intermediate output to disk between each stage, the 

costly I/O operation reduces processing speed. Spark is a framework to extend MapReduce 

model for performing fast distributed computing by using in-memory primitives. The key 

element of Spark is Resilient Distributed Datasets (RDDs), which is an immutable distributed 

collection of objects that can be operated on in parallel. Spark allows a user program to load data 

into memory and query it repeatedly, which is good for online and iterative processing [2, 17]. 

Since creating an RDD and caching it causes memory consumption, fine tuning of RDD 
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partitions is required to ensure that the data destined for each task fits in the memory available 

for that task.  

 Although these data streaming approaches are powerful tools for parallel data analysis 

and easily used by scientists who are non-computing specialists [1-3, 16-17], not all scientific 

data could fit into the in-memory structure of these tools and it takes substantial effort for users 

to apply these tools on scientific data analysis [4-5]. For example, the climate data analysis uses 

the NetCDF format which is a multi-dimensional array. SciHadoop could be used to partition a 

file into small blocks and to group them for MapReduce for processing them as an unstructured 

dataset. However, the original data structures could not be maintained, and the spatial 

relationships and patterns are lost after data flattening and shuffling [11]. Thus, it is important to 

develop data analysis tools which maintain a structured dataset in distributed memory and 

analyze unit over the structured data.  

2.2 Agent-Based Model  

ABM is a system that consists of a collection of autonomous decision-making entities 

called agents. ABM has been used successfully to simulate real-life problems in many 

disciplines, including biology, ecology, and economics.  

The Recursive Porous Agent Simulation Toolkit (Repast) is a free and open source 

simulator that was originally developed by the University of Chicago in 2000, which is now able 

to handle large-scale agent simulation application development. Repast Simphony was built on 

Repast 3 with focusing on well-factored abstractions.  The core concept and object in Repast 

Simphony is called Context, which is a simple container of any type of object. Contexts are 

containers for agents and projections. Agents join or leave Contexts freely and can 
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simultaneously exist in multiple Contexts and sub-Contexts. Projection defines the relationship 

between agents in a given context, including multidimensional discrete grids, multidimensional 

continuous spaces, networks, and geographical information systems (GIS) spaces. The key 

concept of continuous space projection is similar to the Continuous Space implementation in 

MASS, in which an agent location is represented by floating point coordinates. However, the 

Repast Simphony does not support loading a continuous space from an input file and the 

continuous space could not be sub-divided into sub-spaces. Besides the continuous space, Repast 

Simphony also supports graphs and networks as a projection with methods, such as addVertex 

and addEdge. The Repast Simphony supports loading a graph from an input file with limited 

formats including UCINet’s DL format and Excel format, but it does not support parallel I/O 

which is necessary for huge data inputs. Additionally, Repast Simphony systems uses Eclipse as 

its primary development environment and leverages Eclipse’s plug-in architecture to provide a 

set of development options - tools, views, and perspectives for creating Repast-specific model 

components [18-19]. However, the major drawback of Repast Simphony is that it does not 

support distributing data over a cluster system.  

Flexible Large-scale Agent Modeling Environment (FLAME) is another major ABM that 

can run on high performance computers. In FLAME, agent models are written in a combination 

of XML and C languages as basis. Each agent acts as a finite-state machine, whose state is 

changed via a set of transition functions. Although FLAME is able to run a simulation with up to 

106 agents, agents are not capable of migrating between processes and each agent maintains the 

entire dataset independently. Because the FLAME uses broadcast communication for agent, 

agents can not directly send messages to each other, and the receiving agent must filter messages 
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that it only needs to read [8, 20]. Due to these limitations, FLAME is not suitable for data 

discovery and analysis.  

2.3 MASS library 

MASS (Multi-Agent Spatial Simulation) is an agent-based parallelizing library that 

simulates real-life problems, including bioinformatics, climate science, space cognition, and 

environmental data science [11-14, 21]. As shown in Figure 2.1, the two main components in 

MASS are Places and Agents. The Places are simulation spaces with a multi-dimensional array 

that is distributed over a cluster system. The Agents are simulation entities with a set of mobile 

objects that can migrate over Places. Each computing node has multiple threads of execution for 

Places and Agents. MASS library performs parallel execution by distributing a multidimensional 

array of Places across computing nodes and migrating Agents from one Place to another. The 

Places and Agents are further parallelly executed by multi-thread communicating processes 

forked over cluster nodes through JSCH and connected via TCP sockets [10, 22]. 

 

Figure 2.1 MASS library data model [10].  
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The performance of MASS has been evaluated in six benchmark programs, including 

Closest Pair of Points, Voronoi Diagram, and Range Search.   

(i) The Closest Pair of Points is to find out the closest pair of points in a metric space of n 

points, which is the basis of many complex computational geometry problems and is used 

in many real-world applications, such as collision detection in air traffic [23]. The most 

common algorithm to solve this problem is the recursive divide and conquer, which is 

also used in parallelization with MapReduce and Spark [23-24]. In MASS, Places are 

created as a 2D array and Agents propagate across Places. Gokulramkumar implemented 

the Closest Pair of Points by three platforms which shows Spark as the fastest execution, 

MapReduce as the slowest, and MASS in the middle of them [14]. In addition, Wenger 

and Acoltzi found that the Repast Simphony and JCilk improve the performance of the 

application by using multithreading.  

(ii) The Voronoi Diagram over a set of 2D points is a collection of regions that divide up the 

plane, in which each region corresponds to one of the points and all the points in one 

region are closer to the corresponding point than any other point [25]. Its application 

includes networking, robot navigation and computer graphics [26-28]. The basic 

implementation strategies in MapReduce, Spark, and MASS are the same as the Closest 

Pair of Points. In Gokulramkumar’s work [24], the result shows Spark outperforms 

MapReduce and MASS in single computing node. The execution time of MASS reduces 

when the size of computing nodes increases [14].  

(iii) The 2D Range Search problem is to search for points that reside in a querying rectangle 

region (range) from a set of N points in a plane [23]. The algorithm in MapReduce and 

Spark is divide-and-conquer. In MASS, Places are created to mimic a KD tree using the 
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graph class and Agents traverse Places to search for the points in the range. In Paronyan’s 

work, the execution time in MASS is slightly shorter than the execution time in 

MapReduce and Spark and the execution time reduces when the size of computing nodes 

increases [13].  

The Places in the current MASS implementation is a discrete multi-dimensional array and 

one drawback for geometric applications (e.g. Closest Pair of Points and Voronoi Diagram) is that, 

when the distance between data points increases, the execution time dramatically increases as more 

iterations of agent’s propagation is required for collision [14]. In order to develop more compact 

Places, we implement the Continuous Space and Quad Tree data structures in which the Places 

have continuous range. In addition, to improve the MASS performance in searching and sorting 

problems, such as Range Search, we develop Binary Tree which allows users to apply divide-and-

conquer algorithms in MASS.  
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Chapter 3. 

Implementation of Agent-navigable Data Structures 

This chapter describes three agent-navigable data structures that have been implemented 

in MASS library, including (1) Continuous Space, (2) Quad Tree, and (3) Binary Tree. In 

addition, three application programs, including the Closest Pair of Points, Voronoi Diagram, and 

Range Search, are implemented for the verification purposes of these data structures. The Closest 

Pair of Points and Voronoi Diagram are used for testing the Continuous Space and Quad Tree. 

The Range Search is for testing the Binary Tree.  

3.1 Continuous Space  

3.1.1 Basic structure of Continuous Space  

Continuous Space is basically structured in 2D as shown in Figure 3.1. In comparison to 

a discreate multi-dimensional array of Places that is supported by current MASS, the Continuous 

Space allows users to create more compact Places. The Place with continuous range facilitates 

applying MASS in solving geometric problems. The Continuous Space is a distributed matrix 

whose elements (SpacePlace objects) are allocated to different computing nodes. Each 

SpacePlace covers a continuous range of coordinates with a global index and partitioned into 

sub-places. As shown in Figure 3.1, the user-defined granularity is 2 and the Place is partitioned 

into two in each dimension (grey dash line). As a 2D space, each place contains four sub-places. 
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Agents are allocated to the corresponding Place according to the coordinates. For example, an 

agent with coordinates [62, 28] locates in the upright sub-place in Place (x:[60, 70), y: [20, 30)).  

 

Figure 3.1 The Continuous Space model. 

3.1.2 Classes in Continuous Space 

The major classes in Continuous Space include (1) SpacePlaces, (2) SpacePlace, and (3) 

SpaceAgent. SpacePlaces is derived from Places that manages all array elements (SpacePlace 

object) within the space. The internal structure of SpacePlaces is the same as Places, but it 

identifies the data space in a continuous manner. Derived from Place, the SpacePlace is the base 

class from which users can derive a specific SpacePlace object in their application. Derived from 

Agent, the SpaceAgent is the base class from which users can define an application specific 

Agent object that allocates in the user-defined SpacePlace object. The key variables / 

constructors / methods of these classes are shown in Table 3.1.  
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Table 3.1  Key parameters / constructors / methods in Continuous Space 

Class Variables / Constructors / methods 

SpacePlaces 
• public SpacePlaces(int handle, String className, int dimensions, int 

granularity, String inputFile, Object argument) 

An array of SpacePlace objects is instantiated by reading input file. The size of data points is 

automatically calculated by the program. In addition, the SpacePlaces also support creating 

SpacePlaces with user defined size. The SpacePlace objects are accessed and processed in 

parallel in multiple computing nodes. 

SpacePlace 
• int granularity 

The granularity is defined by the user that sub-divides Place into sub-places. 

• Hashtable<Integer, Set<Agent>> agentsMap 

The key/value pair are the linear index of sub-place and the agent’s reference. If an 

agent migrates to a different Place or a different sub-place in the same Place, the hash 

table in the destination Place registers the new sub-place index and agent’s reference. 

SpaceAgent 
• double[] currentCoordinates 

The coordinates where the agent locates currently. 

• migrate(double[] coordinates) 

Agent migrates to the corresponding coordinates 

• propagate(Object argument) 

Agent spawns in Moore-Neighbor (four directions: N, S, W, E) and Von Neumann-

Neighbor (eight directions: N, S, W, E, NE, NW, SE and SW). 

3.2 Quad Tree  

3.2.1 Basic structure of Quad Tree  

For Continuous Space, agents might allocate in the same sub-place when data points are 

not evenly distributed. To solve this problem, we design the Quad Tree class which reads data 

points from a file and divides a space quarterly if a new point resides on the space that includes 

another point [27]. The basic structure of Quad Tree is shown in Figure 3.2. To distribute data 
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over a cluster system, the Quad Tree is partitioned into different computing nodes according to 

its spatial coordinates. When MASS is initialized, the program in the master node creates a 

boundary map that includes the boundary of Quad Tree in each computing node and send the 

map to all nodes. Each computing node reads input data items in parallel and build its local Quad 

Tree with the data items within the boundary. When an agent migrates, the program firstly 

searches for the destination QuadTreePlace in local computing node. If the local computing node 

contains the destination QuadTreePlace, the Agent migrates to the destination directly; if the 

local computing node does not contain the destination QuadTreePlace, it searches for the 

destination computing node using the boundary map and send a message of migration to the 

destination computing node. 
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(a) 

 

(b) 

Figure 3.2 The Quad Tree model (a) spatial structure (b) tree structure. 
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3.2.2 Classes in Quad Tree  

The major classes in Quad Tree include (1) QuadTreePlaces, (2) QuadTreePlace, and (3) 

QuadTreeAgent. QuadTreePlaces is derived from Places which manages the local Quad Tree 

that is composed of tree nodes (QuadTreePlace objects) in each computing node. Derived from 

the Place, the QuadTreePlace is the base class from which users can derive a specific 

QuadTreePlace object in their application. Derived from the Agent, the QuadTreeAgent is the 

base class from which users can define a specific Agent object that allocates in the user-defined 

specific QuadTreeAgent objects in their application. The key variables / constructors / methods 

are shown in Table 3.2.  

 

Table 3.2 Key parameters / constructors / methods in Quad Tree 

Class Variables / Constructors / methods 

QuadTreePlaces 
• public QuadTreePlaces(int handle, String className, int dimensions, String 

inputFile, int granularityEnhancer, Object argument) 

In tree initialization, QuadTreePlaces instantiates user-defined QuadTreePlace object 

by creating tree node (QuadTreePlace) using data points that are in the boundary of 

computing node. Only leaf node contains data point.   

• QuadTreePlace root 

Root of the Quad Tree in current computing node.  

QuadTreePlace • Vector<Integer> treeIndex 

A global index for the QuadTreePlace, in which the first integer represents the 

computing node rank and the following integers represent the location in the 

corresponding level. e.g. In Figure 3.2, for index of 414,  1) the first digit 4 means the 

Place is in node 3; 2) the second digit 1 means it is in the bottom left tree node in the 

second level; 3) third digit 4 means it is in the top right node in the third level.  

• Hashtable<Integer, Set<QuadTreeAgent>> agentsMap 

The key/value pair are the linear index of sub-place and the Agent’s reference 
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• void subDivideTreePlace(); 

The place is partitioned into sub-places and the size of the sub-place is determined by 

the deepest tree node in all computing node, e.g. in Figure 3.2, Quad Tree is created 

in each computing node and the deepest tree nodes are in node 3 with index of 411-

414 and 441-444 whose size is [10, 10]. Therefore, all tree nodes are partitioned into 

sub-place with size of [10, 10]. 

• Split() 

Split the tree node into four sub-tree nodes (topLeft, topRight, bottomLeft, 

bottomRight). 

• Insert() 

Inserts the data point to the current tree node. If the tree node is a leaf without data 

point, add data point directly; if the tree node is leaf which contains a data point, split 

the tree node and add data point to the corresponding sub-tree. If the tree node is not 

a leaf, insert the data point to the corresponding sub-tree.   

QuadTreeAgent • double[] currentCoordinates 

The coordinates where the Agent locates currently 

• migrate(double[] coordinates) 

Agent migrates to the corresponding coordinates 

• propagate(Object argument) 

Agent spawns in Moore-Neighbor (four directions: N, S, W, E) and Von Neumann-

Neighbor (eight directions: N, S, W, E, NE, NW, SE and SW). 

 

3.3 Binary Tree 

3.3.1 Basic structure of Binary Tree  

The Binary Tree is implemented to facilitate the user to apply a log N search and a 

divide-and-conquer algorithm in MASS. As shown in Figure 3.3, the tree nodes are 

BinaryTreePlace objects which havetwo children BinaryTreePlace objects. Reading data from an 

input file, the BinaryTreePlace objects are initialized and distributed among the cluster. Although 

each binary tree is local, all computing nodes share a boundary map and use global indices for 
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the BinaryTreePlace object. Agents are instantiated to traverse over the tree node with user 

defined algorithm.  

 

 

Figure 3.3 The Binary Tree Model. 

3.3.2 Classes in Binary Tree  

The major classes of Binary Tree include (1) BinaryTreePlaces and (2) BinaryTreePlace. 

Derived from the Places, the BinaryTreePlaces manages local Binary Tree that is composed of 

tree nodes in each computing node. Derived from the Place, the BinaryTreePlace is the base 

class from which users can derive a specific BinaryTreePlace object in their application. The key 

variables / constructors / methods are shown in Table 3.3.  
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Table 3.3 Key variables / constructors / methods in Binary Tree 

Class Variables / Constructors / methods 

BinaryTreePlaces 
• public BinaryTreePlaces(int handle, String className, String inputFile, 

Object argument) 

The BinaryTreePlaces instantiates user-defined BinaryTreePlace object by creating 

tree node using data points that are in the boundary of current computing node.  

• init_master(Object argument) 

The master computing node firstly reads all data and calculates boundaries of 

computing nodes which evenly partitions the data points. The boundary map is sent 

to all computing nodes. The master node constructs its local binary tree and send 

the message of tree initialization to remote nodes.  

• init_all(Object argument) 

All computing nodes read input in parallel and build the local binary tree 

using data points within its local boundary. .  

 

BinaryTreePlace 
• Data data 

A Data object to keep data information. 

• BinaryTreePlace left, right; 

The sub-trees of the current tree node. 

• int[] index 

A two-dimension integer array is used for the indexing system. As shown in Figure 

3.3, the first dimension is the rank of the computing node and the second dimension 

is the local index that assigned sequentially.   

 

3.4 Application programs 

3.4.1 Closest Pair of Points 

The Closest Pair of Points is implemented by the Continuous Space and Quad Tree. By 

reading data points from a input file, the Places are created as a 2D space and agents are initially 

allocated to the corresponding Places according to the coordinates of data point. Agents 

propagate like a water ripple over Places. The propagation behavior of the Agent is mimicked by 
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spawning Agents in the Von Neumann and Moore neighborhood pattern alternatively. 

Eventually ripples collide and the source points from the first collision are identified as the 

closest pair of points (Figure 3.4). Listing 3.1 shows the algorithm of computing Closest Pair of 

Points which is implemented by Continuous Space. 

 

  

Figure 3.4 Agents propagate and collide in Closest Pair Of Points. 
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Listing 3.1 Algorithm of computing Closest Pair of Points 

1 public void computeClosestPairOfPoints() { 

2  create SpacePlaces places; 

3  create SpaceAgents agents; 

4  while closest pair is not found { 

5         agents.callAll(ClosestPairAgent.PROPAGATE);  

6         agents.manageAll(); 

7  

8         agents.callAll(ClosestPairAgent.MIGRATE); 

9         agents.manageAll(); 

 

10         agents.callAll(ClosestPairAgent.KILL_DUPLICATES); 

11         agents.callAll(ClosestPairAgent.KILL_PARENT); 

12         agents.manageAll(); 

13 

14         Object[] allPairs = agents.callAll(ClosestPairAgent.COLLECT_PAIRS, 

null); 

15         for each element in allPairs: 

16   search for the pair which has the minimum distance; 

17   if the pair is found, return the pair; 

18  } 

19 } 
 
// Note: ClosestPairAgent is the application specific SpaceAgent class 

 

As shown in Listing 3.1, SpacePlaces creates a 2D array of ClosestPairPlace (application 

specific SpacePlace class) objects (line 1). The size of places is √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 × 

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 . SpaceAgents are instantiated by allocating ClosestPairAgent 

(application specific SpaceAgent class) objects in the corresponding Place according to the 

coordinates of their source data points (line 2). User defined functions in Agent and Place 

instances are iteratively called until the closest pair is found. In ClosestPairAgent.PROPAGATE 

(line 5), agents are spawned in Moore neighborhood pattern if its generation is even or in Von 

Neumann neighborhood pattern if its generation is odd. By calling ClosestPairAgent.MIGRATE 

(line 8), the spawned agents migrate to the destination place. In 
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ClosestPairAgent.KILL_DUPLICATES (line 10), each place contains a hash table which 

key/value pair is sub-index/footprints of visited Agents. If an Agent migrates to a place which 

has been visited by another agent from the same source point, the Agent will be killed 

immediately. In ClosestPairAgent.KILL_PARENT (line 11), Agents which have already 

spawned are killed. In ClosestPairAgent.COLLECT_PAIRS (line 14), the collision of Agents is 

defined as more than one Agents reside in the same sub-place. By this method call, all collision 

agents are returned as PairOfPoints objects. The closest pair of points is identified by calculating 

the distance of Agent’s source point.  

3.4.2 Voronoi Diagram  

The Voronoi Diagram is implemented by the Continuous Space and Quad Tree. The 

program reads input points and creates a 2D array of VoronoiPlace which is an application 

specific SpacePlace. As shown in Figure 3.5, Agents are initialized at the coordinates of input 

data points which represent the original Voronoi sites (p1, p2…). Agents propagate from the 

initial site and eventually collide at the perpendicular bisector of corresponding source points 

which are the Voronoi edges [25, 29].  
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                                        Figure 3.5 Agents propagate and collide at Voronoi edges. 

 

• computeVoronoiDiagram() 

The computeVoronoiDiagram() is the function which reads input data points, computes 

and outputs a Voronoi diagram. The output of Voronoi diagram is a HashMap<Point, 

List<ParametricLine>>, in which the Point is the source point and the List<ParametricLine> is a 

list of all perpendicular bisectors of that source point. The algorithm of Voronoi Diagram is 

shown in Listing 3.2. The PROPAGATE (line 7), MIGRATION (line 10), KILL_DUPLICATE 

(line 13) and KILL_PARENT (line 14) functions are the same as the functions in the Closest Pair 

of Points. While in COLLECT_PAIRS (line 17), the collision occurs in two cases: 1) Agents 

reside in the same sub-place; 2) Agents reside in the sub-places that are neighbors and Agents 

migrate across each other (Figure 3.6). The algorithm of collecting pairs is shown in Listing 3.3. 

In order to detect a collision in both cases, each place maintains a HashMap of footprint which 

key/value is the sub-place index/a set of source points of agents that visited the sub-place. In 

each iteration, Agents in collision are collected and their source points are returned as pairs to the 

main program. Then the collided Agents are killed immediately.  

p4 

p1 

p2 

p3 
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Listing 3.2 Algorithm of Voronoi Diagram 

1 private HashMap<Point, List<ParametricLine>> edges; 

2 private HashMap<PairOfPoint, <ParametricLine>> allpairs; 

3 public void computeVoronoiDiagram() { 

4        create SpacePlaces places; 

5        create SpaceAgents agents; 

6        while (nAgents() > 0) { 

7       agents.callAll(VoronoiAgent.PROPAGATE); 

8  agents.manageAll(); 

9 

10  agents.callAll(VoronoiAgent.MIGRATION); 

11  agents.manageAll(); 

12 

13  agents.callAll(VoronoiAgent.KILL_DUPLICATES); 

14  agents.callAll(VoronoiAgent.KILL_PARENT); 

15  agents.manageAll(); 

16  

17  Object[] pair = agents.callAll(VoronoiAgent.COLLECT_PAIRS); 

18  agents.manageAll(); 

19 

20        for each pair in pairs: 

21  if allPairs does not contain the new pair: 

22       all each source point to edges with ParametricLine of Slope  

=Integer.MAX_VALUE; 

23  else if allPairs contains the new pair which only show once: 

24       add each source point to edges; 

25       calculate the perpendicular bisector and add it to edges; 

26  else if the new pair shows greater than two times: 

27       continue; 

28 

29         sort edges; 

30         outputVoronoiEdges(); 

31 } 

// Note: ClosestPairAgent is the application specific SpaceAgent class 

 

 

Figure 3.6. Agents collide in the same sub-place or neighbor sub-place. 
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Listing 3.3 Algorithm of collecting pairs 

1 public void collectPairs() {         

2        List<PairOfPoints> pairs = new ArrayLIst<>(); 

3        for each sub-place in current place: 

4  if footprint.size() <=1 

5         continue; 

6  else  

7         if footprint.size() <= 3  

8   add all pair combinations of the three source points; 

9         else  

10   search for the source points that generate valid Voronoi vertex and  

11   return them as pairs; 

12           

13   kill all collision agents; 

14              return pairs; 

15    } 

 

• outputVoronoiEdges() 

The algorithm of output Voronoi diagram is shown in Listing 3.4. It takes 

HashMap<Point, List<ParametricLine>> sortedEdges as an input, and an output Voronoi 

diagram as HashMap<Point, List<Segment>> vdOutput. The sortedEdge is to sort 

List<ParametricLine> in order of the degree to the source point. By sorting edges, the 

intersection of neighbor edges would be the vertex. By calculating all vertexes, two neighbor 

vertexes form a segment which is a Voronoi edge. For vdOutput, the Point is the source input 

point and the List<Segment> is a list of segments associated with the point (line 1). Furthermore, 

the closed Voronoi region and open Voronoi region are treated differently. For a closed Voronoi 

region, we calculate the intersection of the first and the last line which is another vertex and 

connect it with its neighbor vertexes (line 4). If it is an open Voronoi region, the edges are re-

ordered and the two lines form the open area are the first and last line (line 8). For these two 

lines, one endpoint is the intersection with its neighbor, the other end point is either negative 

infinity or positive infinity that depends on the location of the source point.  
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Listing 3.4 Algorithm of output Voronoi diagram 

 

1 private HashMap<Point, List<Segment>> vdOutput 

2 public void outputVoronoiDiagram(HashMap<Point, List<ParametricLine>> edges) { 

3         for each <Point, List<ParametricLine>> in edges: 

4                if the lines form a closed region: 

5           calculate the intersection of neighbor lines; 

6            add neighbor intersections to segment; 

7           add segment to vdOutput; 

8    if the lines form an open region: 

9            reorder edges as the first and lst line are the lines in an open area; 

10           find the endpoints of the first and last line, add them to vdOutput; 

11 } 

 

 

3.4.3 Range Search  

The Range Search program is used to verify the implementation of Binary Tree. A KD 

tree is constructed to recursively partition k-dimensional space into 2 half-spaces. The 

application is tested by 2D data points. In the Data object, data items are compared in dimension 

of x- or y- coordinate alternatively for an element insertion. In each insertion, all data in the 

boundary of current KDtreePlace are sorted and the (data.size() / 2)th element is the key element 

that determines the bisector line of the KDtreePlace space. The data less than the key element are 

passed to the left KDtreePlace and the rest of data are passed to the right KDtreePlace. 

KDtreePlace are created by recursive partition until all data are inserted. Because the (data.size() 

/ 2)th element of current data is inserted in each insertion, the initial tree is always balanced.   

After the tree construction, an Agent is allocated to the root of the KD tree and traverse 

the branches that overlap with the searching range. As shown in Listing 3.5, Agents are called by 

RANGE_SEARCH (line 8), SPAWN (line 12), KILL_PARENT(line 15), and MIGRATE (line 

18) repeatedly until all Agents are killed. In the RANGE_SEARCH method, if the boundary of 
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current KDtreePlace overlaps with the searching range, we firstly check the data point in the 

KDtreePlace and return data point to the main program if it is in the searching range. Then the 

Agent spawns to its sub-trees. Otherwise, the boundary of the KDtreePlace doesn’t overlap with 

the searching range. The Agent is killed and the branches won’t be searched. In SPAWN, the 

Agent spawns two child Agents to its sub-trees. The identified data points are output as a text 

file.  

Listing 3.5 Algorithm of Range Search 

 

1     private Vector<Data> result = new Vector(); 

2     public void rangeSearch() { 

3     

4         create BinaryTreePlaces places; 

5         create Agents agents; 

6         while (number of alive agents) > 0{ 

7   

8    Object dataInRange = agents.callAll(RangeSearchAgent.RANGE_SEARCH, 

argument); 

9    agents.manageAll(); 

10    add dataInRange to result; 

11 

12    agents.callAll(RangeSearchAgent.SPAWN); 

13    agents.manageAll(); 

14 

15    agents.callAll(VoronoiAgent.KILL_PARENT); 

16    agents.manageAll(); 

17 

18    agents.callAll(RangeSearchAgent.MIGRATION); 

19    agents.manageAll(); 

20       } 

21 

22    } 

// Note: RangeSearchAgent is the application specific Agent class 
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Chapter 4. 

Programmability and Performance Evaluation  

In this chapter, we evaluate the implementations of Continuous Space and Quad Tree 

using two applications, including Closest Pair of Points and Voronoi Diagram. We also evaluate 

the implementation of Binary Tree using the Range Search application. Programmability, 

execution time, and memory consumption are measured for each application.  

4.1 Evaluation environment and procedures  

4.1.1 Input data format 

The input dataset for each application is stored in a text file in disk. The input data items 

are in the format of N-dimensional points. In the text file, each line represents a data point and 

the coordinates are integers or decimals separated by a space. The data points are generated by a 

generator program that randomly produces the required number of data points. All point 

coordinates are positive values. 

4.1.2 Evaluation criteria  

The evaluation for the implementation of Continuous Space, Quad Tree, and Binary Tree 

is conducted using three criteria: (1) programmability (2) execution time, and (3) memory 

consumption.  

(1) Programmability: The programmability is measured by the following four metrics: 
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• Boilerplate code – number of lines of code required to set up the parallel 

programming environment, which consists of initializing MASS, setting up a 

debugging level, and shutting down MASS when the computation is finished. 

• LOC – total number of lines of code. The LOC is calculated by using a plugin called 

Statistics within the IntelliJ IDE.  

• Number of classes – total number of java classes in the application program 

• Number of methods - the number of unique methods that launch parallel operations in 

the application in computing nodes. 

(2) Execution time: The execution time is defined as total run time of a program, which includes 

reading/writing file from/to the disk.  

(3) Memory consumption: The heap memory of a program is measured via valgrind.  

4.2 Programmability evaluation  

Programmability for the original MASS, Continuous Space MASS, and Quad Tree 

MASS are evaluated by implementing the Closest Pair of Points and Voronoi Diagram 

applications using the criteria that are described in 4.1.2. For all three MASS libraries, since the 

basic structure of MASS is not changed in the Continuous Space and Quad Tree classes, the 

boilerplate code is not changed.  

For the Closest Pair of Points and Voronoi Diagram application, as shown in Table 4.1 

and Table 4.2, the Continuous Space reduces LOC by 21% in the Closest Pair of Points 

application and 20% in the Voronoi Diagram application in comparison to the original MASS 

library. The Quad Tree implementation reduces LOC and number of classes for CPP and 

Voronoi Diagram at a similar level as the Continuous Space. This is because the Continuous 
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Space and Quad Tree are designed for a geometric space, the functions can be called directly by 

user’s application program, such as migrate (double[] coordinates) and propagate(). In addition, 

the original MASS instantiates Agent in every Place, the user has to implement a function to 

allocate Agents to a set of given data points. While in the Continuous Space and Quad Tree, an 

input dataset is passed as a parameter to the Agents constructor that instantiate agents at input 

data points.  

For the number of methods, the Closest Pair of Points application invokes comparable 

number of methods in Continuous Space and Quad Tree compared to the original MASS. In 

Voronoi diagram application, the number of methods reduces by the Continuous Space and Quad 

Tree compared to the original MASS. This is because the Continuous Space and Quad Tree in 

MASS provide specific functions for geometric applications that the user can call directly in their 

application.  

For the Range Search application, as shown in Table 4.3, the boilerplate code is not 

changed because the basic structure of MASS is the same in the Binary Tree. The Binary Tree 

reduces LOC by 39% and reduces the number of classes by 33% in comparison to the MASS 

Graph. This is because the Binary Tree includes functions that can be called directly in a user 

application. For example, in Graph a user has to build the tree using the GraphPlace in an 

application. In contrast, the Binary Tree builds the tree which is composed of application specific 

BinaryTreePlace in the BinaryTreePlaces constructor.  The number of methods is not changed. 
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Table 4.1 Programmability of Closest Pair of Points application 

Metrics Original MASS Continuous Space Quad Tree 

Boilerplate code 

(line of code) 
3 3 3 

LOC 585 465(↓ 21%) 467(↓ 20%) 

Number of classes 10 7(↓ 30%) 7(↓ 30%) 

Number of methods 7 6 6 

 

Table 4.2 Programmability of Voronoi Diagram application 

Metrics Original MASS Continuous Space Quad Tree 

Boilerplate code  

(line of code) 
3 3 3 

LOC 1797 1433 (↓ 20%) 1426 (↓20%) 

Number of classes 14 11(↓ 21%) 11(↓ 21%) 

Number of methods 15 7 7 

 

Table 4.3 Programmability of Range Search application 

Metrics MASS Graph Binary Tree 

Boilerplate code 

(line of code) 
3 3 

LOC 490 298(↓ 39%) 

Number of classes 6 4 

Number of methods 4 4 
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4.3 Performance analysis 

4.3.1 Closest Pair of Points 

The Closest Pair of Points is firstly used to evaluate the performance of the three 

implementations. Figure 4.1 shows the execution time of Closest Pair of Points with 32,768 data 

points. Continuous Space and Quad Tree implementation have comparable performance, which 

is about 1.5 times faster than the original MASS library. In the original MASS, 106 Places are 

created. While in the Continuous Space and Quad Tree, 33,489 Places and 67,306 Place objects 

are created respectively. With fewer Place instantiation, the Continuous Space reduces the 

execution time. In addition, we also find that multiple computing nodes does not reduce 

execution time significantly in this test case. This may be due to the overheads of communication 

between computing nodes and relative fast execution by single node.  

 

Figure 4.1 Execution time for the Closest Pair of Points application. 
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Figure 4.2 shows the memory consumption of the Closest Pair of Points implemented by 

the original MASS, Continuous Space and Quad Tree. The program is executed with 256 data 

points in a single node. Compared to the original MASS, the Continuous Space and Quad Tree 

implementations reduce the total memory usage by 70% and 22% respectively. This is because 

fewer Place and Agent objects are created in the Continuous Space (33,489 places) and Quad 

Tree (67,306 places) than the original MASS (106 places). More Places are instantiated in Quad 

Tree which explains the increased memory usage in Quad Tree compared to the Continuous 

Space.  

 

Figure 4.2 Memory consumption for the Closest Pair of Points application. 

 

4.3.2 Voronoi Diagram 

 In addition to the Closest Pair of Points, the Voronoi Diagram is also used to test the 

performance of the three implementations. Figure 4.3 shows the execution time of the Voronoi 
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Diagram application with 64 data points. The Continuous Space and Quad Tree have comparable 

performance, which is about 90 times faster than the original MASS in single node and about 10 

times faster in 8 computing nodes. The reduced execution time in Continuous Space and Quad 

Tree is because fewer Place objects are instantiated. We found that 81 Places are created in the 

Continuous Space and 133 Places are created in the Quad Tree. While in the original MASS, 

676,400 Places are created. Similar to the Closest Pair of Points, when more computing nodes 

are added, the execution time increases. This is because the execution time with a single node is 

short (16 seconds) and building connection between computing nodes increases the total 

computing time. 

 

Figure 4.3 Execution time for the Voronoi Diagram application. 

Figure 4.4 shows the memory consumption of Voronoi Diagram (16 points) implemented 

by the original MASS, Continuous Space, and Quad Tree. Compared to the original MASS, the 

Continuous Space and Quad Tree implementations reduce memory usage by 80% and 70%. The 

reduction of memory reduction is because a smaller number of Places are instantiated by the 
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Continuous Space (25 Places) and Quad Tree (37 Places) in comparison to the original MASS 

(99,200 Places). Because the Quad Tree creates more Places than the Continuous Space, the 

memory consumption is also higher.  

 

Figure 4.4 Memory consumption for the Voronoi Diagram application. 

 

4.2.3 Range Search 

The Range Search application is used to test the Binary Tree implementation. The 

program is executed with 500,000 data points in single, 2, 4 and 8 computing nodes. The 

execution performance is shown in Figure 4.5. For Graph, the data for single node is not 

available because the program is running out of memory. In 2, 4 and 8 computing nodes, the 

Binary Tree significantly reduces execution time, which is 20×, 30× and 10× faster for 2, 4 and 8 

computing nodes respectively compared to the Graph. In Graph, as the graph mimics a binary 

tree, only one Agent is instantiated at the root. In Binary Tree, each computing node instantiates 
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an Agent at the root and searches simultaneously. Therefore, parallel searching in each 

computing node speeds up the execution. In addition, because the Graph distributes data items to 

each computing node sequentially without any spatial preference, when Agents traverse over the 

tree that is mimicked by Graph, they migrate across computing nodes frequently. In contrast, in 

Binary Tree, as the tree is local in computing node, when the Agent traverse across branches, the 

overhead of communication between computing nodes is minimized.  

 

 
 

 

Figure 4.5 Execution time for the Range Search application. 

For the memory consumption, as shown in Figure 4.6, the Binary Tree uses much less 

memory than the Graph.  This is because in the application program for Graph, the main class 

includes a Map<Integer, Point2D> which contains all data items from input file. This global 

variable consumes big portion of heap memory if the input file is large. Therefore, the 

application program for the Graph needs to be modified in order to compare the memory 

consumption of the two implementations.  
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Figure 4.6. Execution time for the Range Search application. 

4.2  Summary of evaluation 

Overall, compared to the current MASS library, the Continuous Space, Quad Tree, and 

Binary Tree improve programmability and performance of applications, including execution time 

and memory consumption in following aspects: 

• Programmability - all of the three implementations reduce LOC and number of classes for 

applications.  

• Execution time – all of the three implementations reduce execution time for applications. 

• Memory consumption – all of the three implementations reduce memory consumption for 

applications.  

Strengths and challenges 

Overall, these three data structures improve programmability and performance in 

different applications. At the same time, we also found there are limitations that could be 
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improved. For programmability evaluation, we use the four metrics - boilerplate code, LOC, 

number of classes and number of methods in this study. However, these metrics might not be 

enough. To measure the complexity directly, we will use the cyclomatic complexity which 

measures the number of “linearly independent paths” through a piece of code in the future. The 

strengths and challenges of the three data structures are discussed as follows: 

(1) Continuous Space 

Strengths: The Continuous Space creates more compact Places by using a continuous range of 

coordinates for each SpacePlace object. With the same functionalities, a smaller number of 

Places and Agents reduce execution time and memory usage. In addition, the SpacePlace object 

is sub-divided into sub-places with user defined granularity. The Agent’s information in sub-

places is traced using a Hashtable of <Integer, Set<Agent>> in which the key is the linear index 

of sub-place and the value is a set of Agents in the corresponding sub-place. Furthermore, Agent 

migrates to the destination Place using coordinates and the user do not need to specify the index 

of the destination Place. This feature facilitates the user to migrate Agent without knowing the 

internal structure of the Places.  

Challenges: Because all Places and sub-places are evenly partitioned, if the data points are not 

evenly distributed, in some Places there might be multiple Agents allocating in a single Place and 

other Places might be vacant. This leads to low efficiency of memory usage. Another challenge 

is that the granularity needs to be optimized by the user. On one hand, the value of granularity 

determines the fineness of sub-places, which would affect program output in some cases. For 

example, in Voronoi Diagram application, if the granularity is too low, some Voronoi edges will 

be missing. On the other hand, the value of granularity will affect application’s performance (e.g. 

a high granularity will slow down the execution and increase memory consumption) because of 
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the increased computation. Therefore, the user has to optimize the granularity for the best 

performance of their application.  

(2) Quad Tree 

Strengths: In order to create Places in an efficient way, the Quad Tree is used to create Places if a 

new data point resides in a Place which is already occupied. This approach avoids multiple 

Agents allocating in the same Place in Agent’s initialization. In addition, Places are further 

divided into sub-places whose sizes equal to the deepest QuadTreePlace object. A similar 

Hashtable is used to trace the Agent’s information in the place as described in the Continuous 

Space. Furthermore, the user-defined granularityEnhancer is used to further divide sub-places 

into a finer grid if needed.  

Challenges: As the data points are distributed over cluster in a spatial-driven manner, the data 

points are always partitioned into power of two (e.g. 1, 2, 4, 8, 16…). Therefore, the number of 

computing nodes are restricted to the power of two. For example, if there are 11 machines in the 

cluster system, only 8 will be used for computing, which would be a waste of resource.  

(3) Binary Tree  

Strengths: The Binary Tree allows users to apply a log N search and divide-and-conquer 

algorithm in MASS library for their application. Although the Graph in MASS could also mimic 

a tree structure, users have to implement the tree in their application. In Binary Tree, because 

each computing node has its local tree, agents are initialized to traverse the tree in each 

computing node parallelly.  This minimizes communications between computing nodes and 

reduces overhead of the program. Meanwhile, as the BinaryTreePlace has a global index, Agent 

is able to migrate to Place at different computing nodes.  
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Challenges: In the current implementation, for parallelization, the master node reads an entire 

file and calculates the boundary of each node. Then each computing node reads the entire input 

file and build its local tree with data points within the boundary. However, if the input file is 

huge, reading the entire file can be time consuming. In order to avoid this problem, the input file 

could be partitioned and the computing node reads its corresponding part directly. Another 

drawback of the current implementation is that, to build a balanced binary tree, the data point in 

the tree node is the median value of its sub-trees. However, for real-time data streaming, data 

items are added sequentially, and the tree won’t be balanced anymore. To overcome this 

limitation, we will develop new algorithm to balance the tree when adding tree nodes 

dynamically.   
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Chapter 5. Conclusion  

 In conclusion, we achieved our goals of this research project through the implementation 

of three data structures, including Continuous Space, Quad Tree, and Binary Tree. The major 

contribution of this research includes: 

(1) We have designed and implemented Continuous Space, Quad Tree, and Binary Tree that 

extend data structures supported by MASS library.  

(2) We have verified the implementation of the three data structures and compared their 

performance to the data structures in the current MASS using different applications. 

(3) The Continuous Space and Quad Tree outperform the original MASS in geometric 

applications and the Binary Tree outperforms the MASS Graph in Range Search 

application, which will facilitate users to apply MASS to their applications.  

Below we discuss the potential areas where future work can be done based on the outcome of 

this work.  

1. Input file format: The Continuous Space, Quad Tree, and Binary Tree are able to 

instantiate Places from an input file directly. The text file is the only format supported by 

current MASS. As the MASS library will be applied in scientific fields that uses a various 

type of files, we will expend MASS to support other input formats that are commonly 

used, such as NetCDF, CSV, and GeoJSON.  

2. Parallel I/O: In the current implementation of Continuous Space, Quad Tree, and Binary 

Tree, each computing node reads an entire file to instantiates Places. In order to read a 

file efficiently, especially for a large input file, the file should be partitioned and each 
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computing node reads its corresponding section. Furthermore, in big-data analysis, an 

input dataset might be too huge to fit distributed memory even after being partitioned. To 

solve this problem, we will design and implement a streaming algorithm that keep 

streaming data to a cluster system. 
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