
Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Critical MASS: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and
Hybrid OpenMP/MPI

Zachary J Brownell

A thesis
submitted in partial fulfillment of the

requirements for the degree of:

Master of Science in Computer Science & Software Engineering

University of Washington
2015

Committee:

Munehiro Fukuda, Ph.D. (Faculty Advisor)
Michael Stiber, Ph.D.

Hazeline Asuncion, Ph.D.
William Erdly, Ph.D.

Program Authorized to Offer Degree:

School of Science, Technology, Engineering & Mathematics
Computing & Software Systems

University of Washington Bothell 1

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

c©Copyright 2015
Zachary J Brownell

University of Washington Bothell 2

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

ABSTRACT

In this paper, we explore the relationship between programmability and performance within the context of two C++
parallel/distributed programming approaches: Hybrid OpenMP/MPI & MASS (Multi-Agent Spatial Simulation).

Our study begins by working with the following hypothesis: programmers in big data analysis and Agent-Based
Models (ABM) will find MASS easier to use than hybrid OpenMP/MPI, despite its slower performance.

We then detail the planned experiments and criteria used for testing this hypothesis, which include a mixture of
broadly-accepted characteristics for programmability within parallel/distributed frameworks, survey application, line
of code counting, and actual performance testing.

During our research, we found that MASS offered more of a global view of computation than hybrid OpenMP/MPI
and that programmers typically took 39 minutes less to write corresponding applications using MASS. When writing
these applications, MASS required around 8.17% less parallel/distributed-specific lines of code. In addition, we
learned that applications written in MASS were approximately 4.4% easier to debug than corresponding ones based
on OpenMP/MPI.

While there were promising results for MASS, our data showed that OpenMP/MPI slightly outperformed MASS
in general characteristics of programmable parallel/distributed frameworks and received more favorable assessments
across most surveyed questions related to time, effort, and programmability. We also found that the same application
written in OpenMP/MPI typically had an execution time that was 25.82% better (lower) than corresponding applica-
tions built using MASS.

Overall, even though we found that the programmability results were quite close between the two frameworks, we
were unable to accept the alternative hypothesis presented. It is worth noting, however, that the C++ version of MASS
is around 3 years old and is actively being developed by a small handful of students and faculty at the University
of Washington Bothell. Whereas, OpenMP/MPI has nearly two decades of development and support from major
hardware/software corporations across the world.

University of Washington Bothell 3

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

ACKNOWLEDGEMENTS

First and foremost, I want to acknowledge the incredible patience, understanding, and support of my wonderful
wife, Koriel Jock. This would not have been possible without her being there along the way - pretending to understand
what I was talking about, listening to me explain problems anyway, and removing so many of the obstacles in everyday
life to make this journey as smooth as possible.

I would also like to extend my deepest gratitude for the support of the faculty and professors at the University of
Washington Bothell. I probably would not have enrolled in this program if it was not for the great people involved
with this program. From some of the most kind, helpful faculty members like Megan Jewell to the knowledgable,
friendly, and caring professors like Dr Fukuda, Dr Erdly, Dr Stiber, and Dr Asuncion (whom I’ve been equally blessed
to have had on my faculty committee), words can not possibly express the profound gratitude and respect I have for
this program (although, I’ve tried anyway here - I guess they can not unteach stubborness).

Finally, I’d like to thank Adobe Systems Inc and the folks at the Seattle office who have covered on-call duties, put
up with my last minute PTO requests, and accommodated an ever-changing and flexible work schedule to support my
education. I’d specifically like to call out James Boag and the rest of the SET Seattle family. You’ve been my home
away from home for years and an incredibly talented, creative, and caring group of people that continue to inspire me
to greater heights.

From the bottom of my heart, thank you one and all.

University of Washington Bothell 4

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Contents
1 Overview 7

1.1 What is MASS . 7
1.2 What is OpenMP/MPI . 8
1.3 Research Goals . 9

1.3.1 Goals . 9

2 Hypothesis 11
2.1 Hypothesis Statement . 11
2.2 Formal definition of null hypothesis . 11
2.3 Formal definition of alternative hypothesis . 11
2.4 Operationalization of Hypothesis Variables . 11

3 Test Design 13
3.1 Programmability . 13

3.1.1 Sampling Technique . 15
3.1.2 Survey Design . 15

3.2 Performance . 16
3.2.1 General Performance . 17
3.2.2 Agent-Based Models . 18
3.2.3 Spatial Simulations . 19

4 Results 21
4.1 Programmability . 21

4.1.1 General Programmability . 21
4.1.2 Surveyed Programmability . 35

4.2 Performance . 65
4.2.1 General MASS Performance . 65
4.2.2 Practical MASS Performance . 93

4.3 Correlations . 103
4.3.1 OpenMP/MPI Correlations . 103
4.3.2 MASS Correlations . 105

5 Discussion 106
5.1 Summary . 106

5.1.1 Ease of Use (Programmability) . 106
5.1.2 Performance . 107
5.1.3 Potential Confounding Issues . 107
5.1.4 Generalizability of Results . 108

5.2 Academic Merit . 108

6 Conclusion 111
6.1 Ease of Use (Programmability) . 111
6.2 Performance . 111
6.3 Future Work . 112

7 Appendix 114

University of Washington Bothell 5

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

A Actual Survey 114

B Performance Test Program Command Line Arguments 115

C Places Performance Test Types 116

D Agents Performance Test Types 117

E Survey Results 118

F Detailed t-Test Results Between Surveyed Classes 122
F.1 Time to Learn the Library . 122
F.2 Time to Design the Program . 123
F.3 Time to Write the Program . 126
F.4 Time to Debug the Program . 127
F.5 Effort: Total Lines of Code . 130
F.6 Effort: Parallel-Specific Lines of Code . 131
F.7 Learning Curve . 134
F.8 Application Suitability . 135
F.9 Difference Between Parallel and Sequential Algorithms . 138
F.10 Debugging Difficulty . 139
F.11 Comparison: callAll Functionality . 142
F.12 Comparison: exchangeAll Functionality . 142
F.13 Comparison: manageAll Functionality . 143

G Agents Baseline Results: Iterations 145

H Agents Baseline Results: Max Time 152

I Places Baseline Results: Iterations 159

J Places Baseline Results: Max Time 163

K FluTE Data File Details 167

University of Washington Bothell 6

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1 Overview

1.1 What is MASS
MASS is an acronym for Multi-Agent Spatial Simulation. It is a paradigm-oriented, parallel/distributed framework
that allows programmers to write applications that can make use of multi-core, connected computational resources
such as those on a grid or cloud. What really sets it apart from other frameworks, though, is that it was designed
specifically with users in agent-based modeling in mind. Over the course of its limited development, it has also been
extended to allow for big data analysis using its agents paradigm.

MASS was originally developed in Java, with an initial port to C++ occurring in late 2012 by Narayani Chan-
drasekaran. Chandrasekaran managed the initial implementation of the Places paradigm in MASS [4] and over time,
several other students have worked and are continuing to work on making the MASS C++ framework a viable option
for parallel/distributed application development, including:

1. Chris Rouse
In 2014 Rouse [28] added the initial agent implementation to MASS

2. Cherie Lee Wasous
Also in 2014 Wasous [30] added distributed agent management to MASS, which became the focus/topic of her
Master’s thesis

3. Jennifer Kowalsky
Currently, Kowalsky [24] is working on updating the documentation and functionality of MASS, adding addi-
tional logic to encompass an idea of neighbors and inter-neighbor communication

4. Hung Ho
Ho [19] is in the process of adding asynchronous and automatic migration of agents in MASS

MASS was originally created to help address a perceived shortfall in many parallel/distributed frameworks, at the
time (OpenMP, Open MPI, MapReduce, etc). While the number of cores in computing hardware and the interconnect-
edness of machinery was growing - moving away from the continued pursuit of higher clock speeds, in favor of more
cores, grids, and cloud frameworks, the libraries/languages that existed to support such parallelization in applications
were not keeping up. By and large, it could be said that these existing frameworks:

1. Were Tied to a Specific Data Model
Which, was often times hard to adapt applications to make use of (e.g. - MapReduce’s key/value pair [4])

2. Required Deep Developer Understanding
Aside from learning these new frameworks or languages, developers had to be very careful when using them to
ensure that effective use of computational resources was actually occurring (good cache usage, reduced chance
of thrashing, protection/synchronization around critical sections, etc)

MASS was developed to try to address these concerns by providing [4]:
1. Automatic Parallelization

Instead of having to carefully divide and conquer, or take a bag of tasks approach to decomposing data in
your application, you could simply rely on MASS to take care of parallel and distributed execution, resource
allocation, and efficiency for you

2. Utilization of Symmetric Multi-Processor Cluster
MASS has the ability to not only distribute work across a cluster/grid, but it also has the ability of further
parallelizing execution across cores on each machine within the cluster

3. Abstraction of Parallelization Constructs
Using MASS, programmers no longer have to be aware of processes, threads, or communication approaches in
parall/distributed computing. Of course, it helps to have an idea of what you are doing, but the over head of hav-
ing to be intrinsically involved with the maintenance of these tasks has been abstracted away from programmers
in MASS

University of Washington Bothell 7

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4. Single Programming Paradigm
Through providing both a distributed and shared memory model, MASS allows for individual resources to work
together, making efficient use of dispersed memory across cooperating hardware on common data sets (shared
network storage, etc)

So, as you can probably tell by now, there is something a bit different about MASS. This difference can be
considered as the places/agents paradigm. It is a blessing and a curse, in that it helps address some common pain
points in other distributed frameworks by abstracting away the minutiae of parallel/distributed design/coding, but it
also forces users to reconsider problem spaces within the context of either:

1. Places
Places are implmented as a distributed array. Using this approach, programmers can simply concentrate on
breaking down their application to use a series of Place objects to accomplish goals - while, under the hood,
MASS will divide the total number of Places used across hosts provided; slicing the data to work on it inde-
pendently across machines (distributed/parallelized computation). Examples of this approach are: Wave2D,
Heat2D, and computational fluid dynamics (CFD).

2. Agents
Agents are mobile objects in MASS, divided among Threads available to processes on each corresponding
place/host machine. The Agents approach is a similar one to Places, with the difference being that the Place
objects are generally mobile agents (but, can be stationary/static) and the really interesting activity is occurring
with the interaction between these moving Agents and between the Places that they inhabit. Examples of this
approach include artificial lives and swarms.

3. Places and Agents
This is a more complex way of modeling a system available in MASS. You could use active Places and Agents
(that change state, share data, etc) to model truly complex interactions, some of which could be quite prescient
for society (e.g. - how will people in low-lying areas of the World move/travel to different Places as climate
continues to change, or - as Osmond Gunarso [17] studied - how does influenza spread across people in different
communities, neighborhoods, and settings, and how do different treatment methods help manage infection)

1.2 What is OpenMP/MPI
OpenMP and Open MPI are also acronyms (or contain acronyms) that stand for Open Multi Processing [2] and Open
Message Passing Interface, respectively. Both frameworks are general-purpose computing libraries. Used in con-
junction, these tools allow programmers to take advantage of multiple cores on an individual machine (OpenMP) and
distibuting work across connected machines (Open MPI).

MPI was originally conceived in 1991 [10] and very quickly became a joint endeavor to come to full fruition.
“The MPI effort involved about 80 people from 40 organizations, mainly in the United States and Europe. Most of the
major vendors of concurrent computers were involved in MPI along with researchers from universities, government
laboratories, and industry.” [10].

Following on the heels of MPI, OpenMP’s first specification came into being in 1997 [11]. The first C++ port of
OpenMP came out the following year, with subsequent new versions of the specification released, as follows:

1. 2.0: 2000
2. 3.0: 2008
3. 3.1: 2011
4. 4.0: 2013

Like MPI, it enjoys support from major technology companies, that includes a “group of major computer hardware
and software vendors, including AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments,
Oracle Corporation, and more.” [11].

University of Washington Bothell 8

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Delving into the exact specifications of these frameworks is beyond the scope of this paper. Suffice it to say
that combined they offer a well-maintained, well-defined, and well-supported method for communicating between
machines and dividing up execution tasks/data to make efficient use of available cores on individual machines partici-
pating in a group computation.

1.3 Research Goals
It is a combination of rooting for the “underdog” and really believing in the merits of MASS’s paradigm-oriented
approach (using Agents/Places model) that really got us interested in investigating how these two frameworks stacked
up against one another. In so many situations, MASS’s paradigm just makes a lot of sense for the application. From
modeling spatial relations like heat transfer or wave dissemination to complex agent interactions like war simulations,
population growth, traffic patterns, or weather modeling/forecasting, the paradigm-oriented approach that MASS takes
seems to offer an easier method than the classic general-purpose programming environment of a hybrid OpenMP/MPI
solution.

Hybrid OpenMP/MPI enjoys nearly a two decade head start, wide support, documentation, and a large user base
with active forums, examples, and questions/answers to be found online. But, with such wide support comes the
challenge of being general enough for a variety of applications. On the other hand, MASS has a unique way of
simplifying and abstracting away a lot of the pain involved with parallel/distributed code development. A trait that
was built in to its design to specifically target agent-based models, spatial simulations, and big data analysis.

Over the course of this paper, we will talk about these two frameworks and how we have chosen to evaluate them.
We will discuss some general parallel/distributed framework programmability characteristics, how we have designed
tests to survey users, and how we have approached gauging each frameworks’ performance.

The paper will then move on to discuss the actual results of our testing, before wrapping up with our conclusions
and ideas for further research in this area.

1.3.1 Goals
1. Provide Further Support for Programmability Claims

There have been many papers written and published that relate to programmability within MASS. Examples
include:

(a) Design and Qualitative/Quantitative Analysis of Multi-Agent Spatial Simulation Library [6]
(b) A Parallel Multi-Agent Spatial Simulation Environment for Cluster Systems, [7]
(c) A multi-process library for multi-agent and spatial simulation. [12]

However, upon deeper inspection, you can find the results of the original paper (Design and Qualita-
tive/Quantitative Analysis of Multi-Agent Spatial Simulation Library) were simply repeated in each of
the following IEEE conference proceedings listed. So, while you can find three articles that discuss pro-
grammability, they’re all based on the same study.

2. Provide First Programmability Assessment of C++ Implementation
Previous papers have only focused on the Java implementation of MASS. This paper will be the first to consider
programmability in MASS, using the C++ implementation.

3. Track User Assessment of MASS
We can also consider the current state of user involvement in MASS programmability assessments. Previous
papers discussing programmability within MASS have been qualitative in nature, but this is the first paper to
actually quantitatively measure this attribute through the use of surveys.

4. Provide Insight into Effort and Time Using MASS
The survey data included in this paper not only provides actual quantifiable insight into programmability within
MASS, but it also records characteristics of MASS related to effort and time - which, have been previously
ignored in evaluations of the MASS framework.

University of Washington Bothell 9

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

5. Provide Further Support for Performance Claims
Like programmability, performance in MASS is a topic that has already been presented in previous research.
Excluding MASS CUDA - GPU-enabled versions - of the library, these papers include:

(a) Design and Qualitative/Quantitative Analysis of Multi-Agent Spatial Simulation Library [6]

(b) A Parallel Multi-Agent Spatial Simulation Environment for Cluster Systems [7]

(c) A multi-process library for multi-agent and spatial simulation [12]

(d) Dynamic load balancing in MASS [27]

(e) Field-Based Job Dispatch and Migration [22]

(f) A parallelization of orchard temperature predicting programs [25]

While some of the performance analyses focus on more than the esoteric subject that the paper is based on,
none of them actually include general performance data - removed from practical, application-specific imple-
mentations. There are instances where data on applications discussed in this paper (Wave2D and Sugarscape)
are compared. However, our paper is unique for a couple of reasons, in regards to performance:

(a) First Benchmarked Baseline MASS Performance Data
This study is the only one published that contains baseline performance data. We used a benchmarking
application, specifically developed to exercise and track various Place/Agent methods offered through
MASS - offering graphical representations and raw accounts of the data collected through these tests.

(b) First Analysis of FluTE Performance in MASS
In addition to the benchmarking performed, this study will introduce a new application into the mix -
FluTE. FluTE is unique and interesting to academia due to its non-trivial nature and possession of emer-
gent, interesting qualities as an outcome of its execution. It is also an established application that has been
parallelized using OpenMP. So, the corresponding MASS implementation not only offers a view into how
MASS compares, in this regard, but a unique glimpse into how an existing OpenMP application can be
easily converted into the agent-based paradigm of MASS.

University of Washington Bothell 10

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

2 Hypothesis
Considering the differences between MASS and hybrid OpenMP/MPI applications, we naturally wondered how they
would stack up against one another. After all, MASS would seem to offer a much easier method of modeling data
- allowing a more object-oriented approach to managing parallelization, compared to hybrid OpenMP/MPI’s more
general, “hands-on” approach. To examine this intersection, we developed the following hypothesis to guide our study
of the two frameworks.

2.1 Hypothesis Statement
Programmers in big data analysis and Agent-Based Models (ABM) will find MASS easier to use than hybrid

OpenMP/MPI, despite its slower performance.

This hypothesis will allow us to not only consider the relative programming difficulty or ease between our two
approaches (MASS & hybrid OpenMP/MPI), but also allow us to consider the performance difference between the
two systems. While we expect the performance to lag using MASS, we also expect that it will be much easier to model
many applications due to its paradigm-oriented approach.

2.2 Formal definition of null hypothesis
Programmers in big data analysis and ABM will not find MASS easier to use than hybrid OpenMP/MPI

Phrasing the null hypothesis in this manner yields the following mathematical equivalent:

H0 = µ MASS Ease-of-Use ≤ µ Hybrid OpenMP/MPI Ease-of-Use

There is also an orthogonal null hypothesis nested in our original statement, being:

H0 = µ MASS Performance ≥ µ Hybrid OpenMP/MPI Performance

2.3 Formal definition of alternative hypothesis
Programmers in big data analysis and ABM will find MASS easier to use than hybrid OpenMP/MPI

Stating the alternative hypothesis this way, we are able to formally define the following mathematical equivalent:

HA = µ MASS Ease-of-Use > µ Hybrid OpenMP/MPI Ease-of-Use

There is also an orthogonal alternative hypothesis nested in our original statement, being:

HA = µ MASS Performance < µ Hybrid OpenMP/MPI Performance

2.4 Operationalization of Hypothesis Variables
The hypotheses, as written, are easy to read and understand, on the surface. They use language that people typically
take advantage of when talking with one-another - which, is great. However, it does leave on thing to be desired:
ensured clear understanding of the topics being considered.

One of the fallbacks to using language that is easy to understand, is that it leaves some of that understanding up to
the individual doing the reading. The following table takes each of the terms that we have used in these hypotheses
and offers concise definitions for them, reducing the potential for confusion.

University of Washington Bothell 11

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Term Definition
Agent-Based Models This term refers to a method of modeling an application that uses a

pattern of representatives (agents) that interact with each other or the
environment that they are based in, to study a desired effect/outcome.
Examples of Agent-Based Models would be applications like traffic
simulations that allow users to study the effect of altering signal syn-
chronicity/timing on the effect of vehicles in the city or a reforestation
application that allows users to study the effect of climate change on tree
growth, dispersal, movement, etc over time. In each case, you can see
that an agent does not necessarily have to be a person. You can also see
how ABMs are useful in discovering emergent, collective group behav-
ior (traffic behaviors, forest movement) of simulation entities (vehicles,
trees) that can not be covered with mathematical models alone.

Big Data Analysis Decomposing the terms, we can intuit that bid data analysis deals with
large amounts of data (big) and it also deals with how to organize, make
sense of, or use that data (analysis). Some examples would be stock-
ticker applications that track trends in the market or real-time weather
applications that track large amounts of data (temperature, humidity,
barometric pressure, wind speed, wind direction, cloud cover, etc) for
weather forecasting. Using the paradigm-oriented approach of MASS,
it might actually be more intuitive and easier to move agents rather than
data in these types of simulations (think of dealing with weather sys-
tems, instead of dealing with coordinating tables of representational
data).

Ease-of-Use In the context of this paper, when we refer to “ease-of-use” of use
the term “easier,” we are considering this concept from the point-of-
view of a programmer. As such, well generally be using the notion of
“programmability” to catalog (quantify) and compare characteristics of
MASS and hybrid OpenMP/MPI application frameworks.

Hybrid OpenMP/MPI This is a common approach in parallel/distributed development in which
developers use MPI to handle distributing work to multiple, connected
computers, while also using OpenMP to parallelize the work occurring
on each computing node. This approach allows for nested paralleliza-
tion and distribution of work.

MASS Multi-Agent Spatial Simulation. For more information on MASS,
please see Section 3.1 “What is MASS” (above).

MPI Message Passing Interface. For more information on MPI, please see
Section 3.2 “What is OpenMP/MPI” (above).

OpenMP Open Multi Processing. For more information on OpenMP, please see
Section 3.2 “What is OpenMP/MPI” (above).

Performance In the context of this paper, when we refer to performance, we are really
talking about execution time. We do not consider CPU cycles, memory-
usage, net electricity drain, etc in our analysis. Instead, youll find that,
while the unit of measurement may change (hour, minute, second, mil-
lisecond, microsecond, etc), the subject of the measurement is always
execution time for a given scenario.

Programmer In our paper, the term programmer is pretty much synonymous with de-
veloper, coder, or software engineer. It is a person who creates software
designed to take advantage of a particular computing environment.

University of Washington Bothell 12

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

3 Test Design
In this study, there are a couple of factors that need to be quantified and measured, which will influence the ability to
determine whether or not the null hypothesis can be rejected. These factors are: programmability and performance.
This section will not only define these terms, but detail how these definitions were developed and how these factors
will be tested.

3.1 Programmability
The term programmability is one that is used often, but seldom well-defined using quantifiable metrics. In order to
get a better idea of the history and use, a search was performed for the term “programmability” across the following
databases:

1. Compendex
2. EBSCO
3. IEEE
4. Inspec
5. Web of Science

Results from this search were exported into various formats (CSV, Tab-delimited, XML), depending on the aca-
demic database being used. These results were then normalized and aggregated to remove redundancies between
searches, resulting in a decrease from the original 11,346 documents retrieved down to 5,494 unique documents (after
removing non-alphabetical characters from titles and transforming to lowercase prior to hash generation and compari-
son).

University of Washington Bothell 13

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

0	

50	

100	

150	

200	

250	

300	

350	

19
63
	

19
66
	

19
67
	

19
68
	

19
69
	

19
70
	

19
71
	

19
72
	

19
73
	

19
74
	

19
75
	

19
76
	

19
77
	

19
78
	

19
79
	

19
80
	

19
81
	

19
82
	

19
83
	

19
84
	

19
85
	

19
86
	

19
87
	

19
88
	

19
89
	

19
90
	

19
91
	

19
92
	

19
93
	

19
94
	

19
95
	

19
96
	

19
97
	

19
98
	

19
99
	

20
00
	

20
01
	

20
02
	

20
03
	

20
04
	

20
05
	

20
06
	

20
07
	

20
08
	

20
09
	

20
10
	

20
11
	

20
12
	

20
13
	

20
14
	

20
15
	

Use	
 of	
 Programmability	

Use	
 of	
 Programmability	

Figure 1: Use of programmability

Taking this high-level view of the term helped to visualize not only the genesis of its use in computing literature,
but to also see how its use has grown over the years. The first time that this term was used was in 1963, in reference
to “programming ability” [29]. It was used as a binary characteristic of the system under consideration - or, to put it
another way, you either had the ability to program something, or you did not.

This definition continues in use today, especially in papers concerning bio-medical fields, hardware, and software
research. While functional and pretty descriptive, this idea doesnt capture degrees (variation) in the ability to program
something, which makes it difficult to measure variation in this property.

For this paper, we will build on the definition or programmability, as it was used in “Parallel Programmability and
the Chapel Language” [3]. Section 2.2 of this article defines “Productive Parallel Language Desiderata”, that include:

1. A global view of computation
2. Support for general parallelism
3. Separation of algorithm and implementation
4. Broad-market language features
5. Data abstractions
6. Performance
7. Execution model transparency
8. Portability
9. Interoperability with existing codes

10. Bells and whistles

This provides a framework for defining characteristics of parallel languages, but still fails to track the the ease or
difficulty faced by users (programmers, in this case of this paper).

University of Washington Bothell 14

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Key metrics to track programmability of MASS:
1. Time needed to learn and use parallel/distributed framework
2. Lines of code necessary to write parallel/distributed applications using framework
3. Developer assessment of parallel/distributed framework

For our study, the dependent variables will be:

1. Effort (LOC)
Variable type: Ratio (continuous)

2. Time (Hours)
Variable type: Ratio (continuous)

3. Programmability (Likert 1-5)
Variable type: Ordinal (discrete)

The independent variable will be the “Framework Used,” which is split into two groups:
1. Hybrid OpenMP/MPI
2. MASS

3.1.1 Sampling Technique

For this study, we used a convenience sampling of students at the University of Washington Bothell. Our sample was
a non-random survey provided to students enrolled in CSS 534: Parallel Programming in the Grid and Cloud [15].
Students were asked to complete a programming assignment using hybrid OpenMP/MPI and, later in the course, were
asked to use MASS to recreate the same program. After completing the assignment using MASS, our survey was
administered to these same students.

3.1.1.1 Population Characteristics

There were two classes whose results were aggregated to form the basis of this thesis:

1. CSS 534 - Parallel Programming in Grid and Cloud/Spring 2014
2. CSS 534 - Parallel Programming in Grid and Cloud/Winter 2015

Each of these classes was a graduate level course. However, the make up of each class was slightly different.
The first course (Spring 2014) consisted of students that had previous experience in programming and a desire to
specifically learn parallel/distributed programming that targeted the grid/cloud. The second course (Spring 2015)
contained a few undergraduate students and a large number of students that were experiencing their first graduate-
level programming course. Since this was the first programming course available, many students opted to take it, not
necessarily coming into the course with a strong desire to learn parallel/distributed programming in the grid/cloud, so
much as just wanted to fulfill program requirements.

The number of students enrolled in each course differed, as you could guess - given that the second offering was
a way of fulfilling program requirements earlier. As such, the number of students in the first class was 16, while the
number taking the second was 30. It is worth noting that the second class contained 28 first year students and three
undergraduate students.

3.1.2 Survey Design

We designed our survey to gather metrics around programmability for each framework (hybrid OpenMP/MPI and
MASS). Specifically, we were interested in learning about the following points:

1. Time needed to...

University of Washington Bothell 15

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

(a) Learn the library

(b) Design the program

(c) Write the program

(d) Debug the program

2. Lines of code needed to...

(a) Write entire application

(b) Perform parallel-specific tasks

3. Developer assessment of...

(a) Learning curve

(b) Application suitability

(c) Difference between sequential and parallel programs

(d) Debugging difficulty

(e) Call All methods between frameworks
This is the act of accessing each Place or Agent (distributed array element) and performing a discrete, at
times non-trivial, task at that location

(f) Exchange All methods between frameworks
This describes the ability to access each Place (distributed array element) and exchange data (interact) with
other Places relative to the location of this element (neighbors) within a simulation

(g) Manage All methods between frameworks
The manageAll method refers to the task of actually updating each Agent’s status within a simulation,
based on a variety of tasks that this Agent could have performed (e.g. - move, spawn, kill, or suspend/re-
sume).

Survey questions related to time were measured in hours and relied on students to remember or correctly estimate
the amount of time different tasks actually took.

Survey questions measuring lines of code were also left up to students’ ability to gather the information indepen-
dently (no automated system to gather this information was provided).

Survey questions that measured degrees of satisfaction/disatisfaction (assessment) were measured using a Likert
scale of 1 - 5, offering textual cues to help guide answers. In each question that used this type of measurement, the
lowest option always corresponded with a negative evaluation (quite hard, not useful at all), whereas the highest option
always corresponded with a positive evaluation (excellent, quite easy, quite useful).

Appendix A shows the actual survey that was provided to students.

3.2 Performance
Since the hypothesis relies on this notion of a performance difference between frameworks, we will need to quantify
this difference. To accomplish this, we will take a look at the general performance charactistics of MASS. We will also
take a more in-depth look at how MASS performs against the same application written using hybrid OpenMP/MPI
across the following domains:

1. Agent-Based Models
2. Spatial Simulations

University of Washington Bothell 16

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

When evaluating each aspect of performance (general, agent-based models, spatial simulations), researchers have
made an effort to adjust the resources available to the application. This ends up providing us with a sense of how each
framework (OpenMP/MPI vs MASS) performs at different variations of the following characteristics:

1. Number of Processes
2. Number of Threads
3. Simulation Size
4. Iterations (Simulated Time)

Our performance results will present the various matrices that were collected, showing how each framework per-
formed at various levels ad providing for a more in-depth look into how these frameworks stack up against each other.

3.2.1 General Performance

The general performance of MASS, calculated by Jennifer Kowalsky [24], was obtained by running a test program
created by a previous student, Jay Hennan [18]. This application exposes several different tests that users can run
by passing various command line arguments to the application. A detailed list of these arguments can be found in
Appendix B.

We wanted to include this data to provide readers with an overall profile of how the agent-based approach of MASS
performed at various levels - independent of an actual simulation. Our hope is to provide a sense of how MASS’s built-
in distribution and parallelization of work actually performs at various time and computational effort levels. We will
then aggregate this data and provide three-dimensional graphs to help illustrate how execution time changes.

3.2.1.1 Test Types

There are two programs that we have created to obtain performance results for MASS. One program is configured
to target the performance of Place calls within the MASS library, while the other program targets Agents.

3.2.1.1.1 Places Test Program

There are four test types that we have identified for gathering baseline performance characteristics of Places within
MASS. These tests are given a numerical identifier, which is used on the command line when running the performance
application to target a specific scenario. A detailed list, illustrating each test type can be found in Appendix C.

The main idea behind these tests is to exercise the built-in functionality (methods) that Place Objects in MASS
expose to programmers. By isolating this functionality and varying hardware resources, computational effort, and
simulation length, we begin to build a picture of MASS Place performance.

3.2.1.1.2 Agents Test Program
There are seven test types that we have identified for gathering baseline performance characteristics of Agents within
MASS. These tests are given a numerical identifier, which is used on the command line when running the performance
application to target a specific scenario. Once again, a detailed list that illustrates each test type can be found in
Appendix D.

We wanted to exercise Agents in a similar manner to how we targeted our Place tests. So, you will see a variety of
tests that target methods germane to Agents in MASS. This is important because terms like “agent migration” bring
to mind non-trivial computing tasks for systems to handle. Being able to provide a picture of how these tasks actually
perform as time, load, and resources are varied provides a more accurate picture of the overhead incurred through
various Agent operations.

University of Washington Bothell 17

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

3.2.2 Agent-Based Models

Agent-Based Models are applications that model relationships between agents (objects) within a space. A classic
example of an agent-based model would be a war strategy game - where troops are moved across a playing field. We
will examine two agent-based models to gather practical performance profiles between MASS and OpenMP/MPI.

The first application, FluTE, is a large complex simulation that serves to model real-world scenarios related to
influenza/epidemics, mitigation strategies, and emergent behaviors (almagamated from individual data points within
model) of the overall population as an effect of varying simulation parameters. It is also notable in that a parallelized
OpenMP/MPI-compliant version of this application already exists, which we were able to reuse with some slight
modifications (bug fixing).

The other applications, Sugarscape, is a smaller proof-of-concept sort of application that serves to simulate a far
less complex scenario. This application differs significantly from FluTE in that the general runtime cost (execution
time) is much lower, the simulation is much less complex, it is generally easier to maintain/track inter-related simula-
tion variables, and the emergent properties of the simulation are not very interesting to users.

3.2.2.1 FluTE

FluTE is “an individual-based simulation model of influenza epidemics” [5] and fits our understanding of an
agent-based model quite nicely. In this model, the simulation space is broken up into census tracts, communities,
and households. Within these constructs, agents represent individuals that each have a possibility of contracting an
infection (either through initial seeding of the population, or through subsequent transmission from someone already
infected).

The implementation of FluTE that we used for performance testing was developed by Osmond Gunarso. Os-
mond [17] described several interactions (processes) that are taking place during each iteration: Agent Interactions,
State and Places Interactions, and Master Interactions. For simplicity, we have condensed these into one general
process that is repeated for each iteration of the simulation, as follows:

1. Agents Interact with One Another

(a) If I am not sick

i. Interact with every sick person in the community
A. If I get sick stop and change my state

(b) Save current state
(c) Migrate to my next location

2. Move to Night
3. Agents Interact with One Another

(a) If I am not sick

i. Interact with every sick person in the community
A. If I get sick stop and change my state

(b) Save current state
(c) Migrate to my next location

4. Move to Day
5. Update State and Places

(a) Start vaccines

i. Open schools as appropriate
ii. Count ascertained cases of infection

iii. If there is an epidemic

University of Washington Bothell 18

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

A. Adjust migration policies
iv. Close or open schools
v. Take stock of vaccines

vi. Distribute vaccine
(b) Repeat for antivirals omitting schools

3.2.2.2 SugarScape

Sugarscape is a broad term used to describe social models that all, “include the agents (inhabitants), the environ-
ment (a two-dimensional grid) and the rules governing the interaction of the agents with each other and the environ-
ment.” [9] As such, it is also quite suited as a representational algorithm for evaluating performance characteristics
between hybrid OpenMP/MPI and MASS.

In the implementation used for comparing OpenMP/MPI and MASS application performance, the focus is on
monitoring how agents survive within the simulation, given limited space, resources (sugar), and their individual
metabolism. Abdulhadi Ali Alghamdi [1], the researcher who developed/collected these results, describes the general
algorithm, as follows:

“In the simulation, I allocate the sugar and the places, followed. Then, I create the agents in the number
specified by the user. Each process then is allocated a chunk of the agents, given their relative position and
metabolism to the rest of the agents handled by other processes. After that begins the traversal procedure:
some agents find sugar to consume, all agents have their metabolism changed accordingly, and all agents
relocate randomly to survive.”

This implies the following steps taking place during each iteration of the simulation:

1. Some Agents Find Sugar to Consume
2. All Agents Have Their Metabolism Changed Accordingly
3. All Agents Relocate Randomly to Survive

3.2.3 Spatial Simulations

Spatial Simulations are applications that model the relationship of a space with its given neighbors. Spatial simulations
differ from agent-based models in that there is no concept of an “agent” (object) that needs to be modeled across a given
simulation space. Instead, these models track the behavior of the space itself. Good examples of spatial simulations are
problems like modeling the heat transfer across a known medium or modeling wave dynamics. In each of these cases,
the model can exist and run without needing to add additional logic outside of the characteristics of the simulation
space itself.

The application We will use to gather spatial simulation performance data is called Wave2D. Wave2D is very
similar to Sugarscape, in that it is a smaller proof-of-concept sort of application and it represents a far less complex
scenario. This application also differs significantly from FluTE along the same lines that Sugarscape did: signifi-
cantly smaller execution times, far less complex simulation, reduced inter-related simulation variables (Places only,
no Agents), and the emergent properties of the simulation are not very interesting to users.

3.2.3.1 Wave2D

Wave2D is a wave dissemination simulation, based on Schroedingers wave formula [14], that models how a col-
umn of water (wave) disperses within a two-dimensional space over time. This type of simulation can be modeled
as a spatial simulation by considering the simulation space as the water itself. Using this metaphor, the solution
fits perfectly with our idea of a spatial simulation, as each section of the simulation space only needs to know the
characteristics of its neighbors to influence its own characteristics over time.

University of Washington Bothell 19

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

The basic algorithm for our test application, follows the guidelines set up in the second homework assignment for
CSS 543: Parallel Programming in Grid and Cloud - Multithreaded Schroedingers Wave Simulation [14].

After the simulation space is set-up, an initial amount of water is added to the center of the simulation space.
Then, during each iteration of the simulation each Place ends up calculating its new (current) height. This calculation
is based off of the following factors, which lead to the complexity in the design:

1. Previous height of Place over last two iterations
2. Previous height of neighboring Places over last two iterations

This implies that our Place objects either have to store historical wave height data as attributes, or the simulation
space has to be three dimensional to account for different heights at different times (current time, previous iteration,
and previous previous iteration). In our case, Abdulhadi explains his implementation, as follows “[We] used an
object with the previous states stored within them. It [is] relatively simple: basically, [we] made a struct ‘Cell’ with
doubles t, t-1, and t-2, created an MPI Datatype for the struct, declared it (MPI Type create struct), then committed it
(MPI Type commit).” [1]

This approach represents one of the fundamental differences between MASS and OpenMP/MPI. As you can see,
MPI is unable to pass complex Objects around, instead relying on custom structs to model data needed in the simula-
tion. MASS, on the other hand, has a much more familiar Object-oriented approach to modeling data, allowing custom
Place and Agent Objects to not only store their own data attributes, but to also contain their own functions/methods -
which, are accessible through the base callAll() method.

University of Washington Bothell 20

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4 Results

4.1 Programmability
4.1.1 General Programmability

There have been studies into the programmability of various parallel/distributed frameworks in the past. Instead of
redefining the playing field each time a new paper is written, we are going to reuse the assessment criteria codified
by B. L. Chamberlain, D. Callahan, and H. P. Zima(2007) [3] in their paper, “Parallel programmability and the chapel
language,” applying the same measures against both hybrid OpenMP/MPI and MASS applications.

Each section below will discuss the merits/drawbacks of each approach for the given assessment category. When
applicable, sample code will be provided to illustrate the real difference, as it applies to writing applications in each
of these frameworks. At the end, we will present a roll-up summary of the findings, offering a concise view of how
hybrid OpenMP/MPI and MASS stack up against one another.

4.1.1.1 Global View of Computation

The idea of a global view of computation, is one “in which programmers express their algorithms and data struc-
tures as a whole, mapping them to the processor set in orthogonal sections of code, if at all. These models execute the
programs entry point with a single logical thread, and the programmer introduces additional parallelism through lan-
guage constructs” [3]. To put this another way, it is the idea that a framework allows for clean parallelization without
having to significantly alter the data structures and logic to support parallel execution.

4.1.1.1.1 Hybrid OpenMP/MPI Support

Hybrid OpenMP/MPI applications provide a “mixed” support of a global view of computation.
On the OpenMP side of things, you are presented with a very simple, easy-to-use set of compiler directives that

enable programmers to quickly parallelize simple code constructs (loops). However, OpenMP also forces programmers
to consider shared data within their parallel sections, in order to obtain efficient memory use and scalability in their
code.

Using MPI, you are presented with a fragmented view of the computation - meaning, pretty much the exact opposite
of a global view. Programmers are forced to split data into chunks that correspond with how many machines will be
simultaneously operating on the computation, then they must handle non-trivial problems related to things like cross-
boundary communication and synchronization of distributed tasks.

To illustrate this concept in use, let us consider the case of setting up MPI for a parallel/distributed application.
Leaving out the set-up and initialization of MPI, one of the first things that programmers will need to do is to break
their data/problem space up into “chunks” that each MPI rank (machine) can work on in parallel.

The following code blocks are examples from a Heat2D application that synthesizes heat transfer across a space
over time. For simplicity, much of the logic for cross-boundary communication has been removed. Starting from the
top, you can see what it would look like to just set up for a 200 x 200 unit simulation space:

1 int size = 200; // simulation space
2 int mpi_size = 4; // # of mpi processes
3 int mpi_total_elements = size * size; // # elements to process
4 int mpi_buffer_size = mpi_total_elements / mpi_size; // # elements per rank
5 double heat[mpi_total_elements]; // 1d representation of space
6 double rank_heat[mpi_buffer_size]; // rank-specific section of array

Next, programmers would need to send this data out to each rank (machine) in participating in the computation.
While there are many methods of communication available, we will illustrate one of the simpler ones here:

University of Washington Bothell 21

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1 MPI_Scatter(heat, mpi_buffer_size, MPI_DOUBLE, rank_heat, mpi_buffer_size,
2 MPI_DOUBLE, MPI_MASTER, MPI_COMM_WORLD);

Finally, programmers need to create complex logic to differentiate what machine is working on what section of the
simulation space and handle cross-boundary communication appropriately:

1 if (mpi_rank == 0) { // master MPI machine
2 MPI_Send(send_lookbehind_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE,
3 (mpi_rank + 1), mpi_tag, MPI_COMM_WORLD);
4 MPI_Recv(lookahead_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE, (mpi_rank + 1),
5 mpi_tag, MPI_COMM_WORLD, &mpi_status);
6 } else if (mpi_rank == mpi_size - 1) { // last ranked MPI machine
7 MPI_Send(send_lookahead_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE,
8 (mpi_rank - 1), mpi_tag, MPI_COMM_WORLD);
9 MPI_Recv(lookbehind_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE, (mpi_rank - 1),

10 mpi_tag, MPI_COMM_WORLD, &mpi_status);
11 } else { // middle two machines (rank 1 & 2)
12 MPI_Send(send_lookahead_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE,
13 (mpi_rank - 1), mpi_tag, MPI_COMM_WORLD);
14 MPI_Recv(lookbehind_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE, (mpi_rank - 1),
15 mpi_tag, MPI_COMM_WORLD, &mpi_status);
16 MPI_Send(send_lookbehind_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE,
17 (mpi_rank + 1), mpi_tag, MPI_COMM_WORLD);
18 MPI_Recv(lookahead_buffer, LOOKUP_BUF_SIZE, MPI_DOUBLE, (mpi_rank + 1),
19 mpi_tag, MPI_COMM_WORLD, &mpi_status);
20 }

We have left out some of the other hurdles that programmers will have to overcome. Suffice it to say, coordinating
messaging, maintaining the integrity of shared data, and managing the partitioning/aggregation process in an MPI-
driven application is not simple.

So, when we are talking about a “fragmented view” of computation, this is exactly what we mean. On the other
hand, we can look to OpenMP for a good example of a global view of computation.

Using OpenMP, developers can add compiler directives that will compile their existing code into applications that
are optimized to take advantage of multiple cores on a single machine. Here is an example, using the same Heat2D
application, of how OpenMP can quickly optimize a loop for parallel execution:

1 #pragma omp parallel for default(none) firstprivate(p, p2, NUM_COLUMNS, size,
lookahead_buffer, lookbehind_buffer) private(east, west, north, south) shared(
rank_heat, send_lookbehind_buffer)

This is what is meant by a global view of computation. Programmers do not need to spend time splitting a
data structure apart to have OpenMP use it. There is some knowledge of the visibility and sharing of memory that
OpenMP imposes on programmers, but it does not force major changes to the data or algorithm to fragment it into
easily-parallelized computational units.

4.1.1.1.2 MASS Support

MASS supports a global view of computation. Programmers are not required to split their data or algorithm apart
in order to “bake in” parallelization. Instead, the challenge comes in the form of adapting their needs to MASS’s
agents and places paradigm. To illustrate this, we will continue to use the Heat2D scenario (from the OpenMP/MPI
discussion; above), but adapted toward MASS.

The first thing developers will need to do is set up their simulation space. This is much cleaner - no slicing of
data/manually partitioning arrays:

University of Washington Bothell 22

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1 // distribute places over computing nodes
2 int size = 200; // simulation space
3 char *msg = "start\0"; // arbitrary start message
4 Places *sections = new Places(1, "Section", msg, 7, 2, size, size);
5 sections->callAll(Section::init_); // initialize places

The problem of communicating with each place in the simulation is also much simpler in MASS:

1 sections->callAll(Section::calculateDispersal_);

4.1.1.2 Support for General Parallelism

General parallelism, in this context, is the notion that a framework can support multiple approaches for parallelizing
applications. There are two main types that we consider here, when comparing hybrid OpenMP/MPI and MASS:

1. Task vs Data Parallelism
Are frameworks only able to achieve parallel computation by breaking down data into operable chunks (data),
or are they also able to break apart processes that operate on the same data into operable chunks (task)?

2. Support for Nested Parallelism
Are frameworks able to support multiple layers of parallelism (nested), or are they simply able to parallelize
top-level constructs, leaving nested opportunities for simultaneous computation left up to serial execution?

4.1.1.2.1 Hybrid OpenMP/MPI Support

By itself, MPI is only able to achieve top-level parallelization. However, a hybrid implementation that also uses
OpenMP is able to nest parallelizable code and achieve a greater degree of distributed work at runtime.

MPI is well-suited toward data decomposition, but could be used for task parallelization, too - with a bit of effort.
However, thanks to OpenMP’s inclusion of constructs for defining “sections” within a “parallel” directive, a hybrid
OpenMP/MPI application can enjoy both forms of parallelization quite simply. Each “section” defined can encompass
a discrete task, which can also benefit from nested parallelization, as described above.

The following (very basic, psuedo-code) example shows how we can use these constructs to obtain task paral-
lelization and nested parallelization within the same application:

1 JsonObject userHistory;
2 #pragma omp parallel default(none) shared(userHistory)
3 {
4 #pragma omp sections
5 {
6 #pragma omp section
7 {
8 // parse/store user ID from userHistory
9 }

10 #pragma omp section
11 {
12 #pragma omp for
13 for(i = 0; i < numMovieTitles; i++)
14 {
15 // parse/store viewing history from userHistory
16 }
17 }
18 #pragma omp section
19 {

University of Washington Bothell 23

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

20 // parse/store related titles/suggestions from userHistory
21 }
22 }
23 }

So, a hybrid OpenMP/MPI application fully supports the concept of general parallelization.

4.1.1.2.2 MASS Support

MASS is capable of supporting the concept behind nested parallelism - being able to make full use of the cores
available to a simulation, but it does not offer the same kind of fine-grained control that OpenMP presents to users.
Instead, MASS handles communication and distribution of work behind the scenes - allowing an easier entry into
utilizing system resources than hybrid OpenMP/MPI.

If the initial goal of “General Parallelism” was to ease the burden of having to fragment and coordinate tasks to
achieve parallel execution, then it would follow that hiding the low-level breakdown of nested parallelizable sections
of an application would actually be a bonus. So, while the explicit commands may be missing, the fact is that MASS
automatically breaks your Places across processors on machines and further breaks down Agents to run on Threads
per machine process (corresponding to Place they exist within). So, in order to achieve nested parallelism in MASS,
you really have to consider the overall application design and how parallel tasks or nested parallelization can take
advantage of the Places/Agents metaphor.

Using the same example, as above (in simple pseudo-code), we could achieve task parallelization in MASS with
the following code:

1 Places *places = new Places(1, "ExamplePlace", msg, sizeof(msg), 2, size, size
); // create grid

2 Agents *workers = new Agents(2, "ExampleWorker", (void *)args, sizeof(args),
places, Nrequested); // distribute workers

3
4 workers->callAll(ExampleWorker::parseData_);

1 void *Agent::parseData(void *argument) {
2 switch (agentId % 3)
3 {
4 case 0:
5 // parse/store user ID from userHistory
6 break;
7 case 1:
8 // parse/store viewing history from userHistory
9 break;

10 case 2:
11 default:
12 // parse/store related titles/suggestions from userHistory
13 break;
14 }
15 }

Unfortunately, we’d have to adjust the logic in our “parse/store viewing history from userHistory” method in each
worker to decompose the data set being worked on to support true nested parallel execution. While possible using
similar patterns (e.g. - use “floor(agentID / 3)” to translate back to numeric series, then use the value to correspond
to nested JSON array element to process, etc), it is not the easiest thing to create, test, and maintain these types of
complex structures (e.g. - you would need to apply extra logic in the case that the user history is longer than the

University of Washington Bothell 24

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

number of Agents running in your simulation divided by three - a very real possibility, considering my Netflix binging
habits).

4.1.1.3 Separation of Algorithm and Implementation

The idea of separating the algorithm from the implementation really boils down to the ability to express “algorithms
in a manner that is independent of their data structures implementation in memory.” [3] In most cases, it seems
like the major concerns are with language support for different parallel frameworks and inconsistencies or esoteric
requirements that could force the algorithm to change in order to suite the programming language.

In our case, both of the frameworks being compared have been limited to their C++ versions. So, there will not be
any differences here that are imposed by the language. However, there are some concerns worth mentioning, as they
relate to data structures, memory, and fine-tuning algorithms to take advantage of these factors.

4.1.1.3.1 Hybrid OpenMP/MPI Separation

Hybrid OpenMP/MPI applications do not have to explicitly adjust their implementation of an alogorithm to meet
esoteric demands of C++. However, it is highly-recommended that programmers understand the limits of the archi-
tecture being used (especially as it relates to memory, cache-size, etc) in order to obtain optimal performance of their
application.

Both OpenMP and Open MPI require programmers to correctly understand memory being used, in order to make
the most efficient use of cache. This can translate into having to implement an algorithm differently, in the case of
using an optimal slicing approach and iteration approach for data arrays.

The following example shows how an implementation may have to change, to make better use of cache and avoid
cache misses:

1 double score[size * size]; // previous score
2 double new_score[size * size]; // new score
3
4 #pragma omp parallel for
5 for (int y = 0; y < size; y++) {
6 #pragma omp parallel for
7 for (int x = 0; x < size; x++) {
8 new_heat[(x*size) + y] = heat[(x*size) + y] + 1.0;
9 }

10 }

To correct this, you would want to adjust the for loops, as follows:

1 double score[size * size]; // previous score
2 double new_score[size * size]; // new score
3
4 #pragma omp parallel for
5 for (int x = 0; x < size; x++) {
6 #pragma omp parallel for
7 for (int y = 0; y < size; y++) {
8 new_heat[(x*size) + y] = heat[(x*size) + y] + 1.0;
9 }

10 }

While it is difficult to think of a real-world algorithm that would specifically call for this kind of cherry-picking
through a sequential array, but it is conceivable that you could have an algorithm that was something like:

University of Washington Bothell 25

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1. Compile Alphabetical List of All World Cities

2. Update Current City Weather Details By Timezone

Using an approach like this, you would run the distinct possibility of hitting cache misses that could seriously
impact performance. Depending on the size of the city Objects in your code, it may become unavoidable. Still, you
could end up with better runtime performance and fewer cache misses, using an adjustment to the algorithm like:

1. Compile Alphabetical List of All World Cities

2. Update Current City Weather Details Alphabetically By Timezone

4.1.1.3.2 MASS Separation

MASS is also free from having to specifically account for shortfalls in the C++ programming language, as it
relates to having to adjust your original algorithm. Due to the nature of MASS imposing its Places/Agents paradigm
on algorithms and managing the underlying parallelization that takes place, a lot of the concern here is mitigated.

The downside to this is that it does not allow the same fine-grained optimization choices that OpenMP/MPI appli-
cation will expose to programmers. However, in the context of this category (Separation of Algorithm and Implemen-
tation), this is probably a benefit.

The other downside to this, is that MASS imposes its own structure around an application. While this structure is
actually quite useful and easier to work with than OpenMP/MPI for certain application domains (spatial simulations,
agent-based models), it does provide a challenge when adapting other types of problems to its underlying model
(big-data analysis).

So, while the algorithm may not need to change to fit the implementation, the algorithm itself may have to change
to fit the model that MASS presents (Agents/Places).

4.1.1.4 Broad-market Language Features

This category has to do with the idea that newer programming languages contain features that are quite useful and
are well-known to newer programmers. To evaluate how OpenMP/MPI applications compare to MASS in regards to
broad-market (current) language features, we will examine their support for concepts described by Chamberlain, et al
(2007) [3], such as:

1. Object-Oriented Programming
2. Function/Operator Overloading
3. Garbage Collection
4. Generic Programming
5. Latent Types
6. Support for Programming In-The-Large
7. Support for Support Routines (Libraries, etc)

4.1.1.4.1 Hybrid OpenMP/MPI Support

1. Object-Oriented Programming
The main limitation here is MPI support of custom types. Users can declare their own custom types and pass the
Objects along to remote machines using MPI. However, these can not be considered true Objects, since they do
not contain functions/methods. Instead, they should be considered more as “structs” - complex data structures.

University of Washington Bothell 26

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

2. Function/Operator Overloading
According to Hughes & Hughes(2004) [20], the C++ ability to provide operator overloading can be leveraged
to simplify sending and receiving using MPI functions. However, given that OpenMP is governed by compiler
directives, this same sort of functionality is not available to all aspects of a hybrid OpenMP/MPI application.

3. Garbage Collection
Not supported by hybrid OpenMP/MPI applications.

4. Generic Programming
While there have been proposals [23] [32] for extensions to OpenMP that would allow for support of C++
generics, as of this writing, they have not been included in the standard. Similarly, due to MPI’s use of pre-
defined or custom-defined datatypes in communication, generics are not supported.

5. Latent Types
Avoiding a deep discussion into the nuances of C++ that support dynamic typing through inheritance and pointer
assignment in C++, we will instead focus directly on factors within OpenMP/MPI that allow for latent typing
(or not). As the case stands, MPI enforces types when sending/receiving messages. As discussed earlier, custom
types for MPI can be created/used, but are more like structs than true Objects. However, the idea that we could
possibly use latent types within MPI is not supported, since MPI will need to know the size and structure of the
data being sent in order to correctly marshall/unmarshall these Objects for remote communication. OpenMP
provides the same support for latent-like metphors in C++ (inheritance, type casting, implicit type conversion),
but true latent typing is also not supported within the C++ OpenMP framework.

6. Support for Programming In-The-Large
The C++ language offers support for creating modularized code that can be organized, developed in tandem, and
combined to form large enterprise-scale applications. Using hybrid OpenMP/MPI within these applications can
add to the complexity of managing computing resources - network traffic with MPI and thread management with
OpenMP. However, there is nothing inherent in each framework that specifically targets large scale development.

7. Support for Support Routines (Libraries, etc)
OpenMP and MPI are essentially libraries that provide routines to allow applications to perform message-
passing (distribution of work) and division of work between threads (parallelization of work). As such, they
fundamentally provide support for routines.

4.1.1.4.2 MASS Support

1. Object-Oriented Programming
MASS fundamentally supports Object-Oriented programming with their Places and Agents paradigm. Program-
mers must extend these classes and provide their own implementation for MASS simulations. However, there is
no scope or limitation placed on functions/methods that can be created and used within these classes.

2. Function/Operator Overloading
MASS applications can similarly take advantage of the ability to overload operators in C++. However, due to
the way that functions are referenced/called within custom Place/Agent classes (mapped to numerical ID), the
same can not be true for function overloading.

3. Garbage Collection
Much of the inner-workings of MASS is out of control for programmers using this system. So, a great deal
of memory management is already taken care of within a MASS application. However, the framework itself
still leaves the possibility of memory leaks if user-implemented Place/Agent classes end up creating dynamic
memory that is not cleaned up in their destructors (or neglecting to create a proper destructor, in the first place).
It is also worth noting that MASS does not currently make use of smart pointers - a potential area for future
improvement.

University of Washington Bothell 27

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4. Generic Programming
MASS currently relies on inheritance (extending parent/base Place/Agent classes) to provide users a method to
customize MASS for their own applications. Within these classes, it is possible to use C++ templates, but for
greater flexibility, it would be a nice improvement to translate this paradigm into an actual template interface.

5. Latent Types
Through C++ inheritance and polymorphism, dynamic typing (in terms of runtime pointer assignment, implicit
casting, etc) is possible within MASS, but it does not offer the same type of latent typing available in other
languages like Python or Javascript (types are still tied to variables, instead of to values).

6. Support for Programming In-The-Large
MASS is really designed to facillitate agent-based models and spatial simulations. Large-scale projects can
use MASS within individual modules, or as a center-piece to the overall application code (depending on the
scope/objective of the application). However, in the sense of providing language to specically target integration
of modular code into an enterprise-level deliverable, MASS is limited to the constructs available in C++.

7. Support for Support Routines (Libraries, etc)
MASS is essentially a library that can be integrated into projects and manipulated (through the creation of
custom Agent/Place Objects) to suit an application’s needs. It provides an API for interacting with Agents/Places
within the simulation space and pulls in its own library to provide support for SSH communication (libssh2).
It is flexible enough to allow other libraries to be integrated into the codebase, but does not currently provide
recommended libraries to plug-and-play various add-on routines to the core framework.

4.1.1.5 Data Abstractions

Data abstractions has to do with a framework’s support of different data structures to model the application. It
tends to be the case that parallel/distributed frameworks are written to support a single data structure, often forcing
programmers to adapt their model to fit the framework’s needs. For instance, a website dealing with family trees
may prefer to keep their data structured in a binary tree - easing the readability/maintainability of their code, as the
abstraction lends itself well toward the subject domain. On the other hand, in order to parallelize a search across this
tree, they may be forced to flatten the hierarchical structure of their data into a one-dimensional array.

4.1.1.5.1 Hybrid OpenMP/MPI Support

MPI supports the passing of arbitrary bits of data to remote machines for processing. As such, there is not really a
notion of a forced data structure on application programmers.

Along these same lines, OpenMP does not force a particular structure on programmers to be able to parallelize
tasks that operate on these structures. While, on the surface, this seems like a good thing, it can end up causing a
litany of problems with the actual performance of the application (thrashing, cache misses, thread starvation, locking
issues, etc). So, while you can traverse a binary tree, the results could be terrible as the random spots in memory could
span cache lines and result in very poor performance as multiple threads spend cycles swapping in data from RAM (or
worse - disk).

4.1.1.5.2 MASS Support

MASS provides its own data abstractions for programmers. So, on the surface, it does not support different
methods of modeling the data. Instead, it forces programmers to analyze their algorithms and adjust them to fit the
paradigm set up by MASS (Agents distributed over Places within a simulation space).

University of Washington Bothell 28

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4.1.1.6 Performance

Performance deals with the actual runtime characteristics (usually actual time, or computing cycles) of frameworks.
Other aspects of performance could be CPU utilization and cache efficiency. For the purpose of this study, we have
conducted our own performance evaluation of each framework - operating on similar applications, across a variety
of domains, using similar hardware. More details can be found in section 4.2.2.4. Details on how these tests were
designed can be found in section 3.2.

4.1.1.7 Execution Model Transparency

This section deals with the ability for programmers to know how communication and parallelization is achieved
within the framework. Having access to this knowledge (transparency) allows programmers to fine tune applications
to make better use of computing resources and improve the runtime characteristics of the programs.

4.1.1.7.1 Hybrid OpenMP/MPI Support

Out of the box, OpenMP and MPI provide a good level of transparency. This is because they are, in themselves,
a fairly low-level method of obtaining parallel/distributed functionality within your code. Instead of providing a high-
level framework that masks how data is decomposed, how/when remote calls are made, etc - the hybrid OpenMP/MPI
model forces programmers to make these decisions themselves, using methods from these libraries to control and
achieve parallelism as needed.

4.1.1.7.2 MASS Support

MASS provides a higher-level framework that masks much of the parallel/distributed nature of the underlying
application. There is documentation that serves to illustrate “how” code distribution and parallel computation is
mapped to actual hardware resources [16] that can be found by searching on the web. Figure 2 illustrates how processes
and threads are mapped to hardware to support the Agents/Places paradigm in MASS. However, detailed information
and illustrations of the underlying functionality in MASS are either very hard to find or non-existent - making it quite
difficult to tune applications built using MASS.

University of Washington Bothell 29

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 2: Parallel Execution with MASS Library

4.1.1.8 Portability

Portability deals with the concept of being able to move an application from one architecture to another, with
relative ease. If a parallel/distributed framework is highly portable, then that means that it is widely supported across
platforms (Mac OSX, Windows, Linux, etc). On the other hand, if frameworks are not portable, then this means that
much work is required to translate from one architecture to another, or that certain architectures are just not supported.

4.1.1.8.1 Hybrid OpenMP/MPI Support

Hybrid OpenMP/MPI applications built on C++ enjoy a high degree of portability, as they are supported frame-
works across many architectures. Since we are considering the C++ flavor of these frameworks, it is worth noting that
applications will have to be compiled on/for the architecture that they are targeted to run on. But, this is a common
limitation to C++ and is not specific to OpenMP or MPI.

4.1.1.8.2 MASS Support

MASS has a dependency on the libssh library - but, this does not directly limit its portability. Instead, the only
limiting factor would seem to be whether or not a platform supports C++ compilation (i.e. - a C++ compiler exists
to compile source code into object/machine code capable of running on that platform). So, the portability of MASS
would appear to possess the same constraints as hybrid OpenMP/MPI applications. It is worth noting, though, that
MASS has currently only been used on grids supporting a Linux kernel. It would be worth the effort to test and debug
this framework on varying architectures to identify/address any potential issues and improve the portability of the
system.

4.1.1.9 Interoperability with Existing Codes

University of Washington Bothell 30

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

The two frameworks in this study, hybrid OpenMP/MPI and MASS, are written in C++. They both support other
languages, but the idea of interoperability is really kind of a moot point. This idea is based around frameworks that
may have their own language/constructs that programmers would have to learn, and that may not integrate well with
existing languages. Since this is not the case for either of the frameworks we are considering in this study, they both
get a pass on this category (both support).

4.1.1.10 Bells and whistles

This section takes a look at add-ons that could increase the usability of a framework, or the productivity of devel-
opers programming within a framework. Things like built-in debuggers, IDE extensions, performance monitors, GUIs
(Graphical User Interfaces), or other tooling built around the framework will be considered in this section.

4.1.1.10.1 Hybrid OpenMP/MPI Support

Hybrid OpenMP/MPI applications offer the following benefits to programmers, in this category:
1. Visual Studio Integration

Visual Studio has integrated support for MPI development [26]. This includes things like:

(a) MPI Cluster Debugger for C++ MPI applications
(b) Project templates for C/C++ MPI programs

2. Eclipse Integration
The popular Eclipse IDE has also integrated tooling to support parallel application development [13]. Their
tooling provides:

(a) Support for the MPI, OpenMP and UPC programming models, as well as OpenSHMEM and OpenACC
(b) Support for a wide range of batch systems and runtime systems, including PBS/Torque, LoadLeveler,

GridEngine, Parallel Environment, Open MPI, and MPICH2
(c) A scalable parallel debugger
(d) Support for the integration of a wide range of parallel tools

3. Performance Monitoring Solutions

(a) POMP [21] for OpenMP
(b) IDE tooling (above) for MPI

4. Several Data Visualization Tools
We will leave it up to the reader to Google this phrase. Suffice it to say, we immediately found three promising
solutions right off the bat.

5. Extensive Documentation
It is not so much a bell or a whistle, but it really was not covered in other categories, so we wanted to call
attention to it here. OpenMP and MPI have been around for over 20 years and have been widely-adopted by all
of the big names in computing and high-performance computing. So, with a few quick presses of some keys
and a click or two of the mouse, it is pretty easy to find:

(a) Journal Articles
(b) Entire Books
(c) Code Examples
(d) FAQ Sections
(e) Message Boards

University of Washington Bothell 31

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4.1.1.10.2 MASS Support

MASS has many irons in the fire that they are currently working on:

1. Integrating a Debugger
2. Improving Source Documentation
3. Improving User Documentation
4. Improving Usability of Framework

(a) Identifying Pain Points in Current Workflows

(b) Adding More Helpful Methods for Programmers

(c) Addressing Bugs

5. Adding Asynchronous Support
6. Implementing Complete End-to-End Project Lifecycle Tooling

However, compared to the nearly two decade head start and support of nearly all technology companies during its
continued development, OpenMP/MPI are just crushing MASS in this category.

4.1.1.11 Results of General Programmability Comparison

To ease the comparison of General Programmability between hybrid OpenMP/MPI and MASS applications, we
have included a graphic that summarizes the textual comparison that was just presented. In Figure 3, we can see how
each framework measured up side-by-side for each category. To aid in quantifying, we have scored each category on
a 0 - 2 scale, indicating 0 for “no support”, 1 for “partial supported”, and 2 for “full support”.

University of Washington Bothell 32

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Hybrid
OpenMP/MPI MASS

Global View of
Computation 1 2

Support for
General

Parallelism
2 1

Separation of
Algorithm and

Implementation
2 2

Broad-Market
Language
Features

1 1

Data
Abstractions 2 0

Performance 2 1

Execution Model
Transparency 2 0

Portability 2 2

Interoperability
with Existing

Codes
2 2

Bells and
Whistles 2 0

Total Score 18 11

Figure 3: General Programmability Comparison

University of Washington Bothell 33

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Looking at these results, it appears that OpenMP/MPI has the clear advantage over MASS. However, it is also
worth noting that the measurement criteria is skewed in favor of “general” parallel/distributed frameworks and often
overlooks or fails to take into consideration advantages that many paradigm-oriented frameworks like MapReduce,
GlobalArray, UPC, or MASS offer to programmers.

We can see in Figure 4 what it would look like if categories that exhibited an inherent bias toward general pro-
grammability were removed from the comparison. You will notice the caption for this uses the word “impartial” - this
is to indicate that categories with inherent bias have been removed.

Hybrid
OpenMP/MPI MASS

Global View of
Computation 1 2

Separation of
Algorithm and

Implementation
2 2

Broad-Market
Language
Features

1 1

Performance 2 1

Portability 2 2

Interoperability
with Existing

Codes
2 2

Bells and
Whistles 2 0

Total Score 12 10

Figure 4: Impartial General Programmability Comparison

In this chart, the programmability between the two frameworks is much, much closer aligned, with the main
difference being the support for “Bells & Whistles” - an advantage of OpenMP/MPI having been on the market for
decades.

The justification for removing some of the categories from the intial comparison is:
1. Support for General Parallelism

MASS focuses on agent-based models. If we included a category that also tracked how well a parallel/distributed
framework handled agent-based modeling, then we’d see hybrid OpenMP/MPI underperform just as MASS
failed to perform in this category. Instead of adding additional categories to the original criteria, we opted to
simply remove this one from the comparison.

2. Data Abstractions
This category is set up with the idea that being able to define and use your own data absractions is a bonus
to programmers. However, it does not consider being able to use established abstractions already set up by
paradigm-oriented libraries. Instead of creating a counter measure to track the ease in using pre-established
abstractions for paralleling data in your application, we opted to remove this category, too.

University of Washington Bothell 34

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

3. Execution Model Transparency MASS and other paradigm-oriented frameworks have an unfair disadvantage
right out of the gate in this category. It assumes that in-depth knowledge and exposure to the precise details of
your execution model is a good thing. However, paradigm-oriented libraries take a different approach, working
under the idea that abstracting platform details and execution model details from users is more beneficial. Instead
of adding an additional category to represent both sides of this argument, we have also opted to remove this
category from our comparison.

We believe that this is a more accurate comparison of general programmability features between MASS and Open-
MP/MPI. Removing the bias against paradigm-oriented languages provides a more even playing field to perform our
evaluation against. While the results still favored the hybrid OpenMP/MPI approach, we must remember that this
framework has been around for much, much longer and has enjoyed support from a wide variety of organizations
throughout its life.

4.1.2 Surveyed Programmability

In this section, we will present the results from our surveys. The results will typically be broken down to provide
descriptive statistics for each question, before providing an overall comparison of the values discovered. For a more
in-depth look at the actual survey results, please see Appendix E.

We would also like to take a moment to acknowledge the contributions of the students that took these courses and
allowed us to use the data collected their surveys for this quantitative analysis. Without their work, none of this would
have been possible [19].

4.1.2.1 Time

We tracked the time it took to complete several tasks while programming in OpenMP/MPI and MASS applications.
This section details the results gathered from our research.

4.1.2.1.1 Time to Learn Library

Looking at Figure 5, we can see that it typically took programmers around 6 hours to learn how to use OpenMP
and MPI to develop their applications.

University of Washington Bothell 35

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 47 Range 30
Skewness
Standard

Error
0.33912 Fourth

Moment 9,005.76163

Mean 5.98936 Sum 281.5 Kurtosis 8.98188 Median 4

Mean LCL 3.98968
Sum

Standard
Error

38.99484
Kurtosis
Standard

Error
0.63715 Median Error 0.15168

Mean UCL 7.98904 Total Sum
Squares 3,174.25

Alternative
Skewness
(Fisher's)

2.35581 Percentile
25% (Q1) 2.5

Variance 32.35315 Adjusted
Sum Squares 1,488.24468

Alternative
Kurtosis
(Fisher's)

6.8101 Percentile
75% (Q2) 8

Standard
Deviation 5.68798 Geometric

Mean 4.29797 Coefficient of
Variation 0.94968 IQR 5.5

Mean
Standard

Error
0.82968 Harmonic

Mean 3.27608 Mean
Deviation 3.96514 MAD 2

Minimum 0E+00 Mode 4 Second
Moment 31.66478

Maximum 30 Skewness 2.27995 Third Moment 406.24728

Alpha value
(for

confidence
interval)

0.02

Figure 5: Time to Learn Library: OpenMP/MPI

On the other hand, Figure 6, shows that it typically took programmers around 7 hours to learn how to use MASS
when developing the same application.

University of Washington Bothell 36

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 46 Range 15
Skewness
Standard

Error
0.3424 Fourth

Moment 723.9028

Mean 7.03261 Sum 323.5 Kurtosis 2.53915 Median 6

Mean LCL 5.55507
Sum

Standard
Error

28.17732
Kurtosis
Standard

Error
0.64246 Median Error 0.11319

Mean UCL 8.51015 Total Sum
Squares 3,051.75

Alternative
Skewness
(Fisher's)

0.62769 Percentile
25% (Q1) 4

Variance 17.26002 Adjusted
Sum Squares 776.70109

Alternative
Kurtosis
(Fisher's)

-0.37246 Percentile
75% (Q2) 10

Standard
Deviation 4.15452 Geometric

Mean 5.74438 Coefficient of
Variation 0.59075 IQR 6

Mean
Standard

Error
0.61255 Harmonic

Mean 4.44905 Mean
Deviation 3.38469 MAD 3

Minimum 1 Mode #N/A Second
Moment 16.88481

Maximum 16 Skewness 0.60704 Third Moment 42.11721

Alpha value
(for

confidence
interval)

0.02

Figure 6: Time to Learn Library: MASS

This means that on average, programmers took 1.04 hours less time to learn the libraries for creating hybrid
OpenMP/MPI applications.

4.1.2.1.2 Time to Design the Program

Figure 7 illustrates that on average, programmers took 5 hours, using OpenMP and MPI, to design their applica-
tions.

University of Washington Bothell 37

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 47 Range 20
Skewness
Standard

Error
0.33912 Fourth

Moment 2,763.0878

Mean 4.85319 Sum 228.1 Kurtosis 5.69787 Median 3

Mean LCL 3.18559
Sum

Standard
Error

32.51918
Kurtosis
Standard

Error
0.63715 Median Error 0.12649

Mean UCL 6.52079 Total Sum
Squares 2,142.01

Alternative
Skewness
(Fisher's)

1.79302 Percentile
25% (Q1) 2

Variance 22.49994 Adjusted
Sum Squares 1,034.99702

Alternative
Kurtosis
(Fisher's)

3.14792 Percentile
75% (Q2) 6.5

Standard
Deviation 4.74341 Geometric

Mean 3.15262 Coefficient of
Variation 0.97738 IQR 4.5

Mean
Standard

Error
0.6919 Harmonic

Mean 1.63139 Mean
Deviation 3.50421 MAD 1.5

Minimum 0E+00 Mode 2 Second
Moment 22.02121

Maximum 20 Skewness 1.73528 Third Moment 179.32104

Alpha value
(for

confidence
interval)

0.02

Figure 7: Time to Design the Program: OpenMP/MPI

When we consider the same task in MASS, Figure 8 shows that it typically took programmers around 6 hours to
design their applications.

University of Washington Bothell 38

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 46 Range 29
Skewness
Standard

Error
0.3424 Fourth

Moment 10,135.50705

Mean 5.58696 Sum 257 Kurtosis 8.83367 Median 4

Mean LCL 3.4942
Sum

Standard
Error

39.90962
Kurtosis
Standard

Error
0.64246 Median Error 0.16032

Mean UCL 7.67971 Total Sum
Squares 2,994

Alternative
Skewness
(Fisher's)

2.46474 Percentile
25% (Q1) 2

Variance 34.6256 Adjusted
Sum Squares 1,558.15217

Alternative
Kurtosis
(Fisher's)

6.66397 Percentile
75% (Q2) 6

Standard
Deviation 5.88435 Geometric

Mean 3.83634 Coefficient of
Variation 1.05323 IQR 4

Mean
Standard

Error
0.8676 Harmonic

Mean 2.81499 Mean
Deviation 3.90359 MAD 2

Minimum 1 Mode 4 Second
Moment 33.87287

Maximum 30 Skewness 2.38363 Third Moment 469.91294

Alpha value
(for

confidence
interval)

0.02

Figure 8: Time to Design the Program: MASS

This means that on average, programmers took approximately 0.73 less hours (43 minutes and 48 seconds) to
design their hybrid OpenMP/MPI applications.

4.1.2.1.3 Time to Write the Program

On average, programmers using hybrid OpenMP/MPI to write their applications took 8 hours, as evidenced in
Figure 9.

University of Washington Bothell 39

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 46 Range 49
Skewness
Standard

Error
0.3424 Fourth

Moment 69,604.69852

Mean 8.22826 Sum 378.5 Kurtosis 14.0836 Median 5

Mean LCL 5.21336
Sum

Standard
Error

57.49536
Kurtosis
Standard

Error
0.64246 Median Error 0.23097

Mean UCL 11.24316 Total Sum
Squares 6,348.25

Alternative
Skewness
(Fisher's)

3.0299 Percentile
25% (Q1) 4

Variance 71.86341 Adjusted
Sum Squares 3,233.85326

Alternative
Kurtosis
(Fisher's)

12.53267 Percentile
75% (Q2) 10

Standard
Deviation 8.47723 Geometric

Mean 5.60604 Coefficient of
Variation 1.03026 IQR 6

Mean
Standard

Error
1.2499 Harmonic

Mean 3.72635 Mean
Deviation 5.51323 MAD 3

Minimum 1 Mode 5 Second
Moment 70.30116

Maximum 50 Skewness 2.93019 Third Moment 1,727.18677

Alpha value
(for

confidence
interval)

0.02

Figure 9: Time to Write the Program: OpenMP/MPI

Using MASS, we can see in Figure 10 that programmers spent around 7.5 hours writing their applications.

University of Washington Bothell 40

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 45 Range 49
Skewness
Standard

Error
0.34578 Fourth

Moment 79,356.99468

Mean 7.57778 Sum 341 Kurtosis 13.23533 Median 4

Mean LCL 4.37521
Sum

Standard
Error

59.69649
Kurtosis
Standard

Error
0.64791 Median Error 0.24785

Mean UCL 10.78034 Total Sum
Squares 6,068.5

Alternative
Skewness
(Fisher's)

3.04247 Percentile
25% (Q1) 2.25

Variance 79.19268 Adjusted
Sum Squares 3,484.47778

Alternative
Kurtosis
(Fisher's)

11.61701 Percentile
75% (Q2) 8

Standard
Deviation 8.89903 Geometric

Mean 4.88308 Coefficient of
Variation 1.17436 IQR 5.75

Mean
Standard

Error
1.32659 Harmonic

Mean 3.40591 Mean
Deviation 5.70716 MAD 2

Minimum 1 Mode #N/A Second
Moment 77.43284

Maximum 50 Skewness 2.9401 Third Moment 2,003.31798

Alpha value
(for

confidence
interval)

0.02

Figure 10: Time to Write the Program: MASS

The actual difference in means here (.65) shows that it took programmers, on average, 39 minutes less to write
their corresponding applications using MASS.

4.1.2.1.4 Time to Debug the Program

Programmers debugging their applications written using hybrid OpenMP/MPI took about 8.5 hours, as shown in
Figure 11.

University of Washington Bothell 41

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 47 Range 51
Skewness
Standard

Error
0.33912 Fourth

Moment 79,806.79287

Mean 8.40426 Sum 395 Kurtosis 17.15904 Median 6

Mean LCL 5.46959
Sum

Standard
Error

57.22762
Kurtosis
Standard

Error
0.63715 Median Error 0.2226

Mean UCL 11.33892 Total Sum
Squares 6,525

Alternative
Skewness
(Fisher's)

3.47073 Percentile
25% (Q1) 4

Variance 69.68085 Adjusted
Sum Squares 3,205.31915

Alternative
Kurtosis
(Fisher's)

15.92887 Percentile
75% (Q2) 10

Standard
Deviation 8.34751 Geometric

Mean 6.20182 Coefficient of
Variation 0.99325 IQR 6

Mean
Standard

Error
1.21761 Harmonic

Mean 4.6387 Mean
Deviation 5.12902 MAD 2

Minimum 1 Mode 4 Second
Moment 68.19828

Maximum 52 Skewness 3.35896 Third Moment 1,891.7573

Alpha value
(for

confidence
interval)

0.02

Figure 11: Time to Debug the Program: OpenMP/MPI

Using MASS, we can see in Figure 12 that the debugging time for their applications was also around 8.5 hours.

University of Washington Bothell 42

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 46 Range 20
Skewness
Standard

Error
0.3424 Fourth

Moment 2,977.6845

Mean 8.72826 Sum 401.5 Kurtosis 1.99793 Median 6

Mean LCL 6.49409
Sum

Standard
Error

42.60653
Kurtosis
Standard

Error
0.64246 Median Error 0.17116

Mean UCL 10.96243 Total Sum
Squares 5,280.25

Alternative
Skewness
(Fisher's)

0.51915 Percentile
25% (Q1) 4

Variance 39.46341 Adjusted
Sum Squares 1,775.85326

Alternative
Kurtosis
(Fisher's)

-0.97747 Percentile
75% (Q2) 13.5

Standard
Deviation 6.28199 Geometric

Mean 6.37455 Coefficient of
Variation 0.71973 IQR 9.5

Mean
Standard

Error
0.92623 Harmonic

Mean 5.14445 Mean
Deviation 5.39036 MAD 4

Minimum 0E+00 Mode 5 Second
Moment 38.60551

Maximum 20 Skewness 0.50206 Third Moment 120.42945

Alpha value
(for

confidence
interval)

0.02

Figure 12: Time to Debug the Program: MASS

Though the approximate debugging time for both frameworks was nearly identical, we can see (taking a closer
look at the actual results) that, on average, it took programmers 19 minutes and 12 seconds (.32 hours) less to debug
their corresponding applications using OpenMP/MPI.

4.1.2.1.5 Summary of Time Difference

To aid in visualizing how these frameworks stack up against one another, in terms of time taken to complete
similar tasks, we have created Figure 13 - which shows the mean time it took programmers to complete various phases
of the development process in each framework. As a helpful measure, the total average time has also been calculated,
along with the difference between the time taken for hybrid OpenMP/MPI and MASS applications (represented as a
numerical and percentage difference).

OpenMP/MPI 
(Baseline) MASS Difference Percent

Difference

Learn the
Library

5.99 7.03 1.04 17.42%

Design the
Program

4.85 5.59 0.73 15.12%

Write the
Program

8.23 7.58 -0.65 -7.91%

Debug the
Program

8.40 8.73 0.32 3.86%

Total 27.48 28.93 1.45 7.12%

Figure 13: Time Summary Between OpenMP/MPI and MASS

University of Washington Bothell 43

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

As we can see from Figure 13, programmers using MASS typically took 7.12% longer to complete the various
phases of application development. In terms of time, this translates to 1 hour and 27 minutes (1.45 hours).

4.1.2.2 Effort (Lines of Code)
The test design relied on students to gather precise measurements for the lines of code in their applications - measuring
not only the total lines of code, but more importantly (for this study) the parallel/distributed-specific lines of code.

After collecting and reviewing survey results, we suspected that there had been a tendency to estimate these num-
bers (data appeared to be rounded) and we also began to understand that the method of determining what constituted
parallel/distributed-specific code was ultimately left to individuals’ understanding of this term - an understanding that
could vary between respondents.

To address these issues, we went through the data and source code submitted to double-check and update actual
values, using a consistent method for parallel/distributed-specific inclusion.

4.1.2.2.1 Inclusion Criteria: Hybrid OpenMP/MPI

For hybrid OpenMP/MPI applications, we considered parallel/distributed-specific code to be confined to the actual
OpenMP or Open MPI statements/directives.

For OpenMP, examples of this include lines like:
Setting Number of Threads for OMP

1 omp_set_num_threads(numthreads);

Setting Compiler Directives for OMP Parallel Sections

1 #pragma omp parallel for default(none) firstprivate(start, stop, size, r, p, p2)
shared (z)

While, for Open MPI, we have more complex commands, such as:
Initializing MPI

1 MPI_Init(&argc, &argv);
2 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
3 MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);

Receiving Messages

1 MPI_Status status;
2 MPI_Recv(&(z[p][nodePointers[rank]][0]), nodeLength[rank]*size, MPI_DOUBLE, rank,

tag, MPI_COMM_WORLD, &status);

Sending Messages

1 MPI_Send(&(z[p][nodePointers[my_rank]][0]), nodeLength[my_rank]*size, MPI_DOUBLE,
0, tag, MPI_COMM_WORLD);

Shutting Down MPI

1 MPI_Finalize(); // shut down MPI

University of Washington Bothell 44

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4.1.2.2.2 Inclusion Criteria: MASS

For MASS applications, we took a similar approach as hybrid OpenMP/MPI applications - concentrating on the
specific calls to set up and use MASS functionality within the application to support parallel/distributed operation.

Examples of the types of lines we included are:
MASS initialization

1 MASS::init(arguments, nProc, nThr);

Places/Agents Construction/Initialization

1 Places *places = new Places(1, "ExamplePlace", msg, 7, 2, size, size);
2 places->callAll(ExamplePlace::init_);
3 Agents *agents = new Agents(2, "ExampleAgent", msg2, sizeof(char*), places,

PLACES_SIZE);
4 agents->callAll(ExampleAgent::agentInit_, msg2, sizeof(char*));

Places/Agents Calls

1 places->exchangeAll(1, ExamplePlace::setupEdges_, &neighbors);
2 places->callAll(ExamplePlace::copyEdges_);
3 agents->manageAll();

MASS Termination

1 MASS::finish();

4.1.2.3 Actual Lines of Code

After reviewing the source code submitted for the course and applying the inclusion rules listed above, we found
that the mean difference in values between reported and actual lines of code were pretty significant. As you can see
in Figure 14 (below), the actual values were on average 65.91% less than the ones reported, with the most significant
differences represented by the number of parallel/distributed lines of MASS code.

Hybrid
OpenMP/MPI

Total LOC

Hybrid
OpenMP/MPI
Parallel-Only

LOC

MASS Total
LOC

MASS
Parallel-Only

LOC

Reported
Mean 526 167 325 110

Actual Mean 191 24 247 11

Difference 336 143 78 99

% Difference 63.75% 85.66% 24.10% 90.16%

Avg %
Difference 65.91%

Figure 14: Difference in Lines of Code

Taking a closer look at these differences, there is a particularly (in terms of numbers, not necessarily percentage)
glaring difference found between hybrid OpenMP/MPI reported lines of code, and actual lines of code. This is most
likely a result of a combination of factors:

University of Washington Bothell 45

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1. Lack of Effort
While programs written in MASS were just recently developed/implemented by students, their corresponding
hybrid OpenMP/MPI applications were finished several weeks prior. We are assuming that a large part of this
overestimation is a result of being fixated on the current assignment and not doing due dilligence to go back
and count only “applicable” lines of code individually (for instance, merely opening the file and looking at the
number of the last line that appears - inadvertently including comments and whitespace in the reported value)

2. Overestimation
Along this same line of thining, it is not unreasonable to assume that if students are finding a hard time exhaus-
tively counting lines of code from a previous assignment (while trying to finish the current one), that they may
simply “estimate” this value - potentially inflating if they remembered hybrid OpenMP/MPI being more difficult,
or inherently having to include more code because of the fine-grained control required by this general-purpose
parallelization approach (i.e. - having to distribute with MPI and then further parallelize using OpenMP; more
frameworks, more code)

3. Counting Comments in with Total Even if students went through the additional work of manually counting
lines of code and breaking on whitespace (easy enough), they may still have included lines that contain only
comments in their total (or lines that contain only control characters that have been moved to their own line for
legibility - closing braces, etc)

Due to the discrepancies uncovered from manually verifying the actual lines of code, the remainder of the study
will be using the actual (corrected) lines of code, instead of the lines of code presented in survey results.

4.1.2.3.1 Hybrid OpenMP/MPI Applications

On average, hybrid OpenMP/MPI applications could be written in around 190 lines of code. We can see this data
in Figure 15.

Count 40 Range 387
Skewness
Standard

Error
0.36432 Fourth

Moment 353,081,397.82036

Mean 190.875 Sum 7,635 Kurtosis 5.77999 Median 166

Mean LCL 156.53367
Sum

Standard
Error

566.25841
Kurtosis
Standard

Error
0.67721 Median Error 2.80533

Mean UCL 225.21633 Total Sum
Squares 1,769,963

Alternative
Skewness
(Fisher's)

1.88407 Percentile
25% (Q1) 141

Variance 8,016.21474 Adjusted
Sum Squares 312,632.375

Alternative
Kurtosis
(Fisher's)

3.32802 Percentile
75% (Q2) 214

Standard
Deviation 89.53332 Geometric

Mean 175.94436 Coefficient of
Variation 0.46907 IQR 73

Mean
Standard

Error
14.15646 Harmonic

Mean 164.99306 Mean
Deviation 61.525 MAD 35.5

Minimum 104 Mode #N/A Second
Moment 7,815.80938

Maximum 491 Skewness 1.81267 Third Moment 1,252,505.65547

Alpha value
(for

confidence
interval)

0.02

Figure 15: Total Lines of Code: OpenMP/MPI

University of Washington Bothell 46

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

When considering the lines of code that are parallel/distributed-specific within the application, Figure 16 provides
us with a value close to 24 lines of code for OpenMP/MPI applications.

Count 40 Range 50
Skewness
Standard

Error
0.36432 Fourth

Moment 69,619.92284

Mean 23.975 Sum 959 Kurtosis 7.33497 Median 20.5

Mean LCL 20.1409
Sum

Standard
Error

63.22102
Kurtosis
Standard

Error
0.67721 Median Error 0.31321

Mean UCL 27.8091 Total Sum
Squares 26,889

Alternative
Skewness
(Fisher's)

2.01652 Percentile
25% (Q1) 18

Variance 99.92244 Adjusted
Sum Squares 3,896.975

Alternative
Kurtosis
(Fisher's)

5.09645 Percentile
75% (Q2) 27

Standard
Deviation 9.99612 Geometric

Mean 22.43997 Coefficient of
Variation 0.41694 IQR 9

Mean
Standard

Error
1.58053 Harmonic

Mean 21.23268 Mean
Deviation 7.11875 MAD 4

Minimum 12 Mode 19 Second
Moment 97.42438

Maximum 62 Skewness 1.9401 Third Moment 1,865.63184

Alpha value
(for

confidence
interval)

0.02

Figure 16: Parallel/Distributed-Specific Lines of Code: OpenMP/MPI

4.1.2.3.2 MASS Applications

As shown in Figure 17, applications built on MASS typically took around 247 lines of code.

University of Washington Bothell 47

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 41 Range 569
Skewness
Standard

Error
0.36037 Fourth

Moment 1,546,494,661.12785

Mean 246.7561 Sum 10,117 Kurtosis 5.34074 Median 203

Mean LCL 196.77496
Sum

Standard
Error

845.64981
Kurtosis
Standard

Error
0.67105 Median Error 4.03715

Mean UCL 296.73723 Total Sum
Squares 3,194,113

Alternative
Skewness
(Fisher's)

1.77277 Percentile
25% (Q1) 162

Variance 17,442.03902 Adjusted
Sum Squares 697,681.56098

Alternative
Kurtosis
(Fisher's)

2.81542 Percentile
75% (Q2) 276.5

Standard
Deviation 132.06831 Geometric

Mean 221.75155 Coefficient of
Variation 0.53522 IQR 114.5

Mean
Standard

Error
20.62561 Harmonic

Mean 203.88522 Mean
Deviation 96.05711 MAD 49

Minimum 117 Mode #N/A Second
Moment 17,016.62344

Maximum 686 Skewness 1.70724 Third Moment 3,789,699.15361

Alpha value
(for

confidence
interval)

0.02

Figure 17: Total Lines of Code: MASS

Looking at Figure 18, we see that the lines of parallel/distributed-specific code for MASS applications were about
11.

University of Washington Bothell 48

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 41 Range 27
Skewness
Standard

Error
0.36037 Fourth

Moment 12,593.49782

Mean 10.82927 Sum 444 Kurtosis 5.5343 Median 9

Mean LCL 8.18296
Sum

Standard
Error

44.77388
Kurtosis
Standard

Error
0.67105 Median Error 0.21375

Mean UCL 13.47558 Total Sum
Squares 6,764

Alternative
Skewness
(Fisher's)

1.96289 Percentile
25% (Q1) 7.25

Variance 48.89512 Adjusted
Sum Squares 1,955.80488

Alternative
Kurtosis
(Fisher's)

3.03484 Percentile
75% (Q2) 11.75

Standard
Deviation 6.9925 Geometric

Mean 9.34042 Coefficient of
Variation 0.6457 IQR 4.5

Mean
Standard

Error
1.09205 Harmonic

Mean 8.27656 Mean
Deviation 4.59607 MAD 2

Minimum 3 Mode 8 Second
Moment 47.70256

Maximum 30 Skewness 1.89034 Third Moment 622.80385

Alpha value
(for

confidence
interval)

0.02

Figure 18: Parallel/Distributed-Specific Lines of Code: MASS

4.1.2.3.3 Summary of Lines of Code Difference

As with our time data, we are including a summary section here to help illustrate how these frameworks stack up
against one another, in terms of the lines of code needed to write similar applications. We have created Figure 19 to
illustrate this breakdown. There is a “Percent Difference” column added to this chart that shows the differences in
LOC between frameworks. There is also a “Percent Difference” row added to this chart that shows the percentage of
the overall code written that has to do with parallel/distributed-specific functionality (per framework). To aid in this
final view (row), we’ve also added a “Ratio (Parallel-specific : Regular LOC)” row that shows how many standard
lines of code will be written before parallel-specific code has to be put in place (on average for an application).

OpenMP/MPI 
(Baseline) MASS Difference Percent

Difference

Total Lines of
Code 190.88 246.76 55.88 29.28%

Parallel/
Distributed-

Specific Lines of
Code

23.98 10.83 -13.15 -54.83%

Percent
Difference 12.56% 4.39% -8.17%

Ratio  
(Parallel-specific
: Regular LOC)

1 : 8.00 1 : 23.00

Figure 19: Lines of Code Summary Between OpenMP/MPI and MASS

Looking at this data, we see two things of interest:

University of Washington Bothell 49

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

1. MASS requires around 29.28% more lines of code than comparable applications built using hybrid OpenM-
P/MPI

2. MASS applications require 54.83% less lines of parallel-specific code than hybrid OpenMP/MPI counterparts

Overall, this means that applications based on MASS will write 15 more lines of code than comparable hybrid
OpenMP/MPI applications, prior to having to deal with parallel-specific code sections.

4.1.2.4 Developer Assessment

4.1.2.4.1 Learning Curve

We can see from Figure 20 that programmers developing applications based on a hybrid OpenMP/MPI approach,
generally found that the learning curve was pretty fair - not hard, but not easy.

Count 44 Range 4
Skewness
Standard

Error
0.34926 Fourth

Moment 2.89692

Mean 3.11364 Sum 137 Kurtosis 2.84089 Median 3

Mean LCL 2.74336
Sum

Standard
Error

6.74278
Kurtosis
Standard

Error
0.65348 Median Error 0.02895

Mean UCL 3.48391 Total Sum
Squares 471

Alternative
Skewness
(Fisher's)

-0.09769 Percentile
25% (Q1) 3

Variance 1.0333 Adjusted
Sum Squares 44.43182

Alternative
Kurtosis
(Fisher's)

-0.02897 Percentile
75% (Q2) 4

Standard
Deviation 1.01651 Geometric

Mean 2.91836 Coefficient of
Variation 0.32647 IQR 1

Mean
Standard

Error
0.15325 Harmonic

Mean 2.67206 Mean
Deviation 0.74587 MAD 1

Minimum 1 Mode 3 Second
Moment 1.00981

Maximum 5 Skewness -0.09433 Third Moment -0.09572

Alpha value
(for

confidence
interval)

0.02

Figure 20: Learning Curve: OpenMP/MPI

On the other hand, Figure 21 reflects that the same programmers, developing the same applications, found that
learning the MASS library was generally hard - not ‘quite hard’, but definitely closer to hard than average. This could
have been for a number of reasons: students were given more lectures and lab time that dealt with MPI and OpenMP,
there are not online resources readily-available to answer questions (searching internet for answers/explanations will
not help yield results), and there is an additional difficulty over from their previous general-parallel thinking to a new
paradigm-oriented approach.

University of Washington Bothell 50

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 44 Range 4
Skewness
Standard

Error
0.34926 Fourth

Moment 3.48769

Mean 2.38636 Sum 105 Kurtosis 1.97763 Median 2

Mean LCL 1.96174
Sum

Standard
Error

7.73244
Kurtosis
Standard

Error
0.65348 Median Error 0.0332

Mean UCL 2.81099 Total Sum
Squares 309

Alternative
Skewness
(Fisher's)

0.38042 Percentile
25% (Q1) 1

Variance 1.35888 Adjusted
Sum Squares 58.43182

Alternative
Kurtosis
(Fisher's)

-0.99901 Percentile
75% (Q2) 3

Standard
Deviation 1.16571 Geometric

Mean 2.09684 Coefficient of
Variation 0.48849 IQR 2

Mean
Standard

Error
0.17574 Harmonic

Mean 1.82446 Mean
Deviation 1.00207 MAD 1

Minimum 1 Mode 2 Second
Moment 1.328

Maximum 5 Skewness 0.36733 Third Moment 0.56215

Alpha value
(for

confidence
interval)

0.02

Figure 21: Learning Curve: MASS

4.1.2.4.2 Application Suitability

Figure 22 displays the data gathered around asking how programmers found the hybrid OpenMP/MPI framework
suited toward their application. The results show that programmers typically found that it was on the easy side of fairly
suited toward their needs.

University of Washington Bothell 51

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 43 Range 4
Skewness
Standard

Error
0.35285 Fourth

Moment 2.1618

Mean 3.69767 Sum 159 Kurtosis 3.65503 Median 4

Mean LCL 3.37041
Sum

Standard
Error

5.81869
Kurtosis
Standard

Error
0.65919 Median Error 0.02586

Mean UCL 4.02494 Total Sum
Squares 621

Alternative
Skewness
(Fisher's)

-0.63684 Percentile
25% (Q1) 3

Variance 0.78738 Adjusted
Sum Squares 33.06977

Alternative
Kurtosis
(Fisher's)

0.89176 Percentile
75% (Q2) 4

Standard
Deviation 0.88734 Geometric

Mean 3.56501 Coefficient of
Variation 0.23997 IQR 1

Mean
Standard

Error
0.13532 Harmonic

Mean 3.37696 Mean
Deviation 0.70525 MAD 1

Minimum 1 Mode 4 Second
Moment 0.76906

Maximum 5 Skewness -0.6144 Third Moment -0.41438

Alpha value
(for

confidence
interval)

0.02

Figure 22: Application Suitability: OpenMP/MPI

If we look at Figure 23, we can see that programmers also found MASS to be on the easy side of fairly suitable for
their application - though, slightly less suited than OpenMP/MPI.

University of Washington Bothell 52

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 43 Range 4
Skewness
Standard

Error
0.35285 Fourth

Moment 3.25113

Mean 3.60465 Sum 155 Kurtosis 2.04036 Median 4

Mean LCL 3.18538
Sum

Standard
Error

7.45462
Kurtosis
Standard

Error
0.65919 Median Error 0.03313

Mean UCL 4.02393 Total Sum
Squares 613

Alternative
Skewness
(Fisher's)

-0.27136 Percentile
25% (Q1) 3

Variance 1.29236 Adjusted
Sum Squares 54.27907

Alternative
Kurtosis
(Fisher's)

-0.92769 Percentile
75% (Q2) 5

Standard
Deviation 1.13682 Geometric

Mean 3.39807 Coefficient of
Variation 0.31538 IQR 2

Mean
Standard

Error
0.17336 Harmonic

Mean 3.15018 Mean
Deviation 0.98107 MAD 1

Minimum 1 Mode #N/A Second
Moment 1.2623

Maximum 5 Skewness -0.2618 Third Moment -0.37129

Alpha value
(for

confidence
interval)

0.02

Figure 23: Application Suitability: MASS

4.1.2.4.3 Difference Between Sequential and Parallel Programs

Programmers were asked to rate their experience moving their sequential algorithms into a parallel suitable equiv-
alent for hybrid OpenMP/MPI and MASS applications. Figure 24 shows that for hybrid OpenMP/MPI applications,
programmers found this task to be pretty fair, with a slight bent toward being hard.

University of Washington Bothell 53

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 43 Range 4
Skewness
Standard

Error
0.35285 Fourth

Moment 4.3899

Mean 2.90698 Sum 125 Kurtosis 1.88458 Median 3

Mean LCL 2.44595
Sum

Standard
Error

8.19698
Kurtosis
Standard

Error
0.65919 Median Error 0.03643

Mean UCL 3.368 Total Sum
Squares 429

Alternative
Skewness
(Fisher's)

-0.20008 Percentile
25% (Q1) 2

Variance 1.56257 Adjusted
Sum Squares 65.62791

Alternative
Kurtosis
(Fisher's)

-1.10323 Percentile
75% (Q2) 4

Standard
Deviation 1.25003 Geometric

Mean 2.58077 Coefficient of
Variation 0.43001 IQR 2

Mean
Standard

Error
0.19063 Harmonic

Mean 2.21269 Mean
Deviation 1.04705 MAD 1

Minimum 1 Mode 4 Second
Moment 1.52623

Maximum 5 Skewness -0.19303 Third Moment -0.36397

Alpha value
(for

confidence
interval)

0.02

Figure 24: Difference Between Sequential and Parallel Programs: OpenMP/MPI

Considering Figure 25, we see that programmers found this task to be hard, but leaning toward fair. The difference
between the two frameworks being slight.

University of Washington Bothell 54

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 42 Range 4
Skewness
Standard

Error
0.35656 Fourth

Moment 5.95278

Mean 2.69048 Sum 113 Kurtosis 1.86798 Median 2.5

Mean LCL 2.18534
Sum

Standard
Error

8.76384
Kurtosis
Standard

Error
0.66505 Median Error 0.04035

Mean UCL 3.19561 Total Sum
Squares 379

Alternative
Skewness
(Fisher's)

0.28859 Percentile
25% (Q1) 2

Variance 1.82869 Adjusted
Sum Squares 74.97619

Alternative
Kurtosis
(Fisher's)

-1.12164 Percentile
75% (Q2) 4

Standard
Deviation 1.35229 Geometric

Mean 2.33136 Coefficient of
Variation 0.50262 IQR 2

Mean
Standard

Error
0.20866 Harmonic

Mean 1.98425 Mean
Deviation 1.16667 MAD 1.5

Minimum 1 Mode 2 Second
Moment 1.78515

Maximum 5 Skewness 0.27817 Third Moment 0.66348

Alpha value
(for

confidence
interval)

0.02

Figure 25: Difference Between Sequential and Parallel Programs: MASS

4.1.2.4.4 Debugging Difficulty

Figure 26 shows that programmers generally found it difficult (hard) to debug hybrid OpenMP/MPI applications.

University of Washington Bothell 55

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 44 Range 3
Skewness
Standard

Error
0.34926 Fourth

Moment 1.17661

Mean 2.43182 Sum 107 Kurtosis 2.40196 Median 2

Mean LCL 2.12355
Sum

Standard
Error

5.61352
Kurtosis
Standard

Error
0.65348 Median Error 0.02411

Mean UCL 2.74008 Total Sum
Squares 291

Alternative
Skewness
(Fisher's)

-0.01757 Percentile
25% (Q1) 2

Variance 0.71617 Adjusted
Sum Squares 30.79545

Alternative
Kurtosis
(Fisher's)

-0.52219 Percentile
75% (Q2) 3

Standard
Deviation 0.84627 Geometric

Mean 2.26664 Coefficient of
Variation 0.348 IQR 1

Mean
Standard

Error
0.12758 Harmonic

Mean 2.07874 Mean
Deviation 0.72417 MAD 1

Minimum 1 Mode #N/A Second
Moment 0.6999

Maximum 4 Skewness -0.01696 Third Moment -0.00993

Alpha value
(for

confidence
interval)

0.02

Figure 26: Debugging Difficulty: OpenMP/MPI

If we look at Figure 27, they also found it difficult (hard) to debug within the MASS framework. However, there
is a slight tendency toward the average (fair) here, giving MASS a slight leg up in the comparison.

University of Washington Bothell 56

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 44 Range 4
Skewness
Standard

Error
0.34926 Fourth

Moment 6.1711

Mean 2.64773 Sum 116.5 Kurtosis 1.74307 Median 2

Mean LCL 2.14229
Sum

Standard
Error

9.20408
Kurtosis
Standard

Error
0.65348 Median Error 0.03952

Mean UCL 3.15317 Total Sum
Squares 391.25

Alternative
Skewness
(Fisher's)

0.32869 Percentile
25% (Q1) 1.5

Variance 1.92534 Adjusted
Sum Squares 82.78977

Alternative
Kurtosis
(Fisher's)

-1.26258 Percentile
75% (Q2) 4

Standard
Deviation 1.38757 Geometric

Mean 2.2729 Coefficient of
Variation 0.52406 IQR 2.5

Mean
Standard

Error
0.20918 Harmonic

Mean 1.92701 Mean
Deviation 1.22934 MAD 1

Minimum 1 Mode 2 Second
Moment 1.88159

Maximum 5 Skewness 0.31738 Third Moment 0.81914

Alpha value
(for

confidence
interval)

0.02

Figure 27: Debugging Difficulty: MASS

4.1.2.4.5 Summary of Developer Assessment

Through the administration of this survey, programmers were asked several questions that compared similar tasks
in the development process between OpenMP/MPI and MASS applications. While we have presented very detailed
results of each individual response to these questions (above), we find that it is much easier to get a clear overall picture
of the differences in these frameworks by putting all of the data side-by-side.

Figure 28 provides this view into the data - giving a side-by-side comparison of responses across all four questions,
averages across the four questions, and a difference summary to illustrate the degree to which one framework surpasses
the other.

University of Washington Bothell 57

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

OpenMP/MPI 
(Baseline) MASS Difference Percent

Difference

Learning
Curve 3.11 2.39 -0.73 -23.36%

Application
Suitability 3.70 3.60 -0.09 -2.52%

Difference
Between

Sequential
and Parallel
Programs

2.91 2.69 -0.22 -7.45%

Debugging
Difficulty 2.43 2.65 0.22 8.88%

Average
Rating 3.04 2.83 -0.21 -6.76%

Figure 28: Programmability Summary Between OpenMP/MPI and MASS

On average, it appears as if hybrid OpenMP/MPI applications have a slight advantage over MASS when con-
sidering common tasks in the development process. The difference in means here (-0.21) points to MASS being
slightly more difficult to use. Translated into a percentage difference, we see that it is about 6.76% more difficult for
programmers.

4.1.2.5 Comparison of Like Functionality

4.1.2.5.1 Call All

As shown in Figure 29, programmers tended to find the process of calling all (all places, agents, etc) in their
applications slightly easier within MASS than using hybrid OpenMP/MPI.

University of Washington Bothell 58

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 40 Range 4
Skewness
Standard

Error
0.36432 Fourth

Moment 5.17852

Mean 3.5625 Sum 142.5 Kurtosis 2.25668 Median 4

Mean LCL 3.08441
Sum

Standard
Error

7.88336
Kurtosis
Standard

Error
0.67721 Median Error 0.03906

Mean UCL 4.04059 Total Sum
Squares 568.25

Alternative
Skewness
(Fisher's)

-0.4529 Percentile
25% (Q1) 3

Variance 1.55369 Adjusted
Sum Squares 60.59375

Alternative
Kurtosis
(Fisher's)

-0.67893 Percentile
75% (Q2) 5

Standard
Deviation 1.24647 Geometric

Mean 3.28408 Coefficient of
Variation 0.34989 IQR 2

Mean
Standard

Error
0.19708 Harmonic

Mean 2.91616 Mean
Deviation 1.05938 MAD 1

Minimum 1 Mode 5 Second
Moment 1.51484

Maximum 5 Skewness -0.43573 Third Moment -0.8124

Alpha value
(for

confidence
interval)

0.02

Figure 29: OpenMP/MPI vs MASS Comparison: Call All

4.1.2.5.2 Exchange All

Figure 30, shows that trying to exchange all (agents, data across places, etc) was slightly harder in MASS than in
corresponding applications written on hybrid OpenMP/MPI.

University of Washington Bothell 59

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 32 Range 4
Skewness
Standard

Error
0.4013 Fourth

Moment 4.5625

Mean 3 Sum 96 Kurtosis 1.8688 Median 3

Mean LCL 2.44932
Sum

Standard
Error

7.18421
Kurtosis
Standard

Error
0.73273 Median Error 0.04974

Mean UCL 3.55068 Total Sum
Squares 338

Alternative
Skewness
(Fisher's)

0E+00 Percentile
25% (Q1) 2

Variance 1.6129 Adjusted
Sum Squares 50

Alternative
Kurtosis
(Fisher's)

-1.11634 Percentile
75% (Q2) 4

Standard
Deviation 1.27 Geometric

Mean 2.69666 Coefficient of
Variation 0.42333 IQR 2

Mean
Standard

Error
0.22451 Harmonic

Mean 2.36162 Mean
Deviation 1.0625 MAD 1

Minimum 1 Mode #N/A Second
Moment 1.5625

Maximum 5 Skewness 0E+00 Third Moment 0E+00

Alpha value
(for

confidence
interval)

0.02

Figure 30: OpenMP/MPI vs MASS Comparison: Exchange All

4.1.2.5.3 Manage All

In Figure 31 we see that it was slightly easier, using MASS, to manage all resources (agents, places, etc) within an
application.

University of Washington Bothell 60

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Count 11 Range 4
Skewness
Standard

Error
0.59761 Fourth

Moment 6.09808

Mean 3.54545 Sum 39 Kurtosis 2.10392 Median 4

Mean LCL 2.40509
Sum

Standard
Error

4.53872
Kurtosis
Standard

Error
0.92118 Median Error 0.15592

Mean UCL 4.68582 Total Sum
Squares 157

Alternative
Skewness
(Fisher's)

-0.68817 Percentile
25% (Q1) 2.75

Variance 1.87273 Adjusted
Sum Squares 18.72727

Alternative
Kurtosis
(Fisher's)

-0.66013 Percentile
75% (Q2) 5

Standard
Deviation 1.36848 Geometric

Mean 3.2186 Coefficient of
Variation 0.38598 IQR 2.25

Mean
Standard

Error
0.41261 Harmonic

Mean 2.79661 Mean
Deviation 1.12397 MAD 1

Minimum 1 Mode 4 Second
Moment 1.70248

Maximum 5 Skewness -0.59053 Third Moment -1.3118

Alpha value
(for

confidence
interval)

0.02

Figure 31: OpenMP/MPI vs MASS Comparison: Manage All

4.1.2.5.4 Summary of Comparison of Like Functionality

The following table, Figure 32, provides a summary of the overall average ratings when comparing similar func-
tions between hybrid OpenMP/MPI and MASS applications. This table also displays an average across all similar
function comparisons.

MASS
Equivalent

Rating
Difference Percent

Difference

Call All 3.56 0.56 28.13%

Exchange All 2.45 -0.55 -27.53%

Manage All 3.55 0.55 27.27%

Average 3.19 0.19 9.29%

Figure 32: Comparison Summary Between Like Functionality in OpenMP/MPI and MASS

Looking at the average, we can see that corresponding functions in MASS were fractionally easier to use than the
corresponding functions in hybrid OpenMP/MPI applications. If we convert this value (0.19) to a percentage, we end
up with MASS being a slight 9.29% easier to use.

4.1.2.6 Comparison Between Surveyed Classes
So far, we have been focusing on the combined results from both class surveys. However, in order to take a further

University of Washington Bothell 61

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

look at how the differences in class make up (programming experience, interest in parallel/distributed computing)
could have affected the results of our study, we compiled the data in Figure 33 (below).

Question 1: State your time (in hours) needed to complete your HW2 and HW4 respectively

OpenMP/MPI Hours MASS Hours

To learn the
library

To design the
program

To write the
program

To debug the
program

To learn the
library

To design the
program

To write the
program

To debug the
program

2.35 2.15 -0.32 2.51 1.43 2.50 2.77 3.26

Question 2: State the code size (in lines) of your HW2 and HW4 respectively

Homework 2  
(Hybrid OpenMP/MPI)

Homework 4  
(MASS)

Total lines Parallelization-specific code Total lines Parallelization-specific code

-58.15 -7.89 26.11 4.26

Question 3: State the programmability of HW2 and HW4: 
1 quite hard, 2: hard, 3: fair, 4: good, 5: excellent

Hybrid MPI/OpenMP version MASS version

Learning
curve

Application
Suitability

Difference
Between

Sequential
and Parallel
Programs

Debugging
difficulty

Learning
curve

Application
Suitability

Difference
Between

Sequential
and Parallel
Programs

Debugging
difficulty

0.48 -0.55 0.42 0.32 -0.17 -0.48 0.00 0.01

Question 4: State the degree of easiness of the following MASS functions when you wrote your program, as compared to MPI/
OpenMP functions:

1: quite hard, 2: hard, 3: fair, 4: easy, 5: quite easy, (blank): not used

Existing MASS Functions

Places/Agents 
callAll

Places 
exchangeAll

Agents 
manageAll

-0.62 0.40 -0.32

Figure 33: Difference Summary Between Spring 2014 & Winter 2015 Results

In this figure, we can see that students enrolled in the second course (Winter 2015):

1. Generally took more time to develop using both frameworks
2. Wrote less lines of code for their hybrid OpenMP/MPI applications, but more lines of code using MASS
3. Found the learning curve to be easier for OpenMP/MPI and harder for MASS
4. Found the application suitability to be harder for OpenMP/MPI and MASS
5. Found the difference between sequential and parallel programs to be easier for OpenMP/MPI, but the same for

MASS
6. Found the debugging difficulty to be easier for OpenMP/MPI and also just slightly easier for MASS
7. Found the corresponding callAll functionality more difficult in MASS
8. Found the corresponding exchangeAll functionality easier using MASS
9. Found the corresponding manageAll functionality more difficult in MASS

University of Washington Bothell 62

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

So far, this data fits with what we would expect and shows that programmers with (assumed) more interest in
parallel/distributed computing and (assumed) more programming experience generally found MASS easier to use,
took less effort (lines of code) to create, and took less time to create than OpenMP/MPI.

However, it is also very important to consider that we only had 16 responses from the first quarter that we could
use, which represents a small sample size. We are not able to really say, with a high degree of certainty that the
reponses from the second class are significantly different from the results from the first. After all, it could turn out
that with more students enrolled in the first class, and more survey results to add to our data set, that the initial results
collected fall within the low end of a normal distribution. Of course, the opposite is true - and, the differences we can
observe with this small sample size could be significantly greater if there were more data points collected from the
first class.

It is possible to use further statistical analysis to see if the data between classes is significantly different. To do so,
we will use a Student’s t-test. Specifically, we will use a two-sample t-test, assuming equal variances (homoscedastic)
in our data sets. The idea here being that we are comparing observations of like data between two classes. So, while
the average (mean) may differ, if we collect enough data, the variance should begin to coalesce around a common
value. If we were comparing different types of data or data that could strongly vary between two samples, then we’d
want to use a heteroscedastic version of the t-test.

4.1.2.6.1 Sample Mean Comparison

Note: An exhaustive look at how each question performed under the t-Test can be found in Appendix F. If you
are interested in taking an in-depth look into additional data around each response (t Critical Value (5%), Pooled
Variance, Degrees Of Freedom, etc), please see Appendix F. In this section, we have taken an in-depth look into each

survey question and evaluated whether or not the difference between results between the Spring 2014 & Winter 2015
classes represent a statistically significant difference. The null hypothesis in each case is that both of the sampled
means are identical, or:

H0 = µ Spring 2014 Response = µ Winter 2015 Response

While we know that they all differ (from Figure 33; above), the question that remains is, “Given the smaller sample
size of the first class, can we say that the difference is large enough to account for the lack of degrees of freedom (data
points) in this group?”

Since the value of each survey question can either be higher or lower than the value from the other class, we will
need to use the p-value of the two-tailed test to evaluate significance. A p-value less than 0.05 indicates that the results
are significantly different between the two samples. We have highlighted this value, when encountered in Figure 34.

University of Washington Bothell 63

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Student’s t-Test of Results Between Spring 2014 & Winter 2015 Results (p-levels)

Question 1: State your time (in hours) needed to complete your HW2 and HW4 respectively

OpenMP/MPI Hours MASS Hours

To learn the
library

To design the
program

To write the
program

To debug the
program

To learn the
library

To design the
program

To write the
program

To debug the
program

0.18188 0.14339 0.90431 0.33451 0.27755 0.17905 0.33123 0.09974

Question 2: State the code size (in lines) of your HW2 and HW4 respectively

Homework 2  
(Hybrid OpenMP/MPI)

Homework 4  
(MASS)

Total lines Parallelization-specific code Total lines Parallelization-specific code

0.05872 0.02004 0.56241 0.06915

Question 3: State the programmability of HW2 and HW4: 
1 quite hard, 2: hard, 3: fair, 4: good, 5: excellent

Hybrid MPI/OpenMP version MASS version

Learning
curve

Application
Suitability

Difference
Between

Sequential
and Parallel
Programs

Debugging
difficulty

Learning
curve

Application
Suitability

Difference
Between

Sequential
and Parallel
Programs

Debugging
difficulty

0.14581 0.05385 0.31979 0.24869 0.66395 0.19776 0.9954 0.98753

Question 4: State the degree of easiness of the following MASS functions when you wrote your program, as compared to MPI/
OpenMP functions:

1: quite hard, 2: hard, 3: fair, 4: easy, 5: quite easy, (blank): not used

Existing MASS Functions

Places/Agents 
callAll

Places 
exchangeAll

Agents 
manageAll

0.13655 0.39721 0.72857

Figure 34: Students t-Test of Results Between Spring 2014 & Winter 2015 Surveyed Questions (p-levels)

4.1.2.6.2 Class Difference Summary

We found that there were statistically significant differences between the Spring 2014 and Winter 2015 survey
results for the following surveyed question (highlighted green in Figure 34):

1. OpenMP/MPI - Parallel-Specific Lines of Code
The Spring 2014 course wrote approximately 8 more lines of parallel/distributed code in the hybrid OpenM-
P/MPI applications

We also found that there were a few survey results that were very nearly statistically different between the Spring
2014 and Winter 2015 classes (highlighted orange in Figure 34). These were:

1. OpenMP/MPI - Total Lines of Code
The Spring 2014 course generally wrote around 58 more lines of code in their hybrid OpenMP/MPI applications
than the Winter 2015 course

University of Washington Bothell 64

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

2. OpenMP/MPI - Application Suitability
The Spring 2014 course generally found hybrid OpenMP/MPI applications to be 11% more suitable for their
applications

Given the close nature of these values, we feel that further research would really help solidify the validity of some
of these trends. We discuss this idea more during the conclusion of this paper, in Section 6.3.

All of this additional research into the data brings up a new question: “Now that we have established a statistically
significant difference in one aspect between classes, how should we handle the interpretation of results?”

For the course of this paper, we are choosing to remain neutral between courses. This means that we will consider
the entirety of surveyed results, without adjusting our findings in favor of one class over the other. The data does
suggest that the first course found OpenMP/MPI more suitable for their applications and, interestingly enough, this
resulted in them writing more overall lines of code and parallel-specific lines of code than the second class.

We have outlined suggestions to remove the future potential for this type of bias in Section 5.1.3. In this section,
we also suggest ways to improve the quality of the data being surveyed in order to draw more clear correlations by
collecting additional information about the individual filling out the survey. More information on these details can be
found in the “Future Work” section of the paper, Section 6.

4.2 Performance
4.2.1 General MASS Performance

Before diving into comparisons between hybrid OpenMP/MPI and MASS application performance, we’d like to spend
a bit of time just documenting the general performance characteristics of MASS itself.

4.2.1.1 Agents Performance

Section 3.2.1.1.2 details the particulars of the various tests that were run to get Agent performance within MASS.
In this section, we will present the results of these tests varying both the iterations and max time values for simulations
- providing a view into “computationally heavy” Agent performance and “simulation time heavy” Agent performance,
respectively.

It should be noted that tests that varied the value of iterations were performed using 256 Place Objects and a
constant max time value of 60. To see the actual results of these performance tests, please see Appendix G.

On the other hand, tests that varied the value of max time were performed using 256 Place Objects and a constant
iterations value of 10 (representing a “light” computational load for each callAll() being made). If you’re interested in
viewing the raw data collected from these sets of performance tests, please see Appendix H.

4.2.1.1.1 Test 1: callAll (null return value)

Figure 35 shows that the performance of an Agents callAll() function with varying degrees of computational load
(iterations) produce a performance graph that matches with our expectations of parallel/distributed performance gains.
To put this another way, as the number of hosts increase, the performance increases.

University of Washington Bothell 65

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 35: Agents: callAll (null return value) Performance Chart - Iterations

Looking at Figure 36, we see the same general trend as time of the simulation is increased. This indicates efficient
use of resources as they become available to the simulation (good parallelization). There are a couple of anomalies
present at 2 and 16 hosts, which correspond to using a poorly-performing node in our tests (uw1-320-09).

University of Washington Bothell 66

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 36: Agents: callAll (null return value) Performance Chart - Max Time

4.2.1.1.2 Test 2: Random Migration

Figure 37 shows a fairly constant performance, regardless of the varying degrees of computational load (iterations)
being used. This is due to this test merely moving Agents from one Place to another - no computation is actually
performed. So, since the number of Places and number of Agents are constant in this scenario, the difference in
performance really comes down to the number of hosts involved in the test. As the number of hosts decreases, you
can see the effect on migration calls, as Agents either move to Places on the same host or between hosts (cross-
host migration allows computation of new Place location to benefit from parallel/distributed task breakdown). This
difference will become more apparent in future tests that take away the “random” aspect of this migration.

University of Washington Bothell 67

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 37: Agents: Random Migration Performance Chart - Iterations

If we vary the time of the simulation, instead of the computaitonal load, we will see (as in Figure 38) that the
execution time increases accordingly. Once again, there are spikes at 2 and 16 hosts, due to the same poor-performing
machine (uw1-320-09). However, if we ignore these lines, the general trend is a slight improvement of migration
performance as the number of hosts are increased. This is a by-product of using a constant number of Places/Agents
in our simulation. As the number of hosts increased, the actual number of Agents per host goes down - allowing each
host to process migration requests faster.

University of Washington Bothell 68

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 38: Agents: Random Migration Performance Chart - Max Time

4.2.1.1.3 Test 3: Full Migration

In Figure 39, we are presented with a view into performance that is completely unaffected by the number of itera-
tions performed (computational load at each node). There is a noticable spike at two hosts, due to poor performance
from uw1-320-09, but overall, the time taken for Agents to migrate to a new place drops according to the number of
hosts involved in the simulation. This is a result of each node being able to distribute the work involved to reassign
location for each Agent and the fact that the constant 256 Agents used in the simulation is spread more thinly across
participating machines. It also makes sense that the value of iterations plays no part in the execution time, since no
computation takes place during a migration.

University of Washington Bothell 69

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 39: Agents: Full Migration Performance Chart - Iterations

In Figure 40 we are presented with a quite erratic view into performance as the simulation time is altered. Once
again, if we are able to look past the poor performance at 2 and 16 hosts, we can observe an overall trend toward better
performance with additional hosts. The effect of this test represents a “worst case” migration situation - as additional
logic has been added to ensure that each Agent is not reassigned to its current location.

University of Washington Bothell 70

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 40: Agents: Full Migration Performance Chart - Max Time

4.2.1.1.4 Test 4: callAll (with return value)

Since this test involves computation taking place on each node, we see the familiar effect of distributing/paral-
lelizing the work load in Figure 41. As the number of resources available to distribute work between increases, the
execution time decreases.

University of Washington Bothell 71

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 41: Agents: callAll (with return value) Performance Chart - Iterations

The familiar spikes at 2 and 16 hosts are also present in Figure 42 - which shows how MASS performs during
a callAll operation, utilizing a return value. As expected, good parallelization continues to occur in this situation,
showing that MASS is able to handle distributing and parallelizing work across machines and make efficient use of
resources as they become available.

University of Washington Bothell 72

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 42: Agents: callAll (with return value) Performance Chart - Max Time

4.2.1.1.5 Test 5: Best Migrate (once)

As with “Test 3: Full Migration”, Figure 39 shows a graph that is unaffected by the number of iterations performed
(computational load). We also see the familiar spike at two nodes, that is most likely a result of our slow machine
(uw1-320-09). You will notice that the scale of this test is about 25% smaller than the scale of the full migration test.
This is due to the fact that the max time attribute (normally set at 60 for these tests) is ignored and the migration only
occurs once.

University of Washington Bothell 73

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 43: Agents: Best Migrate (once) Performance Chart - Iterations

In Figure 44 we see an uncharacteristic level response as resources are increased (with typical exceptions at 2 and
16 hosts; discussed previously). This is due to the max time value being ignored for this test - so, each run is only
performed once. We are also testing a “best case” scenario for the migration, which means that Agents do not actually
move to a new location.

University of Washington Bothell 74

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 44: Agents: Best Migrate (once) Performance Chart - Max Time

4.2.1.1.6 Test 6: Random Migrate (once)

The data in Figure 45 shows us what a single run of the random migrate function looks like, in terms of execution
time. Since no additional computational load is added (iterations value does not apply), we see a smooth decrease in
effort as the number of hosts is increased. Once again, this is due to the number of actual Agents residing on each
machine being spread out (spreading out the work required to computer and handle a migration). We also notice
that the “bump” at two hosts is gone. Since this migration shoud technically take more time than the “best case”
scenario (above), we can assume that the root cause is, indeed, an intermittently poor-performing node in our cluster
(uw1-320-09) - which, appears to have decided to show up to work for this test.

University of Washington Bothell 75

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 45: Agents: Random Migrate (once) Performance Chart - Iterations

In Figure 46 we can see a similar effect from varying the simulation size - this value is ignored! Once again,
max time is ignored and each test is only run once. This provides an individual look into how long a single random
migration will take within MASS. We see familiar spikes at 2 and 16 hosts, but aside from these outliers, the overall
trend is an growth in performance as hosts are also increased.

University of Washington Bothell 76

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 46: Agents: Random Migrate (once) Performance Chart - Max Time

4.2.1.1.7 Test 7: Worst Migrate (once)

The efforts of our faulty node (uw1-320-09) appear to have been short-lived, as we once again see a spike at two
hosts in Figure 47. However, we also see a familiar trend toward better performance as the number of resources is
increased (decreasing actual number of Agents per host, and subsequent calculations involved to migrate).

University of Washington Bothell 77

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 47: Agents: Worst Migrate (once) Performance Chart - Iterations

Figure 48 shows some expected spikes at 2 and 16 hosts - once again illustrating how one “bad apple” can ruin
a bunch in a parallel simulation. However, ignoring these oddities, we once again see a pattern of good resource
usage within MASS. The performance is relatively flat at each host as max time is varied, which is due to this test just
running once (ignores this value) - providing a baseline for a single execution of a worst migration scenario.

University of Washington Bothell 78

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 48: Agents: Worst Migrate (once) Performance Chart - Max Time

4.2.1.2 Places Performance

Section 3.2.1.1.1 details the particulars of the various tests that were run to get Places performance within MASS.
In this section, we will present the results of these tests varying both the iterations and max time values for simulations
- providing a view into “computationally heavy” Place performance and “simulation time heavy” Place performance,
respectively.

It should be noted that tests that varied the value of iterations were performed using 256 Place Objects and a con-
stant max time value of 60. If you would like to see the complete set of data collected from these sets of performance
tests, please see Appendix I.

On the other hand, tests that varied the value of max time were performed using 256 Place Objects and a constant
iterations value of 10 (representing a “light” computational load for each callAll() being made). To see the complete
set of data collected from these sets of performance tests, please visit Appendix J.

4.2.1.2.1 Test 1: callAll and exchangeAll

University of Washington Bothell 79

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 49 shows that the performance of a Places callAll() function followed by an exchangeAll() with varying
degrees of computational load (iterations) produce a performance graph that matches with our expectations of paral-
lel/distributed performance gains. To put this another way, as the number of hosts increase, the performance increases.

Figure 49: Places: callAll and exchangeAll Performance Chart - Iterations

If we consider Figure 50, we see a similar pattern but also a noticable anomaly at 16 hosts. This could be a relic
of additional load from having to perform an exchangeAll() across more hosts or it could be the result of having a
slow machine in the grid (or competition for resources, other applications running on a lab machine at the same time).
One way to see if there is an underlying load from exchangeAll() that eventually surpasses the performance load of
callAll() would be to consider the results of the individual callAll() test (see: Figure 54) and compare the difference in
these graphs.

University of Washington Bothell 80

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 50: Places: callAll and exchangeAll Performance Chart - Max Time

4.2.1.2.2 Test 2: exchangeBoundary, callAll, and store output

We can see in Figure 51 that the performance when varying iterations once again matches our ideal projection for
efficient distribution and parallelization of the work involved.

University of Washington Bothell 81

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 51: Places: exchangeBoundary, callAll, and store Performance Chart - Iterations

However, Figure 52 once again charts how we have an underlying negative performance profile when we are ex-
changing data between Places - a negative impact that ends up dominating performance when more hosts are involved.
This is not suprising news, or is it an aspect that is unique to MASS in the realm of parallel/distributed computation.
It is a common problem when you have a small amount of work and a lot of communication between nodes - as we
are modeling here.

University of Washington Bothell 82

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 52: Places: exchangeBoundary, callAll, and store Performance Chart - Max Time

4.2.1.2.3 Test 3: callAll

Figure 53 is again displaying our very familiar results from parallelizing a heavy computational workload across
the system. As more resources are allocated, the performance continues to improve.

University of Washington Bothell 83

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 53: Places: callAll Performance Chart - Iterations

Figure 54 shows performance spikes at 2 and 16 hosts when performing a simple callAll() across hosts. However,
the overall trend (ignoring these data points) shows a decline in execution time with more resources. It is slight,
but it is there. This seems to indicate that an pre-existing problem we had experienced earlier with one of the lab
machines underperforming (uw1-320-09) was not completely addressed. This could also account for the spike at 16
hosts noticed during our earlier test, seen in Figure 50 (above).

University of Washington Bothell 84

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 54: Places: callAll Performance Chart - Max Time

4.2.1.2.4 Test 4: callAll with periodic return value

Figure 55 wraps up our evaluation of how well Places within MASS are able to handle large computational effort
- benefiting through increased performance and parallelization also increases.

University of Washington Bothell 85

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 55: Places: callAll with periodic return Performance Chart - Iterations

Figure 56 shows a familiar spike at 2 and 16 hosts that could be related to a slow lab machine present in these
configurations. However, unlike other test results, we can actually see an overall growth trend in intermediary results
that seem to indicate that there is something else going on that is influencing performance and reducing the benefit
of parallelization. The culprit? In this case, it is the “periodic return value” that is being printed on every interval
of max time. This basically means that as the hosts grow, the communication needed to obtain/print values is also
growing slightly. However, the major cost to this test run appears to simply be dominated by the number of times
values are returned (max time value).

University of Washington Bothell 86

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Figure 56: Places: callAll with periodic return Performance Chart - Max Time

4.2.1.3 General Performance Summary

In this section, we aggregate data collected/presented from previous tests and combine it to provide an “overall”
look into the performance of basic functionality within MASS. We will begin by examining aggregated Agent data,
before looking at Places. Then, we will wrap up with a side-by-side comparison showing Agents and Places averages
against an average of averages - representing an overall picture of general performance within MASS.

4.2.1.3.1 Agent Summary

In Figure 57, we are presented with the actual average times that the collection of Agent test types took to complete,
using different host configurations. However, to get a better idea of how this data actual looks and what sort of
performance trends we can expect from Agents within MASS, we must look to Figure 58.

University of Washington Bothell 87

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Performance (μs)

Number of
Hosts

Iterations Max Time Iterations &
Max Time

Overall
Average

Overall
Average

Combined
Average

1 6123395.8 4638616.546 5381006.173

2 7283284.981 4330652.895 5806968.938

4 3137263.883 1839810.613 2488537.248

8 2630107.226 1294248.782 1962178.004

16 1645702.102 742365.3964 1194033.7492

0

2000000

4000000

6000000

8000000

1 2 4 8 16

Iterations Overall Average (μs)
Max Time Overall Average (μs)
Iterations & Max Time Combined Average (μs)

Figure 57: Agent Performance Summary Table

Figure 58 provides a side-by-side line chart that shows how varying iterations affected performance, how varying
max time affected performance, and also how the average of these two variables ends up painting a picture for effective
parallelization of Agents within MASS.

University of Washington Bothell 88

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Performance (μs)

Number of
Hosts

Iterations Max Time Iterations &
Max Time

Overall
Average

Overall
Average

Combined
Average

1 6123395.8 4638616.546 5381006.173

2 7283284.981 4330652.895 5806968.938

4 3137263.883 1839810.613 2488537.248

8 2630107.226 1294248.782 1962178.004

16 1645702.102 742365.3964 1194033.7492

0

2000000

4000000

6000000

8000000

1 2 4 8 16

Iterations Overall Average (μs)
Max Time Overall Average (μs)
Iterations & Max Time Combined Average (μs)

Figure 58: Agent Performance Summary Chart

As you can see, the effect of running these tests multiple times has a greater impact on overall execution time
than varying the computational load. This is due to a predominance of “migration-oriented” tests within the Agents
test plan. So, what you’re really seeing is that iterations has no effect on the performance of a migration, whereas,
repeating this migration a number of times (max time) ends up having a substantial effect on overall performance.

It should be noted that there are tests that contain callAll functions that are impacted by the value of iterations.
However, the main takeaway from this data is a cautionary tale in migration management. To increase the general
performance characteristics of an application developed in MASS, an “unravelling” approach to tasks should be at-
tempted, when possible (accomplish as much as you feasibly can between migration calls).

4.2.1.3.2 Place Summary

Once again, we present the raw data in Figure 59, that contains the actual average execution times from the
collection of Place test types, using different host configurations. We also present a better view into this data within
Figure 60.

University of Washington Bothell 89

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Performance (μs)

Number of
Hosts

Iterations Max Time Iterations &
Max Time

Overall
Average

Overall
Average

Combined
Average

1 4717311.969 787521.9375 2752416.95325

2 2558371.747 757714.2208 1658042.9839

4 1454711.578 676777.5625 1065744.57025

8 952676.325 633251.4417 792963.88335

16 649772.8594 922031.0167 785901.93805

0

1250000

2500000

3750000

5000000

1 2 4 8 16

Iterations Overall Average (μs)
Max Time Overall Average (μs)
Iterations & Max Time Combined Average (μs)

Figure 59: Place Performance Summary Table

In Figure 60 we see a clear difference between the runtime exhibited between varying iterations and max time
within Place tests. The nearly steady performance of the max time tests can be attributed to the constant computational
load performed during each time slice. Whereas, the dramatic improvement in time that we see from iterations points
directly to the computational load placed on each Place during some of the more “extreme” scenarios (i.e. - 10000
iterations).

University of Washington Bothell 90

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Performance (μs)

Number of
Hosts

Iterations Max Time Iterations &
Max Time

Overall
Average

Overall
Average

Combined
Average

1 4717311.969 787521.9375 2752416.95325

2 2558371.747 757714.2208 1658042.9839

4 1454711.578 676777.5625 1065744.57025

8 952676.325 633251.4417 792963.88335

16 649772.8594 922031.0167 785901.93805

0

1250000

2500000

3750000

5000000

1 2 4 8 16

Iterations Overall Average (μs)
Max Time Overall Average (μs)
Iterations & Max Time Combined Average (μs)

Figure 60: Place Performance Summary Chart

There are a couple of things worth noting here:

1. There is jump at 16 hosts for the max time variable
This is likely due to a combination of a poorly-performing machine (uw1-320-09), but also points to testing
scenarios that include exchangeAll and exchangeBoundary calls

2. The benefits of parallelization across additional hosts are quite apparent
There are a number of callAll scenarios tested within the Place benchmarks. So, this is not necessarily surprising,
but it is pleasant to see represented in our data

All in all, the key takeaway when working with Places is that exchange calls will be expensive and will suffer from
increased parallel resources (coordination/synchronization), however the benefit to performing complex computational
operations at each Place is dramatic. Still, it is worth noting that as Places scale across additional hosts, there exists a
point that the benefits to computational complexity are outweighed by the drawbacks of increased synchronicity costs.
In the course of these tests, it appears as if that “magic number” is right around 12 hosts.

4.2.1.3.3 Overall Summary

So far, we have presented Agent and Place data fairly independently from one another. So, it is difficult to draw
conclusions about how these two abstractions perform, compared to one another. Figure 61 shows the raw data of
not only our previous Agent and Place aggregations, but includes a new “overall average” column that serves to track
overall parallelization/performance of MASS (regardless of abstraction used in paradigm).

University of Washington Bothell 91

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents/Places Performance (μs)

Number of
Hosts

Agents Places

Total
Combined
Average

Iterations Max Time Iterations &
Max Time Iterations Max Time Iterations &

Max Time

Overall
Average

Overall
Average

Combined
Average

Overall
Average

Overall
Average

Combined
Average

1 6,123,395.80 4,638,616.55 5,381,006.17 4,717,311.97 787,521.94 2,752,416.95 4,066,711.56

2 7,283,284.98 4,330,652.90 5,806,968.94 2,558,371.75 757,714.22 1,658,042.98 3,732,505.96

4 3,137,263.88 1,839,810.61 2,488,537.25 1,454,711.58 676,777.56 1,065,744.57 1,777,140.91

8 2,630,107.23 1,294,248.78 1,962,178.00 952,676.33 633,251.44 792,963.88 1,377,570.94

16 1,645,702.10 742,365.40 1,194,033.75 649,772.86 922,031.02 785,901.94 989,967.84

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

0.00

1,500,000.00

3,000,000.00

4,500,000.00

6,000,000.00

Number of Hosts
1 2 4 8 16

Agents Iterations & Max Time Combined Average (μs)
Places Iterations & Max Time Combined Average (μs)
Total Iterations & Max Time Combined Average (μs)

Figure 61: Combined General Performance Summary Table

To aid in reviewing this content, we also provide a visual representation in Figure 62. According to this chart, the
performance of Agents within MASS are far more costly to overall performance than the performance of Places. In
fact, we see a really nice trend in our Places line - showing marked improvement as resources become available, with
a slight uptick at the end (as a result of exchange-type tests).

Agents/Places Performance (μs)

Number of
Hosts

Agents Places

Total
Combined
Average

Iterations Max Time Iterations &
Max Time Iterations Max Time Iterations &

Max Time

Overall
Average

Overall
Average

Combined
Average

Overall
Average

Overall
Average

Combined
Average

1 6,123,395.80 4,638,616.55 5,381,006.17 4,717,311.97 787,521.94 2,752,416.95 4,066,711.56

2 7,283,284.98 4,330,652.90 5,806,968.94 2,558,371.75 757,714.22 1,658,042.98 3,732,505.96

4 3,137,263.88 1,839,810.61 2,488,537.25 1,454,711.58 676,777.56 1,065,744.57 1,777,140.91

8 2,630,107.23 1,294,248.78 1,962,178.00 952,676.33 633,251.44 792,963.88 1,377,570.94

16 1,645,702.10 742,365.40 1,194,033.75 649,772.86 922,031.02 785,901.94 989,967.84

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

0.00

1,500,000.00

3,000,000.00

4,500,000.00

6,000,000.00

Number of Hosts
1 2 4 8 16

Agents Iterations & Max Time Combined Average (μs)
Places Iterations & Max Time Combined Average (μs)
Total Iterations & Max Time Combined Average (μs)

Figure 62: Combined General Performance Summary Chart

Looking at this same data, we are presented with the overall impact of Agents within MASS. We can see the effect
of moving tests out to two hosts here - likely a result of sharing 256 Places between hosts and having to deal with
a large number of competing resources on each machine as migrations occur. We can also see how this is severely
decreased and continuously improved by applying more resources to the runtime environment.

The key takeaway from this look into the general performance of MASS is to stick with Places - if that’s all you
need. If you really need to model complex scenarios that require Agents on top of Places, then they’re available to you

University of Washington Bothell 92

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

and this paradigm scales well (as opposed to a potential scaling problem when a large number of nodes attempt Place
exchange-type calls). However, be wary of situations where you end up placing a large number of Agents on a single
machine, as this competition for resources could lead to resource contention, if you’re not careful.

4.2.2 Practical MASS Performance

In this section, we will present the results of our performance testing using practical applications. These are ap-
plications that mimic (or, in the case of FluTE, “make”) real world use of each framework. Whereas our general
performance testing tended to isolate calls and vary resources available, these tests will generally use a combination
of different calls and functionality available through each platform in the course of their execution.

4.2.2.1 Wave2D

4.2.2.1.1 Using Hybrid OpenMP/MPI
When testing Wave2D performance, Abdulhadi Ali Alghamdi [1] varied the test environment to see how the simulation
would run with different resources provided. In Figure 63 we can see that as the number of threads available increased,
the performance responded in kind. However, when increasing the number of processes (machines/hosts/nodes), it
appeared to have a less-tangible effect on the overall performance.

M
ic

ro
se

co
nd

s

0

2000

4000

6000

8000

Total Threads
1 4 16

7511

4202
3660

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 7511 4202 3660

Figure 63: Wave2D Performance using Hybrid OpenMP/MPI

If we look at the graph in Figure 64, we really get a sense of how little gain was achieved by ramping up the
number of processes in the simulation.

University of Washington Bothell 93

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

M
ic

ro
se

co
nd

s

0

2000

4000

6000

8000

Total Threads
1 4 16

7511

4202
3660

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 7511 4202 3660

Figure 64: Wave2D Performance using Hybrid OpenMP/MPI

4.2.2.1.2 Using MASS
Using a similar approach for gathering MASS performance data, Abdulhadi Ali Alghamdi [1] varied the test envi-
ronment in an identical fashion to the hybrid OpenMP/MPI performance tests. Figure 65 shows a familiar pattern of
improvement with thread allocation, but also seems to suffer from a smaller effect size (in terms of execution time)
when increasing the number of processes.

M
ic

ro
se

co
nd

s

0

2750

5500

8250

11000

Total Threads
1 4 16

10590

5898
5053

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 10590 5898 5053

Figure 65: Wave2D Performance using MASS

Looking at the graph in Figure 66, we see a familiar pattern in the performance across the three test scenarios.
The largest gain is from increasing threads allocated, while increasing processes appears to have a minimal (positive)
effect on the overall execution time.

University of Washington Bothell 94

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

M
ic

ro
se

co
nd

s

0

2750

5500

8250

11000

Total Threads
1 4 16

10590

5898
5053

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 10590 5898 5053

Figure 66: Wave2D Performance using MASS

4.2.2.1.3 Comparison Results

In order to get a better view of how these two frameworks stacked up side-by-side in a Wave2D application, we
combined the data from the two tests into a single table. We also added another row that tracked the performance
difference between the baseline application (Hybrid OpenMP/MPI) and MASS, in terms of a percentage difference.
Figure 67 shows that the performance of MASS trailed across all three test scenarios.

Pe
rc

en
t D

iff
er

en
ce

-41.00%

-40.00%

-39.00%

-38.00%

-37.00%

Test Case
Test 1 Test 2 Test 3

-40.99%

-40.36%

-38.06%

MASS Difference (µs)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (µs)

7511 4202 3660

MASS:
Execution
Time (µs)

10590 5898 5053

MASS
Difference

(µs)
-40.99% -40.36% -38.06%

Figure 67: Wave2D Performance Comparison

If we put this same data into a chart, then we get a different perspective into this performance difference. As shown
in Figure 68, the actual performance difference in this simulation decreased as more resources were provided to each
framework.

University of Washington Bothell 95

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Pe
rc

en
t D

iff
er

en
ce

-41.00%

-40.00%

-39.00%

-38.00%

-37.00%

Test Case
Test 1 Test 2 Test 3

-40.99%

-40.36%

-38.06%

MASS Difference (µs)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (µs)

7511 4202 3660

MASS:
Execution
Time (µs)

10590 5898 5053

MASS
Difference

(µs)
-40.99% -40.36% -38.06%

Figure 68: Wave2D Performance Comparison

4.2.2.2 Sugarscape

4.2.2.2.1 Using Hybrid OpenMP/MPI
Abdulhadi Ali Alghamdi [1] tested the performance of his Sugarscape implementation in similar fashion to the
Wave2D tests - varying the resources available to the application framework and measuring the effect this had on
the overall execution time. In Figure 69 we will once again see that as the number of threads available increased, the
execution time dropped. We can also see a less-impactful drop as the number of processes jumped to four.

M
ic

ro
se

co
nd

s

0

2250

4500

6750

9000

Total Threads
1 4 16

8922

5801

4914

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 8922 5801 4914

Figure 69: Sugarscape Performance using Hybrid OpenMP/MPI

Observing the graph in Figure 70, we are once again given a visual representation of the small impact that increas-
ing the number of processes had on overall performance (execution time).

University of Washington Bothell 96

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

M
ic

ro
se

co
nd

s

0

2250

4500

6750

9000

Total Threads
1 4 16

8922

5801

4914

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 8922 5801 4914

Figure 70: Sugarscape Performance using Hybrid OpenMP/MPI

4.2.2.2.2 Using MASS
Using an identical test schema, we can see in Figure 71 that MASS had a similar performance profile when thread-
s/processes were increased. We can also see that the overall execution time was significantly higher with MASS.

M
ic

ro
se

co
nd

s

0

3250

6500

9750

13000

Total Threads
1 4 16

12132

7819

6661

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 12132 7819 6661

Figure 71: Sugarscape Performance using MASS

Figure 72 provides a visual representation of the trend that occurs as resources are increased within the MASS
implementation of Sugarscape (threads have greater impact than processes).

University of Washington Bothell 97

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

M
ic

ro
se

co
nd

s

0

3250

6500

9750

13000

Total Threads
1 4 16

12132

7819

6661

Execution Time (µs)

Test 1 Test 2 Test 3

Processes 1 1 4

Threads 1 4 4

Execution
Time (µs) 12132 7819 6661

Figure 72: Sugarscape Performance using MASS

4.2.2.2.3 Comparison Results

Once again, we will attempt to provide a better view of how these two frameworks match up with one another,
for Sugarscape, by combining the results from the two tests into a single table. We have also (once again) added an-
other row that tracks the percent difference in execution time (performance) between the baseline application (Hybrid
OpenMP/MPI) and MASS. Figure 73 shows that MASS under-performed across all three test scenarios.

M
ic

ro
se

co
nd

s

-36.00%

-35.25%

-34.50%

-33.75%

-33.00%

Test Case
Test 1 Test 2 Test 3

-35.98%

-34.79%

-35.55%

MASS Difference (µs)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (µs)

8922 5801 4914

MASS:
Execution
Time (µs)

12132 7819 6661

MASS
Difference

(µs)
-35.98% -34.79% -35.55%

Figure 73: Sugarscape Performance Comparison

As with Wave2D, if we put this same data into a chart, we see that the difference between performance is generally
pretty consistent. As shown in Figure 74, the percent difference fluctuates as more resources were provided to each
application, but the overall deviation remains between 34 - 36%.

University of Washington Bothell 98

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Pe
rc

en
t D

iff
er

en
ce

-36.00%

-35.25%

-34.50%

-33.75%

-33.00%

Test Case
Test 1 Test 2 Test 3

-35.98%

-34.79%

-35.55%

MASS Difference (µs)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (µs)

8922 5801 4914

MASS:
Execution
Time (µs)

12132 7819 6661

MASS
Difference

(µs)
-35.98% -34.79% -35.55%

Figure 74: Sugarscape Performance Comparison

4.2.2.3 FluTE

Osmond Gunarso [17] tested the performance of his implementation of FluTE using a common data file (config.la-
1.6). For more information on the details of this data file, please see Appendix K.

Of particular note is the “datafile” that was used for performance testing/comparison. This data file had the label
“label la-1.6,” which you will see referenced in results (below). The file itself is based on the “Los Angeles” file and
describes a population with the following characteristics:

1. Tracts: 2049
A tract represents a census tract, which “is an area roughly equivalent to a neighborhood established by the
Bureau of Census for analyzing populations. They generally encompass a population between 2,500 to 8,000
people.” [31]

2. Communities: 5547
Communities are smaller groups located within census tracts. You can think of these as collections of co-
workers, family members, friends, or neighbors.

3. Individuals: 11095039
These are the actual number of people accounted for in our simulation.

As you can see, this is setting up a very massive and complicated scenario for our simulation.
To translate this data into MASS terms, Osmond [17] modeled each community as a place, each individual as an

agent, and left tracts to become offsets into the data.

4.2.2.3.1 Using Hybrid OpenMP/MPI
In Figure 75 we can see that this simulation takes a lot of computing resources and time. More importantly, we also
see that there is a definite effect on performance as more parallel/distributed resources become available. Unlike the
previous examples, this effect only captures increasing the number of processes (hosts) available for the distributed
execution of the program. However, we do see a continued, near-linear, decrease in execution time as processes are
added.

University of Washington Bothell 99

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Se
co

nd
s

0

600

1200

1800

2400

Processes
1 2 4

2338.04

1085.1

525.81

Execution Time (s)

Test 1 Test 2 Test 3

Configuration
File config.la-16 config.la-16 config.la-16

Processes 1 2 4

Execution
Time (s) 2338.04 1085.1 525.81

Figure 75: FluTE Performance using Hybrid OpenMP/MPI

We can see this near-linear behavior in Figure 76.

Se
co

nd
s

0

600

1200

1800

2400

Processes
1 2 4

2338.04

1085.1

525.81

Execution Time (s)

Test 1 Test 2 Test 3

Configuration
File config.la-16 config.la-16 config.la-16

Processes 1 2 4

Execution
Time (s) 2338.04 1085.1 525.81

Figure 76: FluTE Performance using Hybrid OpenMP/MPI

4.2.2.3.2 Using MASS
Using an identical test schema, we can see in Figure 77 that MASS performed nearly as well as hybrid OpenMP/MPI
using one process. However, it also appears to be nearly 50% slower when operating across multiple processes (hosts).

University of Washington Bothell 100

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Se
co

nd
s

0

600

1200

1800

2400

Processes
1 2 4

2344.64

1852.63

905.16

Execution Time (s)

Test 1 Test 2 Test 3

Configuration
File config.la-16 config.la-16 config.la-16

Processes 1 2 4

Execution
Time (s) 2344.64 1852.63 905.16

Figure 77: FluTE Performance using MASS

Figure 78 provides a visual cue into this difference with a slower drop when utilizing two processes (hosts), and a
more dramatic drop when transitioning to use four processes.

Se
co

nd
s

0

600

1200

1800

2400

Processes
1 2 4

2344.64

1852.63

905.16

Execution Time (s)

Test 1 Test 2 Test 3

Configuration
File config.la-16 config.la-16 config.la-16

Processes 1 2 4

Execution
Time (s) 2344.64 1852.63 905.16

Figure 78: FluTE Performance using MASS

4.2.2.3.3 Comparison Results

Reviewing the performance data side-by-side, as in Figure 79, we see that the performance of Hybrid OpenMP/MPI
and MASS applications of FluTE were nearly identical, given one process. However, when each application was
provided with an additional process (host), the improvement for hybrid OpenMP/MPI was significantly greater than
MASS. When four processes were assigned to the work, MASS had a better gain (in terms of execution time), but
failed to keep pace with the improvement offered by hybrid OpenMP/MPI (in terms of percent difference).

University of Washington Bothell 101

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Pe
rc

en
t D

iff
er

en
ce

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

Test Case
Test 1 Test 2 Test 3

-0.28%

-70.73% -72.15%

MASS Difference (s)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (s)

2338.04 1085.10 525.81

MASS:
Execution
Time (s)

2344.64 1852.63 905.16

MASS
Difference (s) -0.28% -70.73% -72.15%

Figure 79: FluTE Performance Comparison

Figure 80 illustrates the dramatic drop in competitiveness betweeen the two implementations. However, it also
shows that the trend (difference in terms of percentage) appears to begin to level out as more resources are provided.
Due to the massive size of this simulation and what we know about MASS’s performance with high loads of Places/A-
gents per machine, it is a small wonder that the profile here is trailing the hybrid OpenMP/MPI approach.

Note: Osmond’s parallelization heavily uses the master to maintain the shared data. Since I’m disclosing my
thesis to the committee now - to provide ample time to review prior to my defense on Wednesday - I wanted to bring
this to your attention: the data will be updated with new performance by the final defense.

Pe
rc

en
t D

iff
er

en
ce

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

Test Case
Test 1 Test 2 Test 3

-0.28%

-70.73% -72.15%

MASS Difference (s)

Test 1 Test 2 Test 3

OpenMP/MPI:
Execution
Time (s)

2338.04 1085.10 525.81

MASS:
Execution
Time (s)

2344.64 1852.63 905.16

MASS
Difference (s) -0.28% -70.73% -72.15%

Figure 80: FluTE Performance Comparison

4.2.2.4 Combined Summary

In this section, we take a look at how hybrid OpenMP/MPI and MASS applications performed against one another
considering the results of all of the practical applications tested. Ideally, we could take a sum of the execution times
and get an overall average that encompassed a variety of configurations and subject domains to get a good overall
picture of each framework. However, due to the nature of FluTE and its extensive runtime performance, all results

University of Washington Bothell 102

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

would be confounded by these data points. So, instead we took a look at the average performance of each practical
application and calculated the percent difference between frameworks.

Figure 81 shows us the results of these calculations and provides an overall average of the averages. What this data
point is showing us is the overall average percent difference between each framework’s performance. While it may
seem odd to see different values here, they have been presented in a manner that is conducive toward discussion (i.e. -
they do not assume one framework is the ultimate baseline in each computation).

Test 1 Test 2 Test 3 Average Average %
Difference

OpenMP/MPI:
Execution
Time (µs)

FluTE 2,338,040,000 1,085,100,000 525,810,000 1,316,316,667 22.61%

Sugarscape 8,922 5,801 4,914 6,546 26.21%

Wave2D 7,511 4,202 3,660 5,124 28.63%

Average
Average %
Difference

25.82%

MASS:
Execution
Time (µs)

FluTE 2,344,640,000 1,852,630,000 905,160,000 1,700,810,000 -29.21%

Sugarscape 12,132 7,819 6,661 8,871 -35.52%

Wave2D 10,590 5,898 5,053 7,180 -40.12%

Average
Average %
Difference

-34.95%

Figure 81: Practical Application Performance Summary

Using the results of this summary comparison, we are able to make statements like, “Hybrid OpenMP/MPI ap-
plications typically perform 25.82% better than corresponding applications based on MASS.” Conversely, we can
also say that, “MASS applications typically perform 34.95% worse than corresponding applications based on a hy-
brid OpenMP/MPI framework.” Though the numbers are different, you have to remember that this is due to how the
comparison is being made.

Take for example a simpler case: What percent lower than 100 is 70? Most folks can answer this easily enough -
it is 30% lower. The calculation to prove this is easy enough to perform, as well: 100 - (100 * .30) = 70. However, it
is another thing entirely to ask: What percent higher than 70 is 100? In this case, you have to consider what fraction
of 70 makes up the difference between 70 and 100. Since 30% of 70 is 21, we can easily see that the reverse logic
here and percentages are not consistent when switching comparators in our function (just in case you’re wondering,
the answer is ∼42.86%).

4.3 Correlations
Since we had the survey data collected, we also wanted to see if there were any interesting correlations between data
points in our responses. We used the Pearson product-moment correlation coefficient [8] measurement across all data
points in our survey results, which have been broken down by framework and can be seen below.

Since there were a large number of variables to cross-correlate with one another, we have truncated the entire
list below entries with a .20 R value. We have also highlighted (darker background color) all of the correlations that
actually represent significant relationships.

4.3.1 OpenMP/MPI Correlations

Figure 82 shows generally expected results across the board. Still, it is interesting to see how different assessments of
aspects of OpenMP/MPI play into how many lines of code it took people to complete their applications.

University of Washington Bothell 103

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Sample size 47
Critical value (2%) 2.41212

Variable vs. Variable R

OMPI: Difference between sequential and parallel programs vs. OMPI: Total LOC -2.58992E+196

OMPI: Debugging difficulty vs. OMPI: Total LOC 1.49369E+196

OMPI: Application Suitability vs. OMPI: Total LOC -1.00916E+196

OMPI: Learning curve vs. OMPI: Total LOC 3.27244E+195

OMPI: Parallelization-specific LOC vs. OMPI: Total LOC 0.62407

OMPI: Debugging difficulty vs. OMPI: Learning curve 0.50934

OMPI: Design the program vs. OMPI: Learn the library 0.4217

MASS vs OMPI: Places/Agents.callAll vs. OMPI: Design the program 0.35649

OMPI: Debug the program vs. OMPI: Write the program 0.29497

MASS vs OMPI: Places/Agents.callAll vs. OMPI: Application Suitability -0.2946

OMPI: Application Suitability vs. OMPI: Learn the library -0.28996

OMPI: Write the program vs. OMPI: Design the program 0.28006

MASS vs OMPI: Agents.manageAll vs. MASS vs OMPI: Places.exchangeAll 0.27629

OMPI: Total LOC vs. OMPI: Write the program 0.24669

OMPI: Parallelization-specific LOC vs. OMPI: Design the program -0.24454

OMPI: Learning curve vs. OMPI: Learn the library -0.24009

MASS vs OMPI: Places/Agents.callAll vs. OMPI: Learning curve 0.2385

OMPI: Debugging difficulty vs. OMPI: Debug the program 0.23662

OMPI: Debug the program vs. OMPI: Design the program 0.23591

OMPI: Difference between sequential and parallel programs vs. OMPI: Parallelization-specific LOC 0.23308

OMPI: Debugging difficulty vs. OMPI: Difference between sequential and parallel programs 0.2152

OMPI: Application Suitability vs. OMPI: Learning curve 0.21416

MASS vs OMPI: Agents.manageAll vs. OMPI: Learn the library -0.20584

MASS vs OMPI: Agents.manageAll vs. OMPI: Difference between sequential and parallel programs 0.20486

MASS vs OMPI: Agents.manageAll vs. OMPI: Total LOC -0.20435

OMPI: Difference between sequential and parallel programs vs. OMPI: Design the program 0.20314

Figure 82: OpenMP/MPI Variable Correlation

University of Washington Bothell 104

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

4.3.2 MASS Correlations

Figure 83 shows the same sort of relationships that one would expect to see - effort and lines of code, time taken and
lines code, etc. Of particular note here would be the repeated correlations between the amount of time it takes to debug
the MASS library.

Sample size 46
Critical value (2%) 2.41413

Variable vs. Variable R

MASS: Parallelization-specific LOC vs. MASS: Total LOC 0.8142

MASS: Design the program vs. MASS: Learn the library 0.69755

MASS: Write the program vs. MASS: Design the program 0.68739

MASS: Debug the program vs. MASS: Learn the library 0.5206

MASS: Debug the program vs. MASS: Design the program 0.49857

MASS: Debug the program vs. MASS: Write the program 0.42874

MASS: Write the program vs. MASS: Learn the library 0.394

MASS: Debugging difficulty vs. MASS: Learning curve 0.33771

MASS: Application Suitability vs. MASS: Learning curve 0.3254

MASS vs OMPI: Places.exchangeAll vs. MASS: Learning curve 0.31451

MASS vs OMPI: Places/Agents.callAll vs. MASS: Debug the program 0.30151

MASS vs OMPI: Agents.manageAll vs. MASS vs OMPI: Places.exchangeAll 0.27629

MASS vs OMPI: Agents.manageAll vs. MASS: Learning curve 0.26657

MASS: Difference between sequential and parallel programs vs. MASS: Write the program -0.25536

MASS: Learning curve vs. MASS: Debug the program -0.23801

MASS: Learning curve vs. MASS: Write the program -0.23149

MASS: Difference between sequential and parallel programs vs. MASS: Learning curve 0.2259

MASS: Difference between sequential and parallel programs vs. MASS: Parallelization-specific LOC -0.21904

MASS vs OMPI: Places/Agents.callAll vs. MASS: Application Suitability -0.20815

MASS: Application Suitability vs. MASS: Design the program 0.20695

MASS: Debugging difficulty vs. MASS: Learn the library 0.20553

Figure 83: MASS Variable Correlation

A more detailed analysis of these relationships is out of the scope of this research paper. These results are merely
presented to further inform future research or efforts to increase programmability in the MASS framework.

University of Washington Bothell 105

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

5 Discussion

5.1 Summary
At this point, we have provided an overview of both MASS and hybrid OpenMP/MPI application frameworks, come
up with a hypothesis regarding the ease-of-use and performance of these systems, designed experiments to test out
our hypothesis, and presented the resuls of these experiments. In this discussion, we will highlight the findings of
our research, discuss limitations to the studies performed, and finally, review our progress toward meeting the original
goals of this investigation.

5.1.1 Ease of Use (Programmability)

During the course of our research, we found that according to the programmability characteristics in “Parallel pro-
grammability and the chapel language,” (Chamberlain, et al; 2007) [3] MASS:

1. Had More of a Global View of Computation
2. Had Less Support for General Parallelism
3. Had Equal Separation of Algorithm and Implementation
4. Had Equal Support for Broad-Market Language Features
5. Had Less Data Abstractions
6. Was Less Performant
7. Had Less Execution Model Transparency
8. Had Equal Portability
9. Had Equal Interoperability with Existing Codes

10. Had Less Bells and Whistles

Which, set an initial expectation that MASS would continue to underperform against applications based on hybrid
OpenMP/MPI. However, when we removed the inherent bias toward general parallel frameworks (over paradigm-
oriented frameworks) in Figure 4, we ended up with a much more interesting comparison - one that pointed toward
the main difference being related to additional features (“Bells & Whistles”).

When we actually surveyed students that had used both frameworks to develop the same application, we also found
a very close assessment of programmability.

According to survey results, we found that programmers using MASS:

1. Took 1 hour, 2 minutes, and 24 seconds (1.04 hours) longer to learn the libraries
2. Took 43 minutes and 48 seconds (0.73 hours) longer to design their applications
3. Took 39 minutes (0.65 hours) less to write their applications
4. Took 19 minutes and 12 seconds (.32 hours) longer to debug their applications
5. Had to write approximately 56 (55.88) more lines of code in their application
6. Had to write approximately 13 (13.15) less lines of parallell/distributed-specific lines of code in their application
7. Rated the Learning Curve around 23.36% (0.73 points) more difficult
8. Rated the Application Suitability around 2.52% (0.09 points) more difficult
9. Rated the Difference Between Sequential and Parallel Programs around 7.45% (0.22 points) more difficult

10. Rated the Debugging Difficulty around 8.88% (0.22 points) easier

University of Washington Bothell 106

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

5.1.2 Performance

Looking at the performance results between the same application developed using MASS and hybrid OpenMP/MPI,
we found that:

1. FluTE
The MASS implementation of FluTE ran 29.21% slower than the corresponding application based on hybrid
OpenMP/MPI

2. Sugarscape
The MASS implementation of Sugarscape ran 35.52% slower than the corresponding application based on
hybrid OpenMP/MPI

3. Wave2D
The MASS implementation of Wave2D ran 40.21% slower than the corresponding application based on hybrid
OpenMP/MPI

5.1.3 Potential Confounding Issues

In nearly all statements of truth, there is a “grain of salt” to be considered, too. While we are generally pleased with
the validity of the test design and results gathered in this research, it is prudent to also consider factors that may have
positively or negatively influenced these results:

1. Order Topics Were Presented in Class
Students were presented with OpenMP/MPI first and then had to recontextualize their point of view for paral-
lel/distributed programming to adapt to a completely different model (MASS). This point is hard to avoid, since
it is beneficial for students to learn the basics of parallelization strategies (data/task decomposition, striping,
efficient cache use, etc), but at the same time, it is worth considering the added difficulty in learning how to
do something you’ve become familiar with in a different manner. Our brains learn patterns for accomplishing
tasks or thinking about problems, and as these patterns are used and reinforced, adapting to different approaches
introduces its own difficulty

2. Class Time Spent Learning Each Framework
Due to the nature of teaching these concepts (moving from small pieces and building up to larger/integrated
frameworks), there is an inherent bias introduced in learning each framework, since these concepts are readily-
transferrable to the “hands on” approach required when using MPI and OpenMP. In fact, looking at the course
syllabus [15], we can see that a combined 4 weeks of lectures, 2 laboratory sessions, and programming assign-
ments were provided that dealt with concepts beneficial to hybrid OpenMP/MPI development. On the other
hand, we see 1 lecture, 1 laboratory session, and a single assignment that dealt directly with MASS

3. Competing Concepts Learned During MASS
During the second half of the course (when topics related to MASS were presented), students were also respon-
sible for researching and presenting literature reviews on other frameworks in the realm of parallel/distributed
computing. These reviews had students independently learning about job management, file management, and
fault tolerance approaches used in conjunction with complex systems that supported these ideas. On the other
hand, during the first half of the quarter, the only expectation on student learning were the concepts presented in
class (i.e. - students could entirely focus on OpenMP and MPI when they were presented)

4. Combined Survey Application
Students were not asked to review hybrid OpenMP/MPI applications immediately after completing their cor-
responding assignment. Instead, the survey was provided after completing their applications using MASS. In
terms of time, the second programming assignment (using hybrid OpenMP/MPI) was due on February 12, 2015.
However, the survey they were asked to submit was due on March 18, 2015. This means that students were being
asked to remember and assess the time and difficulty of a task that they performed over a month ago. This could

University of Washington Bothell 107

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

result in more “forgiving” assessments of the process difficulty or time taken during developing a hybrid Open-
MP/MPI application. This could especially be true considering the potentially recent difficulty encountered by
students while adapting previous applications to a new framework (MASS).

5. Overwhelming Use of Heat2D Application
The results of the survey were based on evaluations that students provided after programming an application
using both frameworks. We wanted to allow students to choose their own application to use, in order to reduce
the possibility of confounding our data from students being assigned a domain that they had little interest in
completing (or would find particularly difficult). Unfortunately, the result of this was that 33 out of the total
48 applications chosen by students were Heat2D. So, the average of results are dominated by this simulation.
Since the remaining 15 applications were spread between a variety of other options, we did not have sufficient
data to show (conclusively) that significant differences exist between frameworks per application type/area (e.g.
- spatial simulations, big data analysis, or agent-based models)

6. Interest/Ability of Students in Second Class
During the first course that the survey was administered, students had already completed a core programming
class (required for their program) and had opted to enroll in CSS 534 “Parallel Programming in the Grid and
Cloud” due to their interest in the subject matter. On the other hand, students in the second course that we
surveyed had not taken a previous programming course and may have had little interest in parallel program-
ming specifically, opting to enroll to merely fulfill graduation requirements. Furthermore, these students would
not have had the benefit of a previous graduate-level programming course to aid in their general programming
knowledge/capability. Since we have data on each course, we examined this area in great detail within Sec-
tion 4.1.2.6

5.1.4 Generalizability of Results

The sampling method used was non-random and took advantage of convenience to obtain data. It would be incorrect
to assume that we can generalize these same findings out to a wider population.

Statements regarding the findings of this study could be used to generally describe the trends of computer science
students with entry-level experience in parallel/distributed programming, but drawing out the conclusion(s) contained
herein to a wider group is unwarranted, given the test design chosen and implied limitations therein.

The main point of this research was to do an initial study into how these two frameworks compared with one
another.

5.2 Academic Merit
At the beginning of this paper, we presented a hypothesis that pertained to the programmability of MASS. Our spe-
cific case went on to compare metrics around programmability against OpenMP/MPI, but that is not necessarily new
knowledge, either. It is more like mixing some new hip-hop lyrics over a classic soul sample - it is a combination of
things that already exist. While interesting to view things in this light, it is not introducing new knowledge that had
not previously existed.

In our overview, we listed six goals that we wanted to achieve in this paper. This section will review these goals
and provide additional insight into how we did on achieving them.

1. Provide Further Support for Programmability Claims
Our research has added to the corpus on knowledge on programmability in MASS. We have discussed the
paradigm-oriented approach to application development and the reduced burden to development that this ap-
proach presents to programmers

2. Provide First Programmability Assessment of C++ Implementation
This research has also provided a stake in the ground for programmability using the C++ implementation of
MASS. This paper is the first to breach this topic. Previously, all research and programmability claims for
MASS had been isolated to the Java implementation

University of Washington Bothell 108

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

3. Track User Assessment of MASS
Our paper has provided survey results that have tracked programmer assessment of MASS in terms of time,
effort, and ease-of-use (programmability). This represents the first publication to present user-centered, quan-
tifiable results related to MASS

4. Provide Insight into Effort and Time Using MASS
This paper has provided very detailed looks into time and effort required during individual tasks of the devel-
opment workflow for both frameworks (hybrid OpenMP/MPI and MASS), in addition to roll up summaries of
these findings. This is the first paper to actually take a look into these factors for MASS

5. First Benchmarked Baseline MASS Performance Data
This study is the first to gather and present baseline performance data for MASS. We have provided in-depth
looks at the results of individual performance of dicrete MASS functionality, in addition to offering a synopsis
of the overall performance characteristics of this framework

6. First Analysis of FluTE Performance in MASS
We have presented performance data on the MASS implementation of FluTE - data that had previously only
existed for sequential and hybrid OpenMP/MPI implementations of the simulation. This is the first performance
analysis of a real-world, complicated simulation with interesting emergent properties in MASS. As such, it
offers a glimpse into the ability for MASS to scale to handle realistic use-case scenarios

There are four additional outcomes from this research that were not specifically enumerated during our overview.
These represent additional, important findings from this paper that are outcomes from work into proving/disproving
our hypothesis.

The first outcome was that we have found MASS to be quite competitive with OpenMP/MPI in the fields of agent-
based models, spatial simulations, and big data analysis. While the performance aspects give OpenMP/MPI a clear
advantage, the programmability - across the board - is quite competitive. In fact, despite additional tooling to ease
debugging, hybrid OpenMP/MPI applications still trail MASS in programmability for these categories.

Secondly, we have also found that a relative newcomer to the scene (MASS) could prove to be quite com-
petitive with what could (arguably) be considered the dominant solution in this problem space - hybrid OpenM-
P/MPI. The programmability aspects of MASS are quite competitive with a system that has had the advantage of
industry/organization-wide support, with a nearly two decade advantage. This is significant and represents a true
opportunity for those working on developing MASS. After all, it is still coming into its own - there is active develop-
ment on new features, functionality, and documentation that will all end up having a measurable effect on the overall
ease-of-use (programmability) of this framework.

The third point is that our findings have set a baseline for future research into the programmability and performance
of MASS. This is significant because we can use this data to track:

1. The effect of changes to framework
2. Performance changes when integrating new features (asynchronous automatic agent migration, built-in debug-

ger)
3. Programmability changes when updating existing code, including:

(a) Updating documentation

(b) Adding persistent FAQ section

(c) Bug/issue tracking and resolution

(d) Implementation of additional methods for Places and Agents

Finally, we can extend the survey used in this study to include additional data points to actually develop an idea of
preference (lacking in current study) and use this research as a basis for future studies. This is a particularly interesting
subject. After all, you can build up a lot of research around the time it takes to do something, the effort involved in

University of Washington Bothell 109

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

the process, and the easiness of discrete tasks within the activity - however, when it is all said and done, people could
still prefer the seemingly harder task. We believe the assumption that time, effort, and ease-of-use necessarily lead to
preferability is inherently flawed and fails to track intangible aspects like the true usefulness and attractiveness of a
particular approach.

University of Washington Bothell 110

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

6 Conclusion
In this section, we will discuss the outcome of this work, answering the question: “Do programmers in big data
analysis and ABM find MASS easier to use than hybrid OpenMP/MPI, despite its slower performance?”

If you will remember, the alternative hypothesis was defined as:

HA = µ MASS Ease-of-Use > µ Hybrid OpenMP/MPI Ease-of-Use

The implied alternative hypothesis around performance was stated as:

HA = µ MASS Performance < µ Hybrid OpenMP/MPI Performance

6.1 Ease of Use (Programmability)
Summarizing, in terms of time, effort (LOC), and programmability, we can say that:

1. Time
Overall, programmers can expect to spend 1 hour, 26 minutes, and 24 seconds (1.44 hours) longer developing
their applications, than they would by using a hybrid OpenMP/MPI approach

2. Effort (LOC)
Programmers using MASS will have to write 56 more lines of code in their applications, but they will also be
writing 8.17% less parallel/distributed-specific lines of code in those same applications

3. Programmability
Programmers will generally find that MASS is 6.76% more difficult use, in terms of (learning, designing, writ-
ing, and debugging their applications).

Based on these findings, we are unable to reject the null hypothesis (accept the alternative hypothesis). In fact, we
find that across the board (while results are close), hybrid OpenMP/MPI is slightly easier to use than MASS. So, the
evidence supports/reinforces the null hypothesis:

H0 = µ MASS Ease-of-Use ≤ µ Hybrid OpenMP/MPI Ease-of-Use

While we have already managed to fail to accept our alternative hypothesis concerning ease-of-use, we still have
the orthogonal issue of performance to consider.

6.2 Performance
The performance results presented in this paper allow us to make the following, general, statement about the perfor-
mance of MASS: MASS applications typically perform 34.95% slower than corresponding applications based on a
hybrid OpenMP/MPI framework.

Given these results, we are able to accept the alternative hypothesis for performance:

HA = µ MASS Performance < µ Hybrid OpenMP/MPI Performance

While at the same time (due to the implication of accepting HA) being able to reject the null hypothesis for
performance:

H0 = µ MASS Performance ≥ µ Hybrid OpenMP/MPI Performance

University of Washington Bothell 111

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

6.3 Future Work
During the course of this paper, several outstanding issues or unanswered questions were brought up. This section
details these, listing suggestions for possible future research into MASS.

1. Garbage Collection
MASS does not currently make use of smart pointers - a potential area for future improvement.

2. Generic Programming
MASS currently relies on inheritance (extending parent/base Place/Agent classes) to provide users a method to
customize MASS for their own applications. Within these classes, it is possible to use C++ templates, but for
greater flexibility, it would be a nice improvement to translate this paradigm into an actual template interface.

3. MASS Support
Detailed information and illustrations of the underlying functionality in MASS are either very hard to find or
non-existent - making it quite difficult to tune applications built using MASS. We would suggest creating an
open message board or forum that users across classes can benefit from - asking questions and helping to find
answers to common problems (at the same time, helping developers working on MASS identify/address pain
points for users). We’d further suggest adding more examples for students to reference and provide a source for
“living” documentation (meaning that it changes/develops along with MASS).

4. MASS Portability
Currently, MASS has only been run on grids composed of machines that are running a Linux kernel. It would be
interesting to see how portable it is across other architectures - indentifying and fixing potential bugs to increase
its portability/usefulness.

5. Further Surveying of Class Matching Spring 2014 Composition
There were a number of differences between the Spring 2014 and Winter 2015 populations that could account for
significant differences in the programmability, effort, and time required using each framework. Unfortunately,
the sampling size for the Spring 2014 course was rather small, so many differences were found to be statistically
insignificant. However, the “trend” in some of these results were interesting and with more data, could point
toward significant differences based on population characteristics.

6. Add Survey Question to Gauge Student’s Ability/Interest
Following with the previous idea, future surveys should take into account each student’s programming ability

(language backgrounds, number of months used, last time used, experience with C++ libraries) or interest in
parallel/distributed computing. Adding additional questions to the survey to track this data could help reduce
confounding variables in future test results and may help provide interesting correlations or additional conclu-
sions. Being able to separate/classify groups according to their actual characteristics, like novice versus expert
users or high GPA (grade 3.5+) versus low GPA (grade 3.5-), rather than simply “when they enrolled in the
course” (Spring 2014 versus Winter 2015) would allow much more useful groupings and comparisons to be
made regarding these frameworks.

7. Add Survey Question to Gauge Student’s Preference
One of the main pitfalls to the current survey is that it does not ask which framework students prefer. I like to
think of this as the VHS vs Betamax problem. For those of you unfamiliar with this reference, the core problem
is that we have presented a lot of data that shows that it is easier to learn, design, and write programs using hybrid
OpenMP/MPI. We have also shown that it takes less overall lines of code and time to develop these applications.
However, even though something takes less effort, less time, and is generally easier (at first), does not mean that
people will prefer using it in the future. It could be that students have a hard time adapting to learning MASS at
first (especially since they’ve previously spent weeks adapting a sequential algorithm and developing the same
application in a different parallel framework), but if they were asked to develop a whole new application, they
may really prefer to approach that MASS provides. I feel like this missing question would really help shed light
on not just initial programmability, but also lasting preference - which, is an important thing to consider.

University of Washington Bothell 112

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

8. Split the Survey and Administer Immediately
Currently, students are given a single survey and asked to remember details about what they were working
on almost 5 weeks before. This can lead to estimation problems and comparative error (influence based on
perceived experience recently using MASS). Instead, we should split the survey into two surveys and provide
them to students immediately after each corresponding assignment - collecting OpenMP/MPI data separately
from MASS data, but more importantly, collecting it while the estimations are still fresh in student’s minds.

9. Assign Varied Applications
We found that the dominate choice of students typically corresponded with the “path of least resistance” -
meaning that, given the choice, students will choose the Heat2D application 68.75% of the time. This ends
up skewing the data in favor of the time, effort, and programmability of this particular application, instead of
providing a more complete, overall view into applications in general (or across domains)

10. Randomize Sampling in Future Experiments
Accompanying this idea would be actually extended the scope of potential people surveyed beyond the class-
room - taking into account the responses from programmers that are actively involved in parallel/distributed
application development. This would allow a more useful study, in terms of being able to generalize results out
to a wider audience

11. Investigate Ways to Detect/Manage Slow Nodes
One of the big, recurring themes in our general performance results was anomalies found when using a slow
node on our grid. While it is probably fiscally infeasible to use a hosted solution (AWS, Azure, etc), it would
be worthwhile to spend some time looking into: machine state monitoring and redundancy solutions for lab
machines (load balancing, mirroring, etc).

University of Washington Bothell 113

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

7 Appendix

A Actual Survey

University of Washington Bothell 114

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

B Performance Test Program Command Line Arguments
1. username

This is the name of the account to log into machines as (e.g. - UW Net ID).
2. password

The password for this account (e.g. - UW Net ID password).
3. machinefile

The path to a file, which lists remote machines (URLs) to use at runtime.
4. port

The unique port to use for communication (e.g. - UW Student ID #).
5. nProc

The number of processes to use at runtime.
6. nThr

The number of threads each process should use at runtime.
7. test type

The type of test to run (see: Test Types; below).
8. size

The size of the simulation space.
9. max time

The number of times to run the overall tests (not related to actual time - milliseconds, seconds, etc).
10. iterations

The number of times individual Place Objects run through thier own computations (can be used to simulate
applications with heavy or very light downstream computation).

University of Washington Bothell 115

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

C Places Performance Test Types
1. Numerical ID “1”: Test Places callAll and exchangeAll

This test accesses every place within the simulation and has this place perform a simple mathematical expression
(in this case: *val *= 1.2;). Depending on the value for iterations, this calculation is performed either one or
many times. In addition, an exchangeAll() call is made after this operation, which simply returns the newly
computed sum from the previous step across all place Objects in the simulation.

2. Numerical ID “2”: Test Places exchangeBoundary, callAll, and store output
This test accesses every place in the simulation and has that place exchange its current information (data type:
double) with its neighbors (north/south/east/west or top/bottom/right/left - however you want to visualize it).
It then makes another call to alter this value by performing a simple mathematical equation (in this case: *val
*= 1.2;), before making a final call to move its current value into the “outMessage” storage (area used to store
values for future exchange calls).

3. Numerical ID “3”: Test Places callAll
This test accesses every place within the simulation and has this place perform a simple mathematical expression
(in this case: *val *= 1.2;). Depending on the value for iterations, this calculation is performed either one or
many times.

4. Numerical ID “4”: Test Places callAll with periodic return value
Like the previous test, this test accesses every place within the simulation and has this place perform a simple
mathematical expression (in this case: *val *= 1.2;). Depending on the value for iterations, this calculation
is performed either one or many times. The difference comes at every 10th time interval (based on max time
value), at which point each place is called and asked to return its current value.

University of Washington Bothell 116

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

D Agents Performance Test Types
1. Numerical ID “1”: Test Agents callAll (null return value)

This test accesses every agent in the simulation and has the agent perform a simple mathematical expression (in
this case: *val *= 1.2;). Depending on the value for iterations, this calculation is performed either one or many
times.

2. Numerical ID “2”: Test random migration
This test accesses every agent in the simulation and has that agent migrate to another random Place in the
simulation space. The location of this place is calculated by generating a random number, then dividing this
number by the size of the simulation (to ensure that value remains in bounds). This calculation is performed
to generate a new “x” and “y” coordinate pair, which is then used as this agent’s new location. Using this
algorithm, it is entirely possible that the new location matches the current location - in this case, no movement
is actually performed.

3. Numerical ID “3”: Test full migration
This test is very similar to the random migration process, with one notable exception: logic has been added,
when calculating the new coordinates, to ensure that the migration will actually occur (possibility of being
assigned current place is removed). This represents a “worst case” scenario for migration performance.

4. Numerical ID “4”: Test Agents callAll (with return value)
Like the callAll test above (Numerical ID “1”), this test accesses every agent in the simulation and has the agent
perform a simple mathematical expression (in this case: *val *= 1.2;). Depending on the value for iterations,
this calculation is performed either one or many times. The difference is that this call actually returns the value
calculated, which is then printed out by the calling test method.

5. Numerical ID “5”: Test Agent Migration: Best Migrate
This test is very similar to the other migration tests that have been detailed, with one notable exception: it is
only run once - the max size attribute is ignored. It also targets the “best case” scenario - meaning that additional
logic is in place to ensure that migrations result in Agents remaining in the same Place.

6. Numerical ID “6”: Test Agent Migration: Random Migrate
This test is very similar to the other migration tests that have been detailed, with one notable exception: it is
only run once - the max size attribute is ignored.

7. Numerical ID “7”: Test Agent Migration: Worst Migrate
This test is very similar to the other migration tests that have been detailed, with one notable exception: it is only
run once - the max size attribute is ignored. It also targets the “worst case” scenario - meaning that additional
logic is in place to ensure that migrations actually occur (Agents can not be assigned a new location equal to
their current location).

University of Washington Bothell 117

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

E Survey Results

MASS Survey Combined Results Summary (Spring 2014 & Winter 2015)

Student

Question 1: State your time (in hours) needed to complete your HW2 and HW4 respectively

OpenMP/MPI Hours MASS Hours

To learn the
library

To design the
program

To write the
program

To debug the
program

To learn the
library

To design the
program

To write the
program

To debug the
program

Student 1 3 2 3 4 2 1 1 2

Student 2 0 0 20 20 10 2 8 12

Student 3 3 2 6 4 5 4 3 3

Student 4 8 2 2 4 4 1 4 4

Student 5 4 2 3 4 2 3 4 4

Student 6 4 4 20 20 4 8 30 20

Student 7 10 3 10 5 10 3 4 12

Student 8 4 3 5 14 8 2 4 12

Student 9 20 10 15 25 8 3 3 20

Student 10 3 6 6 4 8 3 2 3

Student 11 4 2 5 4 3 1 6 6

Student 12 10 2 5 1 6 4 5 0

Student 13 2 2 4 4 1 2 1.5 1.5

Student 14 4 3 6 6 2 1 2 3

Student 15 1.5 1.5 2 4 1.5 1.5 2 5

Student 16 8 6 2 8 6 12

Student 17 0.5 0.1 1 7 3 2 20 10

Student 18 8 4 25 10

Student 19 2.5 5 2.5 6 5 8 3 6

Student 20 15 20 5 10 10 5 2 20

Student 21 1 1 4 4 5 2 2 6

Student 22 4 0.5 1 6 8 4 8 20

Student 23 5 5 7 9 7 7 10 9

Student 24 3.5 3 10 3 10.5 3.5 11.5 5

Student 25 10 20 5 6 10 10 5 5

Student 26 2.5 4.5 9 8 2.5 1.5 5 5

Student 27 2 2 1 4 2 3 2 4

Student 28 20 10 10 10 10 10 8 12

Student 29 8 10 15 17 14 16 20 18

Student 30 8 16 8 16 16 30 16 16

Student 31 3 10 50 10 15 20 50 15

Student 32 10 8 15 10 10 4 8 15

Student 33 10 8 8 6 6 4 4 2

Student 34 30 2 4 3 16 3 2 1

Student 35 4 8 5 5 6 6 4 9

Student 36 2 2 1 1 6 4 1 5

Student 37

Student 38 7 3 5 7 4 4 4 5

Student 39 4 6 18 52 4 3 4 10

Student 40 3 2 6 5 6 4 5 10

Student 41 5 3 5 10 15 20 15 20

Student 42 6 2 10 3 10 4 15 2

Student 43 2 0.5 1 10 8 6 6 18

Student 44 4 4 4 4 6 6 6 6

Student 45 2 4 8 12 2 4 7 0

Student 46 2 1 4 2 6 1 2 10

Student 47 2 1 4 6 4 1.5 1 2

Student 48 7 12 15 8 14 15 15 16

University of Washington Bothell 118

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

MASS Survey Combined Results Summary (Spring 2014 & Winter 2015)

Student

Question 2: State the code size (in lines) of your HW2 and HW4 respectively

Homework 2  
(Hybrid OpenMP/MPI)

Homework 4  
(MASS)

Total lines (excluding comments
and debug statements) Parallelization-specific code Total lines (excluding comments

and debug statements) Parallelization-specific code

Student 1 114 55 173 114

Student 2 192 14 260 3

Student 3 150 50 164 0

Student 4 243 27 239 9

Student 5 179 98 216 135

Student 6 6648 4880 4189 2389

Student 7 180 50 190 45

Student 8 163 18 411 23

Student 9 142 70 209 50

Student 10 160 56 180 35

Student 11 80 180 250 100

Student 12 483 65 155 100

Student 13 137 17 74 5

Student 14 250 55 150 10

Student 15 305 158 459 0

Student 16 118 58 192 132

Student 17 200 8 400 100

Student 18

Student 19 190 43 300 30

Student 20 165 83 298 110

Student 21 102 32 71 6

Student 22 25 4 400 100

Student 23 279 46 262 21

Student 24 100 20 100 13

Student 25 200 20 150 10

Student 26 136 17 155 9

Student 27 150 27 190 10

Student 28 180 30 200

Student 29 231 40 206 40

Student 30 124 60 220 100

Student 31 150 120 180 70

Student 32

Student 33 246 70 300 10

Student 34 105 31 184 17

Student 35 152 24 186 9

Student 36 214 140 177 100

Student 37

Student 38 175 41 196 10

Student 39 110 46 120 10

Student 40 256 124

Student 41 230 40 250 50

Student 42 104 32 270 40

Student 43 20 15 400 350

Student 44 600 120 350 100

Student 45 230 70

Student 46 236 119 312 10

Student 47 274 96 245 15

Student 48 375 153 346 132

University of Washington Bothell 119

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

MASS Survey Combined Results Summary (Spring 2014 & Winter 2015)

Student

Question 3: State the programmability of HW2 and HW4: 
1 quite hard, 2: hard, 3: fair, 4: good, 5: excellent

Hybrid MPI/OpenMP version MASS version

Learning
curve

The suitability to
your application

Degree of difference between
sequential and parallel programs

Debugging
difficulty

Learning
curve

The suitability to
your application

Degree of difference between
sequential and parallel programs

Debugging
difficulty

Student 1 2 4 2 2 4 5 3 4

Student 2

Student 3 2 3 1 2 1 3 5 1

Student 4 3 5 2 2 2 3 3 2

Student 5 3 4 3 2 1 4 2 2

Student 6 3 4 4 3 2 5 1 1

Student 7 3 4 3 2 2 3 2 2

Student 8 3 3 1 2 1 3 3 1

Student 9 2 2 3 2 4 3 2

Student 10 4 4 2 3 2 4 4 4

Student 11 4 3

Student 12 4 4 4 3 3 2 4 4

Student 13 2 3 5 1 4 3 1 4

Student 14 3 4 1 2 5 4 5 5

Student 15 4 4 4 1 3 3 2 1

Student 16 5 5 3 2 1 2 3 1

Student 17 5 4 5 3 1 2 4 1

Student 18

Student 19 4 3 2 3 1 2 1 1.5

Student 20 3 5 3 4 1 5 4 2

Student 21 3 4 3 3 2 2 3 2

Student 22 5 3 4 4 1 2 1 5

Student 23 3 4 1 3 2 5 4 2

Student 24 4 3 4 3 3 3 4 3

Student 25 4 5 1 3 4 3 1 4

Student 26 3 4 1 2 4 5 3 2

Student 27 2 3 2 2 2 4 2 4

Student 28 2 4 3 3 3 4 2 3

Student 29 2 2 2 2 2 3 2 2

Student 30 3 4 4 3 1 3 2 2

Student 31 4 3 3 3 4 4 4 3

Student 32 1 5 4 1 1 5 1 1

Student 33 3 4 3 1 3 5 5 4

Student 34 3 3 4 3 2 4 2 5

Student 35 4 3 4 3 4 4 2 3

Student 36 1 5 1 4 5 4

Student 37 1 1 1 2 2 5 5 3

Student 38 3 4 2 2 3 5 2 5

Student 39 4 5 2 2 4 5 4 1

Student 40 3 3 1 1

Student 41

Student 42 3 4 4 4 1 4 1 5

Student 43 3 3 5 2 2 2 1 4

Student 44 3 3 4 3 2 4 2 1

Student 45 3 3 4 1 3 1 1 1

Student 46 5 4 1 4 2 5 5 2

Student 47 3 4 3 2 2 4 3 4

Student 48 4 4 4 3 3 3 1 2

University of Washington Bothell 120

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

MASS Survey Combined Results Summary (Spring 2014 & Winter 2015)

Student

Question 4: State the degree of easiness of the following MASS
functions when you wrote your program, as compared to MPI/

OpenMP functions:
1: quite hard, 2: hard, 3: fair, 4: easy, 5: quite easy, (blank): not used

Question 5: Estimate the degree of the following future functions’ usefulness for your HW4
application as well as any applications you would like to code in the future:

1: not useful at all 2: probably not useful 3: maybe useful 4: useful, 5: quite useful

Existing MASS Functions Future MASS Functions

Places/Agents 
callAll

Places 
exchangeAll

Agents 
manageAll

Places 
callSome

Places 
exchangeBoundary

Agent.migrate  
(part 1):

agent diffusion

Agent.migrate  
(part 2):

collision avoidance

Parallel file
I/Os

Optimistic
synchronization

Student 1 4 4 5 4 4 2 2

Student 2

Student 3 3 2 3 5 3 3 2 4

Student 4 2 2 4 5 1 1 1 3

Student 5 1 4 5 3 3 3 3

Student 6 3 5 5 5 5 1 1 3

Student 7 5 4 4 4 5 5 4

Student 8 1 1 4 3 3 4 5 4

Student 9 3 3 3 3 4 4 3 4

Student 10 5 5 5 1 1 3 2

Student 11 5 4 5 4 4 4 5 3

Student 12 3 3 3 5 4 4 5 3

Student 13 4 4 4 4 3 3 3 4

Student 14 5 5 5 4 5 5 5 5

Student 15 2.5 2 4 5 4 4 3 5

Student 16 3 5 5 3 3 5 4

Student 17 4 4 5 5 3 3 4 3

Student 18

Student 19 4 4 4 5 4 3 4 3

Student 20 2 2 3 5 1 1 1 1

Student 21 5 3 5 5 1 1 1 1

Student 22 1 1 1 2 1 1 1 2 2

Student 23 4 4 5 4 4 4 5 4

Student 24 3 4 4 4 3 3 1 3

Student 25 2 5 3 3 5 5

Student 26 5 1 4 5 5 2 3

Student 27 5 4 3 3

Student 28 4 4

Student 29 3 3 4 4 4 4 4 4

Student 30 2 3 5 4 4 4 4

Student 31 5 4 4 5 4 5 5 5

Student 32 5 5 5 5 3 3 3 3

Student 33 3 4 4 3 5 3 3 5 5

Student 34 5 5 5 4 2 5 5

Student 35 3 3 3 3 4 4 4 5 5

Student 36 4 2 2 5 5 3 3 4 3

Student 37 5 2 5 5 5 1 5

Student 38 4 3 5 5 2 2 2 3

Student 39 5 3 5 4 5 5 5

Student 40 1 4 3 4 4 4 1 5

Student 41

Student 42 4 2 5 5

Student 43 3 2 2 4 4 4 4 3 4

Student 44 4 2 5 4 4 3 3 3 3

Student 45 2 2 2 2 2 4 4

Student 46 5 5 5 4 5 5 5

Student 47 5 4 4 5 4 4 3 2 3

Student 48 3 3 4 3 3 4 2

University of Washington Bothell 121

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F Detailed t-Test Results Between Surveyed Classes

F.1 Time to Learn the Library
In Figure 84 and Figure 85, we see that the difference in values between classes is not statistically significant enough
to conclusively point to a marked difference in results.

Variable Sample size Mean Variance

To learn the library 31 6.79032 43.3129

To learn the library 16 4.4375 8.69583

Summary

Degrees Of Freedom
45 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.35596 Pooled
Variance

31.77388

Two-tailed distribution

p-level 0.18188 t Critical Value
(5%)

2.0141

One-tailed distribution

p-level 0.09094 t Critical Value
(5%)

1.67943

Figure 84: Two-Sample T-Test Result: OpenMP/MPI - To Learn the Library

University of Washington Bothell 122

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To learn the library 15 6.06667 12.53095

To learn the library 31 7.5 19.35

Summary

Degrees Of Freedom
44 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.09946 Pooled
Variance

17.1803

Two-tailed distribution

p-level 0.27755 t Critical Value
(5%)

2.01537

One-tailed distribution

p-level 0.13877 t Critical Value
(5%)

1.68023

Figure 85: Two-Sample T-Test Result: MASS - To Learn the Library

F.2 Time to Design the Program
In Figure 86 and Figure 87, we also find that the difference between classes is not statistically significant.

University of Washington Bothell 123

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To design the program 16 3.4375 8.9625

To design the program 31 5.58387 28.39806

Summary

Degrees Of Freedom
45 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.4893 Pooled
Variance

21.91954

Two-tailed distribution

p-level 0.14339 t Critical Value
(5%)

2.0141

One-tailed distribution

p-level 0.07169 t Critical Value
(5%)

1.67943

Figure 86: Two-Sample T-Test Result: OpenMP/MPI - To Design the Program

University of Washington Bothell 124

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To design the program 31 6.40323 43.87366

To design the program 15 3.9 12.75714

Summary

Degrees Of Freedom
44 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.36547 Pooled
Variance

33.97295

Two-tailed distribution

p-level 0.17905 t Critical Value
(5%)

2.01537

One-tailed distribution

p-level 0.08952 t Critical Value
(5%)

1.68023

Figure 87: Two-Sample T-Test Result: MASS - To Design the Program

University of Washington Bothell 125

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F.3 Time to Write the Program
In Figure 88 and Figure 89, the difference between classes is once again not statistically significant enough.

Variable Sample size Mean Variance

To write the program 30 8.11667 86.64971

To write the program 16 8.4375 47.99583

Summary

Degrees Of Freedom
44 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.12091 Pooled
Variance

73.47225

Two-tailed distribution

p-level 0.90431 t Critical Value
(5%)

2.01537

One-tailed distribution

p-level 0.45216 t Critical Value
(5%)

1.68023

Figure 88: Two-Sample T-Test Result: OpenMP/MPI - To Write the Program

University of Washington Bothell 126

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To write the program 15 5.73333 21.49524

To write the program 30 8.5 107.13793

Summary

Degrees Of Freedom
43 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.98276 Pooled
Variance

79.25426

Two-tailed distribution

p-level 0.33123 t Critical Value
(5%)

2.01669

One-tailed distribution

p-level 0.16561 t Critical Value
(5%)

1.68107

Figure 89: Two-Sample T-Test Result: MASS - To Write the Program

F.4 Time to Debug the Program
In Figure 90 and Figure 91, we continue to find that the difference between classes is not statistically significant.

University of Washington Bothell 127

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To debug the program 31 9.25806 94.93118

To debug the program 16 6.75 19.4

Summary

Degrees Of Freedom
45 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.97554 Pooled
Variance

69.75412

Two-tailed distribution

p-level 0.33451 t Critical Value
(5%)

2.0141

One-tailed distribution

p-level 0.16725 t Critical Value
(5%)

1.67943

Figure 90: Two-Sample T-Test Result: OpenMP/MPI - To Debug the Program

University of Washington Bothell 128

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

To debug the program 15 6.53333 19.98095

To debug the program 31 9.79032 46.29624

Summary

Degrees Of Freedom
44 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.68156 Pooled
Variance

37.92319

Two-tailed distribution

p-level 0.09974 t Critical Value
(5%)

2.01537

One-tailed distribution

p-level 0.04987 t Critical Value
(5%)

1.68023

Figure 91: Two-Sample T-Test Result: MASS - To Debug the Program

University of Washington Bothell 129

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F.5 Effort: Total Lines of Code
In Figure 92 we find the closest statistical evidence to support a difference between the survey samples collected from
each class. However, it is still shy of the cut-off and, along with Figure 93, we have to rule the difference between
classes as not statistically significant.

Variable Sample size Mean Variance

Total lines 12 231.58333 16,435.53788

Total lines 28 173.42857 3,830.84656

Summary

Degrees Of Freedom
38 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.94889 Pooled
Variance

7,479.57299

Two-tailed distribution

p-level 0.05872 t Critical Value
(5%)

2.02439

One-tailed distribution

p-level 0.02936 t Critical Value
(5%)

1.68595

Figure 92: Two-Sample T-Test Result: OpenMP/MPI - Total Lines

University of Washington Bothell 130

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Total lines 28 255.03571 21,560.9246

Total lines 13 228.92308 9,123.57692

Summary

Degrees Of Freedom
39 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.58426 Pooled
Variance

17,734.04839

Two-tailed distribution

p-level 0.56241 t Critical Value
(5%)

2.02269

One-tailed distribution

p-level 0.28121 t Critical Value
(5%)

1.68488

Figure 93: Two-Sample T-Test Result: MASS - Total Lines

F.6 Effort: Parallel-Specific Lines of Code
In Figure 94 we find the first case of a statistically significant difference between classes. This means that there was
something about the Spring 2014 class that led to them writing more parallel-specific lines of code in their applications.

While we have identified a difference in this area for OpenMP/MPI applications, we still find in Figure 95, that
MASS parallel-specific lines of code differences between classes were not statistically significant.

University of Washington Bothell 131

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Parallelization-specific code 12 29.5 224.45455

Parallelization-specific code 28 21.60714 33.50661

Summary

Degrees Of Freedom
38 Hypothesized

Mean
Difference

0E+00

Test Statistics 2.42781 Pooled
Variance

88.78102

Two-tailed distribution

p-level 0.02004 t Critical Value
(5%)

2.02439

One-tailed distribution

p-level 0.01002 t Critical Value
(5%)

1.68595

Figure 94: Two-Sample T-Test Result: OpenMP/MPI - Parallel-Specific Lines

University of Washington Bothell 132

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Parallelization-specific code 13 7.92308 4.24359

Parallelization-specific code 28 12.17857 64.59656

Summary

Degrees Of Freedom
39 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.86898 Pooled
Variance

46.02642

Two-tailed distribution

p-level 0.06915 t Critical Value
(5%)

2.02269

One-tailed distribution

p-level 0.03457 t Critical Value
(5%)

1.68488

Figure 95: Two-Sample T-Test Result: MASS - Parallel-Specific Lines

University of Washington Bothell 133

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F.7 Learning Curve
In Figure 96 and Figure 97, we return to the familiar pattern of not finding enough evidence to support a statistically
significant difference in survey results.

Variable Sample size Mean Variance

Learning curve 30 3.26667 1.09885

Learning curve 14 2.78571 0.7967

Summary

Degrees Of Freedom
42 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.48199 Pooled
Variance

1.00533

Two-tailed distribution

p-level 0.14581 t Critical Value
(5%)

2.01808

One-tailed distribution

p-level 0.0729 t Critical Value
(5%)

1.68195

Figure 96: Two-Sample T-Test Result: OpenMP/MPI - Learning Curve

University of Washington Bothell 134

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Learning curve 14 2.5 1.5

Learning curve 30 2.33333 1.33333

Summary

Degrees Of Freedom
42 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.43756 Pooled
Variance

1.38492

Two-tailed distribution

p-level 0.66395 t Critical Value
(5%)

2.01808

One-tailed distribution

p-level 0.33197 t Critical Value
(5%)

1.68195

Figure 97: Two-Sample T-Test Result: MASS - Learning Curve

F.8 Application Suitability
Figure 98 shows a very near significant difference between class survey results for OpenMP/MPI application suitabil-
ity. However, this difference, along with the MASS difference found in Figure 99, were still not statistically significant
enough.

University of Washington Bothell 135

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Application Suitability 29 3.51724 0.90148

Application Suitability 14 4.07143 0.37912

Summary

Degrees Of Freedom
41 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.98513 Pooled
Variance

0.73585

Two-tailed distribution

p-level 0.05385 t Critical Value
(5%)

2.01954

One-tailed distribution

p-level 0.02692 t Critical Value
(5%)

1.68288

Figure 98: Two-Sample T-Test Result: OpenMP/MPI - Application Suitability

University of Washington Bothell 136

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Application Suitability 14 3.92857 0.99451

Application Suitability 29 3.44828 1.39901

Summary

Degrees Of Freedom
41 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.3092 Pooled
Variance

1.27076

Two-tailed distribution

p-level 0.19776 t Critical Value
(5%)

2.01954

One-tailed distribution

p-level 0.09888 t Critical Value
(5%)

1.68288

Figure 99: Two-Sample T-Test Result: MASS - Application Suitability

University of Washington Bothell 137

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F.9 Difference Between Parallel and Sequential Algorithms
In Figure 100 and Figure 101, we see that neither the OpenMP/MPI or MASS evaluation of parallel/sequential differ-
ence in algorithms produced statistically significant results between the classes surveyed.

Variable Sample size Mean Variance

Difference between sequential and parallel programs 30 3.03333 1.48161

Difference between sequential and parallel programs 13 2.61538 1.75641

Summary

Degrees Of Freedom
41 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.00711 Pooled
Variance

1.56204

Two-tailed distribution

p-level 0.31979 t Critical Value
(5%)

2.01954

One-tailed distribution

p-level 0.1599 t Critical Value
(5%)

1.68288

Figure 100: Two-Sample T-Test Result: OpenMP/MPI - Difference Between Parallel and Sequential Algorithms

University of Washington Bothell 138

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Difference between sequential and parallel programs 29 2.68966 1.86453

Difference between sequential and parallel programs 13 2.69231 1.89744

Summary

Degrees Of Freedom
40 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.0058 Pooled
Variance

1.8744

Two-tailed distribution

p-level 0.9954 t Critical Value
(5%)

2.02108

One-tailed distribution

p-level 0.4977 t Critical Value
(5%)

1.68385

Figure 101: Two-Sample T-Test Result: MASS - Difference Between Parallel and Sequential Algorithms

F.10 Debugging Difficulty
In Figure 102 and Figure 103, we once again find no statistically significant differences in the results between surveyed
classes (samples).

University of Washington Bothell 139

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Debugging difficulty 14 2.21429 0.7967

Debugging difficulty 30 2.53333 0.67126

Summary

Degrees Of Freedom
42 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.16976 Pooled
Variance

0.71009

Two-tailed distribution

p-level 0.24869 t Critical Value
(5%)

2.01808

One-tailed distribution

p-level 0.12435 t Critical Value
(5%)

1.68195

Figure 102: Two-Sample T-Test Result: OpenMP/MPI - Debugging Difficulty

University of Washington Bothell 140

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Debugging difficulty 14 2.64286 2.55495

Debugging difficulty 30 2.65 1.70948

Summary

Degrees Of Freedom
42 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.01572 Pooled
Variance

1.97117

Two-tailed distribution

p-level 0.98753 t Critical Value
(5%)

2.01808

One-tailed distribution

p-level 0.49377 t Critical Value
(5%)

1.68195

Figure 103: Two-Sample T-Test Result: MASS - Debugging Difficulty

University of Washington Bothell 141

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

F.11 Comparison: callAll Functionality
Figure 104 shows that we are unable to find evidence to support a statistically significant difference between the Spring
2014 and Winter 2015 survey results.

Variable Sample size Mean Variance

Places/Agents.callAll 26 3.34615 1.75538

Places/Agents.callAll 14 3.96429 1.01786

Summary

Degrees Of Freedom
38 Hypothesized

Mean
Difference

0E+00

Test Statistics 1.52094 Pooled
Variance

1.50307

Two-tailed distribution

p-level 0.13655 t Critical Value
(5%)

2.02439

One-tailed distribution

p-level 0.06828 t Critical Value
(5%)

1.68595

Figure 104: Two-Sample T-Test Result: callAll Comparison

F.12 Comparison: exchangeAll Functionality
If we look at Figure 105 we are once again unable to prove a statistically significant difference between survey results
for each course (sample).

University of Washington Bothell 142

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Places.exchangeAll 12 2.75 1.65909

Places.exchangeAll 20 3.15 1.60789

Summary

Degrees Of Freedom
30 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.8589 Pooled
Variance

1.62667

Two-tailed distribution

p-level 0.39721 t Critical Value
(5%)

2.04227

One-tailed distribution

p-level 0.1986 t Critical Value
(5%)

1.69726

Figure 105: Two-Sample T-Test Result: exchangeAll Comparison

F.13 Comparison: manageAll Functionality
Finally, as shown in Figure 106 there is not enough evidence to point toward a statistically significant difference
between the results of the two courses surveyed.

University of Washington Bothell 143

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Variable Sample size Mean Variance

Agents.manageAll 7 3.42857 2.28571

Agents.manageAll 4 3.75 1.58333

Summary

Degrees Of Freedom
9 Hypothesized

Mean
Difference

0E+00

Test Statistics 0.35803 Pooled
Variance

2.05159

Two-tailed distribution

p-level 0.72857 t Critical Value
(5%)

2.26216

One-tailed distribution

p-level 0.36429 t Critical Value
(5%)

1.83311

Figure 106: Two-Sample T-Test Result: manageAll Comparison

University of Washington Bothell 144

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

G Agents Baseline Results: Iterations

Agents Baseline Test Results (256 Places, 256 Agents, Time in Microseconds)

Hosts Test 
Type Iterations Time  

(Run 1)
Time  

(Run 2)
Time  

(Run 3)
Time  

(Run 4)
Time  

(Run 5)
Time  

(Run 6)
Time  

(Run 7)
Time  

(Run 8)
Time  

(Run 9)
Time  

(Run 10)
Time

(Average)
Time  

(St. Dev)
Time  
(Max)

Time  
(Min)

1 1 1 2900725 2901987 2970228 2874216 2871525 2995132 2899463 2917829 2944596 2873876 2914957.7 40266.96387 2995132 2871525
1 1 10 2994209 2966727 2981022 2972089 2931982 2936510 2947495 2943667 2972438 2965308 2961144.7 19321.70355 2994209 2931982
1 1 50 2659620 2650310 2618332 2567854 2631377 2619292 2653540 2680797 2616346 2625423 2632289.1 29485.78149 2680797 2567854
1 1 100 2412494 2405597 2346840 2356473 2346475 2379318 2268116 2379320 2370285 2372648 2363756.6 38101.19037 2412494 2268116
1 1 200 2103678 2098554 2150626 2143972 2153731 2198162 2167271 2170470 2131625 2174184 2149227.3 29658.87731 2198162 2098554
1 1 500 2704717 2698386 2673458 2688001 2724597 2840387 2682769 2698517 2677430 2741551 2712981.3 46943.24944 2840387 2673458
1 1 1000 4942017 4936779 4938613 4887317 4833901 4936899 4908764 4964416 4957441 5052348 4935849.5 53276.92111 5052348 4833901
1 1 10000 47241212 47591576 47403624 47276318 47834057 47458769 47386415 47327209 47806002 47301797 47462697.9 202420.0846 47834057 47241212
2 1 1 3323551 3347857 3371835 1442833 1473007 1452224 1511787 3413120 3371755 1463279 2417124.8 948881.5803 3413120 1442833
2 1 10 3409533 3481048 3479974 3471352 1480391 3433987 1489840 3486530 3416439 1502925 2865201.9 899970.7117 3486530 1480391
2 1 50 3098283 3119913 3069906 3111482 3118603 3106632 3127591 1375978 1368418 1378581 2587538.7 794376.1006 3127591 1368418
2 1 100 1215080 1204774 1224373 2760848 2850940 2789568 1213713 1302639 1211607 1203312 1697685.4 722729.6146 2850940 1203312
2 1 200 1110546 1126180 1075707 1161770 1126385 1143118 1064079 1118415 1126330 1170370 1122290 31723.52231 1170370 1064079
2 1 500 1403885 1421526 1451084 1387996 1411651 1389194 1424383 1397375 1374709 1426199 1408800.2 21535.21954 1451084 1374709
2 1 1000 2546064 2543598 2568777 2559750 2532875 2539379 2503593 2505412 2502867 2526365 2532868 22129.08779 2568777 2502867
2 1 10000 24167478 24152352 24164331 24104047 25908938 24043458 24185151 24053011 23991623 24161976 24293236.5 542083.4218 25908938 23991623
4 1 1 1715845 810035 1751054 1701580 1705950 1731749 1695568 1716330 1701513 1709696 1623932 271746.2752 1751054 810035
4 1 10 1762715 1735887 1746718 1741344 1744787 1749578 1771207 1795504 1744230 1749899 1754186.9 16888.61142 1795504 1735887
4 1 50 1568195 1580032 1609286 1587291 1616186 1577336 1575350 1591500 1597109 1615677 1591796.2 16415.37811 1616186 1568195
4 1 100 1390577 1407191 1416685 1409367 1428043 1428444 1401431 1418191 1429764 1429306 1415899.9 12851.97916 1429764 1390577
4 1 200 900037 657088 709840 581691 830861 1242057 825957 1018340 582458 626020 797434.9 202103.826 1242057 581691
4 1 500 731496 800233 719935 757659 740707 747427 722579 735817 729841 793996 747969 26786.46936 800233 719935
4 1 1000 1330584 1354397 1284103 1297138 1314531 1311615 1298540 1320665 1299746 1300352 1311167.1 19192.96622 1354397 1284103
4 1 10000 12251685 12311917 12155980 12307606 12219558 12183893 12125847 12129559 12228054 12249944 12216404.3 63566.13715 12311917 12125847
8 1 1 888144 890093 889833 892955 877909 878242 884605 880936 892251 888006 886297.4 5290.263079 892955 877909
8 1 10 902847 900618 908874 908522 906348 898870 897463 896952 910100 892339 902293.3 5703.236293 910100 892339
8 1 50 818194 829900 825259 826589 820050 810190 823672 825490 827784 828149 823527.7 5610.31288 829900 810190
8 1 100 733025 735678 748287 735745 740260 726846 719192 729523 747031 725995 734158.2 8799.171129 748287 719192
8 1 200 666051 668047 673709 675977 672862 666590 661829 667163 682414 664423 669906.5 5904.62426 682414 661829
8 1 500 624034 719499 691490 416946 621017 655140 530906 745615 431544 722322 615851.3 112704.9833 745615 416946
8 1 1000 1029835 708817 704332 683935 1039078 782620 739517 1032802 685331 891692 829795.9 145518.2745 1039078 683935
8 1 10000 6324698 6227898 6285506 6223875 6225769 6312067 6280342 6216166 6361475 6278409 6273620.5 47085.85599 6361475 6216166

16 1 1 481116 468795 478169 483170 475612 469802 476889 472309 483500 479020 476838.2 4955.028755 483500 468795
16 1 10 505509 489243 501691 490070 481576 490058 492941 482428 498390 487690 491959.6 7430.115708 505509 481576
16 1 50 445722 443958 451048 450285 438501 447643 452174 444444 453871 448134 447578 4349.370023 453871 438501
16 1 100 412160 402022 408073 402666 414388 407636 410400 407966 410164 401187 407666.2 4221.19421 414388 401187
16 1 200 374864 378153 376131 380667 372965 375508 366098 376344 379093 369893 374971.6 4142.839804 380667 366098
16 1 500 463232 462554 463537 452362 465384 449640 466919 458768 452099 462829 459732.4 5858.656317 466919 449640
16 1 1000 752031 776219 755813 706280 755065 764353 742997 748613 744573 719155 746509.9 19438.30568 776219 706280
16 1 10000 3235733 3380735 3275734 3338204 3369230 3336037 3290360 3364179 3333295 3353894 3327740.1 43952.35213 3380735 3235733

University of Washington Bothell 145

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
2

1
8433017

8791785
8634507

8429894
8876866

8780247
8525729

8741953
8630479

9029080
8687355.7

183937.659
9029080

8429894
1

2
10

8596820
9057924

8379991
8545326

8725285
8813825

8223867
8932061

8517516
9026698

8681931.3
263818.7116

9057924
8223867

1
2

50
8680795

8778002
8496849

8552175
8564668

8997775
8512212

9064930
8642543

8844858
8713480.7

191694.1565
9064930

8496849
1

2
100

8564687
8910475

8463632
8547868

8664465
8873822

8402226
8910365

8579276
8893901

8681071.7
188311.4439

8910475
8402226

1
2

200
8579489

8831919
8337143

8846822
8932224

8726885
8786370

8861088
8647449

8813711
8736310

166046.6723
8932224

8337143
1

2
500

8879485
8576978

8490876
8543500

9020009
9174490

8483109
8765885

8617841
8852972

8740514.5
225441.7267

9174490
8483109

1
2

1000
8518595

8710248
8480444

8694867
8932341

9002772
8621522

8654702
8624431

8643475
8688339.7

155773.5643
9002772

8480444
1

2
10000

8761771
8653969

8704930
8352424

8835379
8950705

9073842
8800017

8832637
8852153

8781782.7
182090.2554

9073842
8352424

2
2

1
7060630

7324203
7115989

7098510
7451796

7251682
7201808

7343563
7196683

7201052
7224591.6

115264.4569
7451796

7060630
2

2
10

6975717
7251471

7115831
7064328

7347739
7448430

7206231
7312460

7203755
7296746

7222270.8
133823.689

7448430
6975717

2
2

50
7125665

7161557
7121593

7170336
7186672

7239250
7106871

7378441
7152425

7297213
7194002.3

82229.91558
7378441

7106871
2

2
100

7119742
7201173

7102520
7136803

7135545
7208027

7116419
7389033

7244243
7378860

7203236.5
100359.6858

7389033
7102520

2
2

200
7144077

7366980
7105132

7213378
7343229

7248211
7154560

7244388
7200223

7317799
7233797.7

83376.46827
7366980

7105132
2

2
500

7134523
7662682

7248505
7071444

7239110
7261346

7166663
7323765

7084163
7407137

7259933.8
167142.6483

7662682
7071444

2
2

1000
7113068

7903901
7134821

7103393
7273337

7306996
7143415

7248652
7232742

7282765
7274309

221746.2858
7903901

7103393
2

2
10000

7100010
7322218

7163273
7185833

7223461
7278028

7153724
7263799

7034936
7390267

7211554.9
100721.3394

7390267
7034936

4
2

1
2634695

2667947
2713650

2719519
2804829

2726141
2733181

2654736
2674612

2663001
2699231.1

47633.28222
2804829

2634695
4

2
10

2704564
2813012

2855398
2783536

2778044
2724824

2661557
2669791

2689546
2759835

2744010.7
61103.9974

2855398
2661557

4
2

50
2638677

2813120
2649262

2612967
2678297

2679821
2654023

2854252
2661061

2659861
2690134.1

74595.93418
2854252

2612967
4

2
100

2711566
2963644

2693576
2742473

2735535
2702943

2702667
2709920

2796997
2768879

2752820
76887.76366

2963644
2693576

4
2

200
2717324

2677190
2647261

2658253
2790216

2837664
2750645

2768933
2667006

2828054
2734254.6

67456.84844
2837664

2647261
4

2
500

2818039
2748555

2711917
2695634

2737602
2770213

2678345
2754092

2634400
2744744

2729354.1
48866.43359

2818039
2634400

4
2

1000
2765423

2707614
2692440

2963174
2832205

2692842
2676295

2704036
2596053

2866489
2749657.1

102775.8509
2963174

2596053
4

2
10000

2818576
2687568

2690216
2679045

2670684
2641777

2630245
2730154

2679133
2747111

2697450.9
52310.54321

2818576
2630245

8
2

1
2800708

2976551
2885737

2828058
2796583

2801680
2825624

2788143
2775762

2828413
2830725.9

56634.34242
2976551

2775762
8

2
10

2778531
2844838

2814755
2814391

2866960
2803564

2763724
2792579

2802316
2818974

2810063.2
28489.00632

2866960
2763724

8
2

50
2792356

2834894
2864584

2830222
2795737

2830126
2813842

2770217
2824148

2834679
2819080.5

25514.63414
2864584

2770217
8

2
100

2821920
2813285

2794091
2792990

2825888
2804649

2800138
2745378

2809413
2809372

2801712.4
21362.42845

2825888
2745378

8
2

200
2786188

2808166
2808620

2798664
2771868

2809549
2813560

2857947
2818223

2805564
2807834.9

21229.8014
2857947

2771868
8

2
500

2853776
2773824

2782127
2837940

2785679
2775648

2968679
2815221

2819227
2849257

2826137.8
55481.8956

2968679
2773824

8
2

1000
2810031

2862273
2796716

2817655
2780251

2752217
2774808

2801804
2792569

2784810
2797313.4

27974.87838
2862273

2752217
8

2
10000

2808295
2783632

3049699
2828543

2798093
2788964

2773850
2782780

2810594
2820735

2824518.5
76900.84355

3049699
2773850

16
2

1
1612650

1585010
1619647

1610337
1580723

1605901
1600014

1617653
1631442

1607289
1607066.6

14621.88238
1631442

1580723
16

2
10

1627676
1597615

1613086
1598497

1615269
1615534

1573850
1623456

1625613
1603190

1609378.6
15621.2229

1627676
1573850

16
2

50
1611741

1631823
1596384

1596787
1603109

1623462
1609684

1626285
1620360

1608114
1612774.9

11692.52555
1631823

1596384
16

2
100

1653489
1585135

1618578
1587649

1601962
1590830

1598808
1618027

1608767
1675136

1613838.1
27931.00649

1675136
1585135

16
2

200
1622805

1600876
1616479

1583263
1588460

1606901
1591715

1598799
1637095

1614057
1606045

15911.0561
1637095

1583263
16

2
500

1606613
1625013

1607581
1592892

1590480
1576089

1603311
1598801

1614557
1586521

1600185.8
13584.50691

1625013
1576089

16
2

1000
1632217

1599498
1625412

1620187
1583441

1604999
1604636

1580786
1609359

1658708
1611924.3

22121.62612
1658708

1580786
16

2
10000

1616323
1601928

1630165
1588512

1603208
1611305

1594839
1617807

1629708
1615275

1610907
13115.42123

1630165
1588512

University of Washington Bothell 146

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
3

1
6108057

6171474
6091129

6122403
6138016

5988716
5962892

6118297
5957192

6005712
6066388.8

75302.05171
6171474

5957192
1

3
10

6078242
6181352

6099582
5895835

6156915
6182068

6101426
6326774

5997502
6199576

6121927.2
112156.6911

6326774
5895835

1
3

50
6155960

6145261
5962766

5953439
6258150

6343294
6207424

6244749
6018357

6235642
6152504.2

126367.0765
6343294

5953439
1

3
100

6119614
5964213

5982410
6016214

6200150
6141692

5977534
6070698

6125031
6140863

6073841.9
79214.24604

6200150
5964213

1
3

200
6181909

6087154
6041202

6027185
6224000

6040434
6066664

6351313
6043076

6239142
6130207.9

105972.9305
6351313

6027185
1

3
500

5956581
6318789

6020856
6181565

6281777
6241677

6087966
6283599

5896405
6280330

6154954.5
145634.0552

6318789
5896405

1
3

1000
6062926

6013302
6211527

6190711
6098506

6206615
6047568

6057899
5920238

6331331
6114062.3

113709.8529
6331331

5920238
1

3
10000

6198872
6143471

5994194
6162977

6293984
6171689

6247521
6240324

6059907
6077875

6159081.4
88453.17055

6293984
5994194

2
3

1
12561204

12665088
12482770

12620390
12576222

12567977
12673231

12607691
12512277

12542885
12580973.5

58523.81562
12673231

12482770
2

3
10

12492611
12572804

12603056
12573002

12609094
12573398

12485456
12569812

12435602
12583604

12549843.9
54746.18612

12609094
12435602

2
3

50
12504335

12526585
12534417

12457166
12593671

12615658
12541625

12476846
12488837

12716260
12545540

73701.21954
12716260

12457166
2

3
100

12603393
12528084

12640412
12376019

12580519
12515429

12467820
12561115

12642995
12506224

12542201
77932.4482

12642995
12376019

2
3

200
12660655

12698962
12542771

12799919
12717021

12566810
12587179

12542133
12507379

12569945
12619277.4

89882.97998
12799919

12507379
2

3
500

12401984
12672508

12495814
12517563

12569907
12550536

12526218
12472063

12456948
12563173

12522671.4
70217.69163

12672508
12401984

2
3

1000
12649142

12598632
12467651

12430150
12705114

12650307
12572661

12489260
12414740

12516748
12549440.5

95426.48288
12705114

12414740
2

3
10000

12627481
12566928

12610199
12607112

12487454
12527861

12606194
12646819

12611725
12524209

12581598.2
49598.46106

12646819
12487454

4
3

1
4510953

4130325
4267843

4074984
4122866

4269987
4171352

4168855
4047365

4343315
4210784.5

133075.2335
4510953

4047365
4

3
10

4014436
4124192

4218615
4249311

4094316
4254431

4224823
4285573

4156190
4276492

4189837.9
84715.6211

4285573
4014436

4
3

50
4402497

4174404
4187572

4218608
4431875

4064016
4306624

4332982
4331805

4222434
4267281.7

107739.9775
4431875

4064016
4

3
100

4266134
4119232

4266733
4229642

4112935
4352767

4041698
4322940

4144297
4086818

4194319.6
101445.1943

4352767
4041698

4
3

200
4195117

4271632
4291230

4232966
4320122

4345912
4120201

4238034
4218509

4143239
4237696.2

68886.20226
4345912

4120201
4

3
500

4100567
4275774

4276708
4168854

4158311
4185750

4279764
4371472

4363956
4286644

4246780
85260.69289

4371472
4100567

4
3

1000
4367160

4307870
4239488

4232800
4298654

4225581
4090938

4217232
4145477

4297200
4242240

77052.2077
4367160

4090938
4

3
10000

4159730
4093308

4256851
4281651

4446170
4251448

4213730
4285434

4496227
4173100

4265764.9
117839.5729

4496227
4093308

8
3

1
2861912

2839870
2667945

2821439
2879976

2794883
2663555

2852727
2779516

2839152
2800097.5

72864.91852
2879976

2663555
8

3
10

2823970
2853750

2876188
2819921

2880934
2667270

2854475
2835922

2715942
2867258

2819563
67714.7238

2880934
2667270

8
3

50
2838566

2868273
2770878

2845582
2833667

2859232
2794141

2851225
2839191

2875313
2837606.8

30724.32603
2875313

2770878
8

3
100

2806737
2853984

2833120
2838338

2708624
2844605

2827444
2820522

2868897
2885565

2828783.6
45632.34668

2885565
2708624

8
3

200
2617194

2840278
2854898

2767236
2810218

2797184
2765591

2814276
2804879

2870413
2794216.7

67286.75314
2870413

2617194
8

3
500

2905270
2834428

2838534
2656486

2865789
2782878

2766655
2839810

2843907
2858342

2819209.9
65808.57771

2905270
2656486

8
3

1000
2853546

2858744
2874798

2819281
2814111

2826763
2819094

2859528
2831267

2824025
2838115.7

20334.28527
2874798

2814111
8

3
10000

2881129
2827482

2865733
2551900

2898049
2818796

2826858
2836065

2808544
2847510

2816206.6
92143.47826

2898049
2551900

16
3

1
1568112

1510304
1488896

1517235
1482049

1472985
1532311

1779298
1514918

1470106
1533621.4

86649.52148
1779298

1470106
16

3
10

1496236
1471686

1507082
1494335

1471318
1521891

1465664
1540317

1502852
1489575

1496095.6
22290.72176

1540317
1465664

16
3

50
1514532

1560562
1555608

1458973
1477573

1525746
1511338

1481202
1488310

1473893
1504773.7

33003.7734
1560562

1458973
16

3
100

1504018
1500935

1569459
1520255

1510643
1476812

1489382
1476005

1502563
1466001

1501607.3
27799.21192

1569459
1466001

16
3

200
1489157

1789428
1522001

1493577
1470046

1722238
1534782

1481401
1510752

1713000
1572638.2

113567.4436
1789428

1470046
16

3
500

1526252
1508098

1516537
1474321

1494488
1449576

1479277
1511477

1510131
1463729

1493388.6
24089.14942

1526252
1449576

16
3

1000
1497003

1477862
1491723

1504365
1488341

1714961
1479282

1473801
1492785

1511108
1513123.1

68190.69459
1714961

1473801
16

3
10000

1726835
1471969

1518976
1472520

1489211
1475033

1808581
1707147

1493672
1531234

1569517.8
120380.7797

1808581
1471969

University of Washington Bothell 147

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
4

1
2953999

2952027
2913160

2951333
2918955

2945407
2873661

2957525
3016574

2931716
2941435.7

35044.47064
3016574

2873661
1

4
10

2952131
2916854

2938337
2912658

2966762
2963242

2941676
2926076

2938343
2934969

2939104.8
17048.09007

2966762
2912658

1
4

50
2634061

2668852
2669933

2730635
2711707

2645564
2637902

2642410
2640346

2627581
2660899.1

33087.89274
2730635

2627581
1

4
100

2348347
2333686

2404313
2389311

2379563
2400828

2348942
2378486

2393003
2382041

2375852
22862.17063

2404313
2333686

1
4

200
2175294

2133597
2138867

2179567
2203233

2170014
2151526

2126229
2200422

2149833
2162858.2

25686.12568
2203233

2126229
1

4
500

2705992
2699193

2733605
2700337

2950657
2761853

2692322
2756525

2750351
2765313

2751614.8
71578.52531

2950657
2692322

1
4

1000
4990580

4925654
4892948

4982915
5794326

4875733
4894180

4871655
4907370

5044174
5017953.5

264337.4477
5794326

4871655
1

4
10000

46430460
47115957

46367130
47128034

48392597
46734747

46834432
46871949

46235961
46915770

46902703.7
574840.7558

48392597
46235961

2
4

1
3485741

1520228
1515613

1613282
1528673

1526056
3483961

1538672
1562272

3484198
2125869.6

889918.1334
3485741

1515613
2

4
10

2723068
1564471

1556074
3499147

1566164
3472670

3514826
1507543

1543006
1501347

2244831.6
889341.3507

3514826
1501347

2
4

50
3138364

3132305
3175248

3137768
1369860

3170370
1912354

3154046
3160926

1410267
2676150.8

740526.3389
3175248

1369860
2

4
100

1264318
1255308

2827304
2902487

2851536
2848350

2860910
2793981

1310423
1299290

2221390.7
767298.1516

2902487
1255308

2
4

200
1162486

1258671
1157987

1218166
1158876

1188134
1167617

1161519
1169029

1166643
1180912.8

31200.63108
1258671

1157987
2

4
500

1509398
1426033

1502026
1500564

1501893
1484768

1483433
1495901

1480969
1456164

1484114.9
24189.1229

1509398
1426033

2
4

1000
2647874

2607632
2600193

2644012
2589586

2599004
2598600

2603228
2621439

2564907
2607647.5

23484.86938
2647874

2564907
2

4
10000

27308444
24254047

24213542
24031760

24220647
24056743

24282888
24029226

24136975
24216938

24475121
948586.3012

27308444
24029226

4
4

1
1772848

1805603
1782864

1780111
1793364

1773701
1766818

1792234
1794311

1798129
1785998.3

11959.34212
1805603

1766818
4

4
10

1808952
1812418

1806180
1815983

1804520
1806594

1809083
1822880

1815972
1812698

1811528
5341.314351

1822880
1804520

4
4

50
1679777

1577849
1678685

1641493
1630517

1658950
1625414

1634983
1672122

1637566
1643735.6

29204.22306
1679777

1577849
4

4
100

1521624
815088

1475560
1493170

1478599
1502362

1504330
1502601

1484938
1481177

1425944.9
204069.7661

1521624
815088

4
4

200
1346671

988861
835813

796050
737279

924145
1333893

951302
1326378

1171061
1041145.3

222788.0778
1346671

737279
4

4
500

929454
950357

913233
975831

1018124
1048566

985447
913605

875538
1052563

966271.8
57266.55537

1052563
875538

4
4

1000
1447203

1445898
1417631

1430769
1418516

1425924
1454235

1438489
1428347

1425013
1433202.5

11980.02516
1454235

1417631
4

4
10000

12403371
12443853

12354592
12294268

12355013
12327496

12355117
12356954

12209313
12399156

12349913.3
61318.15609

12443853
12209313

8
4

1
983749

982490
976812

986577
974089

980387
982641

969135
991594

991852
981932.6

6865.344
991852

969135
8

4
10

1005066
1003169

990430
998184

995277
986574

988285
1003205

1010915
995454

997655.9
7520.122478

1010915
986574

8
4

50
922201

947347
910362

919448
921146

909134
914346

909842
924181

911064
918907.1

10889.55033
947347

909134
8

4
100

839919
840053

837037
834902

841129
828535

822783
849135

836866
840863

837122.2
6892.908817

849135
822783

8
4

200
774747

771952
770785

771685
763709

752336
770971

778515
760099

772734
768753.3

7381.079556
778515

752336
8

4
500

822786
798408

825997
813686

819241
758607

796529
849209

807119
772926

806450.8
25039.18998

849209
758607

8
4

1000
1050430

1059031
1085020

1060572
1063162

1058878
1068106

1053076
1031344

1046157
1057577.6

13408.47625
1085020

1031344
8

4
10000

6424702
6424520

6401631
6377851

6441544
6445345

6417516
6403394

6397822
6422135

6415646
19625.97454

6445345
6377851

16
4

1
611870

605633
608478

606931
618762

607398
602673

609776
604665

611346
608753.2

4316.362191
618762

602673
16

4
10

622583
615501

617166
614270

613810
618252

615430
610621

622139
622413

617218.5
3886.257306

622583
610621

16
4

50
572511

570423
564079

568082
575980

570096
566469

571901
569870

582369
571178

4860.088621
582369

564079
16

4
100

541846
538919

557674
527653

536599
527645

531422
534781

539626
541126

537729.1
8272.035523

557674
527645

16
4

200
502656

497477
502513

502338
506649

506611
504444

503670
497488

505221
502906.7

3088.911978
506649

497477
16

4
500

575584
578777

563326
572574

566936
576758

561467
579390

584937
584399

574414.8
7816.443984

584937
561467

16
4

1000
853068

850279
855300

853252
840448

846417
840466

862754
838267

864020
850427.1

8591.832045
864020

838267
16

4
10000

3463589
3451731

3452881
3445520

3461860
3418994

3442166
3462217

3447173
3598294

3464442.5
46305.43211

3598294
3418994

University of Washington Bothell 148

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
5

1
175122

179349
177843

182892
195885

179074
183716

186310
177840

187557
182558.8

5833.950031
195885

175122
1

5
10

189369
179487

187022
185852

196373
184199

184194
181200

185477
189528

186270.1
4516.313285

196373
179487

1
5

50
173342

184919
175911

176201
203772

182563
184464

181815
188464

179741
183119.2

8179.172401
203772

173342
1

5
100

183119
183735

185253
175309

201941
188672

186145
184856

182699
183542

185527.1
6368.459177

201941
175309

1
5

200
181177

185138
184185

176480
197566

179460
178587

178435
186903

181784
182971.5

5775.176971
197566

176480
1

5
500

177878
180434

180757
177679

195200
190575

184423
185317

183635
180968

183686.6
5287.678379

195200
177679

1
5

1000
186026

184600
175638

184780
196299

187750
185799

181466
181975

179440
184377.3

5229.266202
196299

175638
1

5
10000

187404
182793

180066
182213

198204
178937

182328
179893

186723
182689

184125
5364.15518

198204
178937

2
5

1
392412

264868
263030

391941
288558

249136
346730

266903
283844

329930
307735.2

51136.89643
392412

249136
2

5
10

262895
348842

252540
338836

343471
383394

302103
263163

320902
254155

307030.1
44466.97348

383394
252540

2
5

50
264590

348563
256767

290459
375823

264156
246148

283010
387901

243841
296125.8

51502.71695
387901

243841
2

5
100

273633
384697

385356
292708

400089
339021

349070
261945

299791
257562

324387.2
51437.13354

400089
257562

2
5

200
303926

357634
278620

361399
261470

294208
381571

257208
266814

248369
301121.9

46175.32746
381571

248369
2

5
500

340327
267998

251220
257049

252545
262560

252416
341270

296534
269576

279149.5
33295.72307

341270
251220

2
5

1000
267261

396535
352730

296722
331553

291831
383185

388321
248523

257173
321383.4

53736.62593
396535

248523
2

5
10000

391373
272931

364366
262094

322569
278399

273394
343734

256396
256038

302129.4
46953.946

391373
256038

4
5

1
190365

190564
186498

146925
191509

195376
180068

185104
183513

180528
183045

12923.02035
195376

146925
4

5
10

167712
224781

182388
215605

234689
151813

210494
178532

176541
178006

192056.1
25902.95247

234689
151813

4
5

50
181114

190931
136134

175212
171114

195660
168596

143793
199184

189440
175117.8

20129.21758
199184

136134
4

5
100

232232
147707

219599
228476

234667
139281

210914
194430

172583
213459

199334.8
33069.03817

234667
139281

4
5

200
192709

196217
228234

147556
165502

188895
231088

164807
227631

232912
197555.1

29866.94197
232912

147556
4

5
500

176924
187899

161427
233906

197286
185604

213798
167775

228830
172098

192554.7
24114.81032

233906
161427

4
5

1000
184342

189284
233894

159480
167241

175774
173440

172758
174260

188220
181869.3

19422.62534
233894

159480
4

5
10000

190026
231976

168398
166703

191219
155022

215032
235595

196204
230257

198043.2
27774.1217

235595
155022

8
5

1
202631

129326
113544

191013
211208

176706
168759

223925
121464

116070
165464.6

40073.66668
223925

113544
8

5
10

229862
208185

182099
225550

202368
195365

194157
122466

202784
211321

197415.7
28414.54497

229862
122466

8
5

50
205593

196443
185776

184587
197252

179567
226183

226911
120022

230154
195248.8

30657.18877
230154

120022
8

5
100

234195
190164

168914
191063

170822
116529

201034
227598

226006
224036

195036.1
34498.36934

234195
116529

8
5

200
224854

121148
229338

120931
197673

184482
227520

207630
192333

130822
183673.1

41458.98783
229338

120931
8

5
500

226808
197212

215150
198988

129919
234067

121422
189462

121619
230118

186476.5
43053.77056

234067
121422

8
5

1000
207878

178813
235610

190459
205334

208239
121728

193036
114877

185196
184117

36171.50432
235610

114877
8

5
10000

204318
185890

230713
157636

186275
182944

232590
193151

199389
192383

196528.9
21170.59378

232590
157636

16
5

1
138755

136170
150628

149298
145523

145018
104760

150210
143780

145504
140964.6

12855.69738
150628

104760
16

5
10

138924
141827

146887
150416

144895
140430

145118
138089

144150
138909

142964.5
3807.11805

150416
138089

16
5

50
147271

144612
140763

145583
144796

144545
141070

143049
143621

139918
143522.8

2213.755894
147271

139918
16

5
100

143722
147797

143296
140753

149240
138902

144565
144617

141225
145996

144011.3
3022.641231

149240
138902

16
5

200
147410

148097
146036

141386
147413

146711
143780

149809
145112

140226
145598

2865.769565
149809

140226
16

5
500

144882
143400

151734
147839

145615
143391

147035
137487

145106
144696

145118.5
3456.838592

151734
137487

16
5

1000
141851

141963
149455

144766
149702

146916
148345

146860
141780

140443
145208.1

3319.208172
149702

140443
16

5
10000

149890
141408

151503
144939

144457
158378

141002
142858

141320
144439

146019.4
5314.231388

158378
141002

University of Washington Bothell 149

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
6

1
266527

263751
253932

268955
297189

336392
277126

258171
368856

256920
284781.9

36615.26777
368856

253932
1

6
10

338854
249154

298436
261253

303515
277542

260597
261134

279244
275217

280494.6
25335.75897

338854
249154

1
6

50
342229

267281
242946

390670
296528

270387
319139

263205
392292

270519
305519.6

51011.24376
392292

242946
1

6
100

386169
281333

249287
255412

307307
261678

305461
279586

272134
263372

286173.9
38090.00832

386169
249287

1
6

200
238531

286459
244723

428524
318380

275114
257661

284562
253003

270492
285744.9

52508.26927
428524

238531
1

6
500

252121
351387

281189
341247

287709
276277

255561
279047

239951
389147

295363.6
46318.4644

389147
239951

1
6

1000
263784

258146
257501

263053
312370

362241
237594

287049
273630

269461
278482.9

33648.1047
362241

237594
1

6
10000

389731
262937

270759
240321

293652
278731

382157
280260

255034
275564

292914.6
48570.64493

389731
240321

2
6

1
208670

207163
201357

183666
219813

180355
173278

249926
208193

206587
203900.8

20829.35822
249926

173278
2

6
10

204268
191887

206282
193924

213138
185056

202266
188242

196912
188536

197051.1
8681.77586

213138
185056

2
6

50
216151

206080
214346

199356
205274

188057
197846

206504
198698

195331
202764.3

8176.288462
216151

188057
2

6
100

203276
186440

201661
210621

191401
192098

189106
177461

219616
204045

197572.5
11897.32078

219616
177461

2
6

200
214036

210386
195891

212132
196253

201959
228633

185425
181124

186138
201197.7

14329.05499
228633

181124
2

6
500

205319
171270

211409
202610

203838
180285

200494
207349

200538
189843

197295.5
12160.00098

211409
171270

2
6

1000
214223

204554
201222

173383
212373

259066
176813

188846
217413

185154
203304.7

23772.52332
259066

173383
2

6
10000

194483
199916

171862
206874

207380
193608

215529
187660

205922
256777

204001.1
21111.13586

256777
171862

4
6

1
133396

114483
103268

99746
95550

102706
96714

103428
105577

108200
106306.8

10421.39159
133396

95550
4

6
10

99189
97552

102965
101945

129047
109333

102891
103835

103622
96758

104713.7
8800.9241

129047
96758

4
6

50
89034

102999
107681

94384
100476

103913
95157

103636
99211

104089
100058

5378.721651
107681

89034
4

6
100

99160
106146

103762
112905

106464
101621

128504
120475

138367
96122

111352.6
13013.59085

138367
96122

4
6

200
94179

94852
106315

99473
103032

113244
96986

98529
100648

100506
100776.4

5394.770305
113244

94179
4

6
500

100386
102493

99769
103711

97549
115855

130587
133028

97072
98672

107912.2
12993.45368

133028
97072

4
6

1000
105523

107291
101028

96998
107202

104161
106794

92392
106434

112479
104030.2

5492.27184
112479

92392
4

6
10000

96754
97654

97843
117306

101016
108834

104573
100079

106889
103216

103416.4
6010.52399

117306
96754

8
6

1
90472

89308
82364

84603
90497

83742
86979

76849
84718

86921
85645.3

3966.966248
90497

76849
8

6
10

84239
82797

82828
88289

90087
91699

81337
83099

85492
80119

84998.6
3644.436587

91699
80119

8
6

50
83791

91244
78627

83307
79440

77288
83532

82036
83503

80886
82365.4

3674.429104
91244

77288
8

6
100

81252
85670

83498
83317

78194
87478

87033
87253

81565
86434

84169.4
2970.062834

87478
78194

8
6

200
83925

87094
87065

90151
87751

88755
81067

86504
87540

82594
86244.6

2692.325434
90151

81067
8

6
500

84353
81509

82818
85960

86186
85122

82560
88635

79224
87282

84364.9
2709.48148

88635
79224

8
6

1000
85915

75272
84231

83399
91123

83925
80592

89224
88256

82175
84411.2

4355.002544
91123

75272
8

6
10000

87102
74439

85222
85754

88535
84626

84173
94097

86240
80479

85066.7
4843.334761

94097
74439

16
6

1
55437

54923
53550

53992
53997

55656
53685

56580
54395

53503
54571.8

987.4671438
56580

53503
16

6
10

58001
57052

54192
55242

54904
57704

57241
53355

51620
55147

55445.8
1960.502578

58001
51620

16
6

50
56090

53083
52884

54071
58333

57852
54329

55366
58015

57075
55709.8

1959.28981
58333

52884
16

6
100

55432
54507

54968
53666

56198
55466

56095
55327

56033
53532

55122.4
907.7919585

56198
53532

16
6

200
54165

60928
53656

54633
55869

56175
56818

54810
55662

57294
56001

1973.248945
60928

53656
16

6
500

55575
56525

52136
55913

56254
56784

53491
56470

56950
56880

55697.8
1528.172752

56950
52136

16
6

1000
54896

52218
53811

53255
54435

53631
53267

56915
56055

56455
54493.8

1474.471146
56915

52218
16

6
10000

57180
52087

53749
52440

56014
54879

55965
54369

57670
55760

55011.3
1772.964075

57670
52087

University of Washington Bothell 150

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
7

1
173878

175105
171672

175941
196640

174587
167980

176084
164785

181033
175770.5

8166.720336
196640

164785
1

7
10

181937
180451

169008
176888

198577
169081

181188
180991

172277
179550

178994.8
8068.022382

198577
169008

1
7

50
169544

183529
181957

177564
193398

174688
188026

166248
186304

168214
178947.2

8719.91963
193398

166248
1

7
100

178189
171278

187240
166549

202605
172057

168817
187642

181317
183892

179958.6
10426.41811

202605
166549

1
7

200
182306

181348
181050

168941
174503

180649
167056

177622
178657

167073
175920.5

5804.02211
182306

167056
1

7
500

182073
179361

173606
175297

178895
167344

182672
169973

170109
166875

174620.5
5634.625742

182672
166875

1
7

1000
168188

170696
171093

169581
179464

174515
170573

166632
171269

178350
172036.1

3957.752808
179464

166632
1

7
10000

170179
180924

178929
172078

180195
176837

174820
181889

167493
167520

175086.4
5219.14798

181889
167493

2
7

1
278837

292957
272476

254707
277088

287311
286568

266060
254730

287522
275825.6

12984.11631
292957

254707
2

7
10

249078
275033

261667
280611

261782
281124

293508
261322

278801
268030

271095.6
12384.02656

293508
249078

2
7

50
283262

287471
266959

277495
285687

293415
259660

264640
290647

289825
279906.1

11465.38114
293415

259660
2

7
100

283059
258774

285862
287379

285325
279898

295522
296283

282967
265058

282012.7
11290.28203

296283
258774

2
7

200
258172

266091
293365

274681
266672

276531
267788

273456
261352

269929
270803.7

9283.947889
293365

258172
2

7
500

274820
253160

288890
287957

273890
291930

292539
285879

292523
265975

280756.3
12683.91252

292539
253160

2
7

1000
279620

290907
284915

288925
277433

259133
292499

277339
250762

248645
275017.8

15549.98553
292499

248645
2

7
10000

273957
281538

286111
285169

261172
282822

256472
286955

283831
291645

278967.2
10986.16439

291645
256472

4
7

1
138094

135336
138560

130440
131083

133771
152489

135128
126427

132106
135343.4

6682.664861
152489

126427
4

7
10

133572
151410

124251
119876

157970
129782

145830
144075

126475
136991

137023.2
11856.65608

157970
119876

4
7

50
129014

137154
161505

146265
136152

149490
127990

143471
155912

139459
142641.2

10370.08851
161505

127990
4

7
100

121378
124352

130862
127770

138240
121089

129630
138377

136720
146246

131466.4
7855.93348

146246
121089

4
7

200
148508

155998
126438

149026
156935

145299
146878

137724
137528

122178
142651.2

11020.54957
156935

122178
4

7
500

158368
154397

125034
141545

125582
135153

133811
143244

147242
131094

139547
10867.08753

158368
125034

4
7

1000
131526

130208
153466

130291
135757

126021
134313

128787
135206

141407
134698.2

7474.288311
153466

126021
4

7
10000

144706
146983

139541
126854

144493
158847

123244
130194

140490
141988

139734
9998.695095

158847
123244

8
7

1
88903

86414
88832

88790
89662

87277
86184

89869
84313

90163
88040.7

1816.01465
90163

84313
8

7
10

85922
91341

91727
93532

86420
83444

86160
85003

89335
91638

88452.2
3294.958021

93532
83444

8
7

50
88949

87521
94208

89476
88192

88733
87605

88538
92494

81713
88742.9

3115.620402
94208

81713
8

7
100

92928
85385

87332
87022

94197
84938

88793
90667

89249
89555

89006.6
2861.679549

94197
84938

8
7

200
86784

88075
86963

88958
87493

87004
86591

83976
88769

92759
87737.2

2131.974193
92759

83976
8

7
500

84183
85104

88233
86457

91962
89904

88645
82986

88723
88442

87463.9
2609.873271

91962
82986

8
7

1000
85925

90807
89758

86518
89494

85760
88200

88978
89360

88124
88292.4

1634.866368
90807

85760
8

7
10000

89144
86812

88958
86941

88573
90812

89108
89445

86320
86751

88286.4
1409.710552

90812
86320

16
7

1
57946

53872
55804

56069
58029

57203
58696

54990
55828

56020
56445.7

1423.184531
58696

53872
16

7
10

57045
62578

54613
54341

57801
60650

57876
56675

59745
58038

57936.2
2420.103832

62578
54341

16
7

50
58897

57288
57507

56927
55347

56494
60738

58038
57425

56544
57520.5

1402.206208
60738

55347
16

7
100

56185
58385

57860
56556

59902
54700

55961
55213

55336
58711

56880.9
1644.939175

59902
54700

16
7

200
57404

58888
57501

55990
59554

53245
55207

57525
56044

58505
56986.3

1796.924041
59554

53245
16

7
500

57719
60959

58408
56846

57914
57957

56801
57932

56417
57110

57806.3
1212.727673

60959
56417

16
7

1000
55407

57381
56727

57858
59226

68419
55727

60670
56166

62047
58962.8

3762.625355
68419

55407
16

7
10000

54886
58951

59261
54830

56200
58152

58765
55893

59391
58778

57510.7
1751.40561

59391
54830

University of Washington Bothell 151

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

H Agents Baseline Results: Max Time

Agents Baseline Test Results (256 Places, 256 Agents, Time in Microseconds)

Hosts Test 
Type Iterations Time  

(Run 1)
Time  

(Run 2)
Time  

(Run 3)
Time  

(Run 4)
Time  

(Run 5)
Time  

(Run 6)
Time  

(Run 7)
Time  

(Run 8)
Time  

(Run 9)
Time  

(Run 10)
Time

(Average)
Time  

(St. Dev)
Time  
(Max)

Time  
(Min)

1 1 1 83729 87869 84986 85264 87347 84485 85459 86696 85322 84232 85538.9 1287.113084 87869 83729

1 1 50 2491648 2469067 2461653 2455614 2449545 2480698 2427105 2442246 2479706 2483909 2464119.1 19573.12555 2491648 2427105

1 1 100 4945004 4891136 4918102 4938998 4908130 4890310 4939213 4936585 4880641 4892814 4914093.3 23299.7209 4945004 4880641

1 1 150 7296363 7394902 7362228 7253844 7393965 7210377 7182291 7392601 7354713 7342422 7318370.6 74654.35281 7394902 7182291

1 1 200 9666574 9665222 9673648 9602849 9745026 9805257 9677283 9799045 9862486 9696441 9719383.1 76517.46423 9862486 9602849

1 1 250 12086676 12088166 12152259 12255791 12147575 11991417 12095367 12156836 12218456 12428689 12162123.2 113181.367 12428689 11991417

2 1 1 57559 50744 105084 47777 98300 52512 103310 105279 54626 106734 78192.5 25740.59237 106734 47777

2 1 50 1289772 1298965 1219422 1246577 2867124 1254988 1269974 1262511 1299291 2894060 1590268.4 645610.8392 2894060 1219422

2 1 100 2539056 5882039 2450179 2460153 2422005 5757433 2504932 5657390 2495724 2503560 3467247.1 1505796.581 5882039 2422005

2 1 150 3753165 3716415 8503303 3797517 3691694 3700535 3680457 3658051 5046071 4866775 4441398.3 1440940.416 8503303 3658051

2 1 200 11299345 4936131 10970429 4929345 11422048 8009067 4835283 11339700 11601913 8454780 8779804.1 2801865.87 11601913 4835283

2 1 250 6574104 6057560 6183568 7300810 14302170 6048571 11319754 6188631 6217677 9864599 8005744.4 2721669.805 14302170 6048571

4 1 1 62456 56413 52517 54631 64840 32096 56989 57838 53493 58430 54970.3 8434.134598 64840 32096

4 1 50 632910 1473222 1449985 1463752 1463115 1439117 1476827 1478471 1464880 1450255 1379253.4 249069.4363 1478471 632910

4 1 100 2862823 2885928 2898025 2909939 2869183 2878810 2917483 2880623 2880322 2884464 2886760 16242.7733 2917483 2862823

4 1 150 4340188 4310903 4283687 4347538 4346950 4278844 4281922 4337038 4319290 4340871 4318723.1 26734.67886 4347538 4278844

4 1 200 5682898 5751378 5782658 5770229 5809366 3715544 5789644 5812562 5749210 5817824 5568131.3 618695.4018 5817824 3715544

4 1 250 7112197 7214140 7189925 7169062 7161481 7193969 7206303 7300328 7232856 7140132 7192039.3 49622.03171 7300328 7112197

8 1 1 36323 41029 39221 37004 36770 37326 37509 36994 36889 36909 37597.4 1359.928469 41029 36323

8 1 50 769121 764020 757155 758396 756379 762131 767369 763693 761699 754996 761495.9 4485.114747 769121 754996

8 1 100 1503374 1497920 1500932 1497294 1510114 1516461 1516354 1518591 1509302 1488669 1505901.1 9364.434862 1518591 1488669

8 1 150 2278155 2236646 2241385 2240009 2220184 2255686 2226561 2249080 2242293 2250143 2244014.2 15224.1568 2278155 2220184

8 1 200 3040361 3016500 2990847 2979835 2952943 3003687 2979594 2936759 2983681 2956786 2984099.3 29395.38406 3040361 2936759

8 1 250 3734526 3736498 3741734 3681358 3719273 3745932 3704964 3719258 3669607 3736694 3718984.4 24811.7276 3745932 3669607

16 1 1 22748 22770 22046 22938 22430 21935 21246 24367 24256 21798 22653.4 962.0664426 24367 21246

16 1 50 422698 414138 422382 415565 416569 414584 416496 412494 414983 418013 416792.2 3208.222492 422698 412494

16 1 100 822923 816696 831866 815560 823940 810207 818003 830388 800930 826129 819664.2 8963.274109 831866 800930

16 1 150 1211005 1222085 1207197 1223647 1229455 1216053 1207898 1216917 1215145 1233578 1218298 8380.804639 1233578 1207197

16 1 200 1618390 1623276 1646295 1617505 1614725 1624260 1628917 1605248 1591875 1608996 1617948.7 13871.22658 1646295 1591875

16 1 250 2009619 2042934 2028567 2017880 2008163 2000004 1999691 2004974 2006378 2021526 2013973.6 13093.98617 2042934 1999691

University of Washington Bothell 152

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
2

1
226340

332028
215240

248392
251932

224256
235797

220390
221830

238326
241453.1

32316.45293
332028

215240

1
2

50
6941208

7277523
7249263

7016571
7022094

7168741
7234250

7295789
7307210

7020209
7153285.8

131920.0682
7307210

6941208

1
2

100
14038239

13905766
14056470

13933516
13846721

14082367
13959914

14059772
14086029

14490683
14045947.7

167471.9346
14490683

13846721

1
2

150
21049279

20590125
20742059

20836516
20656595

20322752
20939171

20551227
21207727

21109291
20800474.2

265021.7565
21207727

20322752

1
2

200
27595296

27648211
27447079

27488941
27062808

27338943
27611636

27611216
28549246

28101090
27645446.6

390711.8863
28549246

27062808

1
2

250
34831661

34071540
34602968

34032333
34171406

34991946
34284655

34877008
35671108

36124984
34765960.9

660764.72
36124984

34032333

2
2

1
180718

167417
193135

151753
153383

190696
158659

152250
180209

182899
171111.9

15479.3514
193135

151753

2
2

50
5962096

5999438
6077118

6018260
5988557

5992166
6171627

5944011
6035885

6127374
6031653.2

69277.10303
6171627

5944011

2
2

100
11818199

11765831
11960936

11833995
11696608

11759062
12478442

11909419
11932010

11830750
11898525.2

208441.0523
12478442

11696608

2
2

150
17963276

18002340
17644057

18056763
17681872

17679047
17708772

17713169
17744557

18428547
17862240

237001.9177
18428547

17644057

2
2

200
23665584

23730305
23741841

23508182
23694669

23479418
23832577

23622286
23712244

23528907
23651601.3

109062.836
23832577

23479418

2
2

250
29788616

29615139
31637116

29499744
29676344

29789063
29696762

30839608
30131611

29553850
30022785.3

654257.4516
31637116

29499744

4
2

1
81884

90311
85923

80142
83020

84584
83463

81791
86184

117920
87522.2

10491.11578
117920

80142

4
2

50
2248104

2202926
2296238

2148155
2307824

2505300
2221626

2275035
2250721

2228245
2268417.4

90424.13764
2505300

2148155

4
2

100
4467453

4370759
4364577

4502706
4458980

4681267
4487180

4402118
4492805

4465583
4469342.8

84989.71553
4681267

4364577

4
2

150
6666894

6450275
6400763

6568047
6637004

7103942
6669603

6488247
6553077

6556779
6609463.1

185322.2128
7103942

6400763

4
2

200
8994465

8722035
8991007

8862433
8786702

9373481
8667335

8593000
8667040

8839746
8849724.4

216406.0937
9373481

8593000

4
2

250
10824296

10869616
10870072

10968421
10713762

11429665
10953659

11028166
11156147

10844037
10965784.1

192933.7925
11429665

10713762

8
2

1
75979

79034
81374

79422
78188

79964
75241

75087
81215

79251
78475.5

2195.22369
81374

75087

8
2

50
2733931

2719378
2736358

2702971
2685082

2697711
2675730

2911739
2712216

2706782
2728189.8

63840.70164
2911739

2675730

8
2

100
5427547

5305462
5286538

5273746
5346654

5184493
5316512

5330515
5229115

5247378
5294796

64353.54279
5427547

5184493

8
2

150
7844496

7816282
7857863

7873163
7879133

7882865
7943112

7906347
8099656

7829169
7893208.6

77221.39309
8099656

7816282

8
2

200
10583513

10445424
10467621

10562482
10520478

10554817
10685199

10534012
10623942

10488408
10546589.6

68974.76653
10685199

10445424

8
2

250
13199800

13233871
13326412

13165543
13122887

13227745
13277932

13017641
13185907

13105059
13186279.7

84669.30042
13326412

13017641

16
2

1
45897

46018
44119

44833
59157

44469
48860

59961
53312

42325
48895.1

6054.7968
59961

42325

16
2

50
1550377

1550024
1950114

1888280
1611232

1486329
1753553

1824387
1704015

1840432
1715874.3

152308.4537
1950114

1486329

16
2

100
3099510

3093401
3834990

3596618
3444143

3252729
3717881

3874080
4197400

3546348
3565710

338271.5048
4197400

3093401

16
2

150
4595189

4612988
5521319

5523082
5113514

4753417
5488533

5627867
5387383

5506475
5212976.7

389692.2305
5627867

4595189

16
2

200
6151142

6135763
7468431

7569110
6807586

6292304
7236285

7502764
7350461

7033523
6954736.9

544122.9207
7569110

6135763

16
2

250
7642209

7657722
9576014

9581963
8381523

7462618
9735619

9479878
8824831

9425216
8776759.3

868699.2481
9735619

7462618

University of Washington Bothell 153

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
3

1
131833

133931
141633

142315
131116

133169
141725

143148
137955

141809
137863.4

4602.564724
143148

131116

1
3

50
5036753

4918326
5007057

4854801
5072195

5114766
5010305

4985213
4994807

4951275
4994549.8

70686.79041
5114766

4854801

1
3

100
10187490

9810802
10099507

9835677
10033737

10182691
10081793

10114731
9959975

10080907
10038731

124646.1384
10187490

9810802

1
3

150
14414935

15250119
14918901

15101544
15230637

15519340
15215613

15159414
15048880

15205685
15106506.8

273462.363
15519340

14414935

1
3

200
20211886

20049308
20099091

19754763
19763249

20215027
20154841

20430364
20092667

20037267
20080846.3

193230.0398
20430364

19754763

1
3

250
24929257

24406910
26714839

24971956
24699247

25537121
24856845

25636007
25029962

25163481
25194562.5

612474.2664
26714839

24406910

2
3

1
257409

270158
255167

267755
265635

239372
259292

237980
264980

262766
258051.4

10632.62041
270158

237980

2
3

50
10621277

10594463
10656060

10618150
10578868

10600457
10624064

10436727
10477981

10600110
10580815.7

65458.16136
10656060

10436727

2
3

100
20950459

21044291
21164460

20993532
21091645

21119910
20855546

20805244
20986533

20982857
20999447.7

106560.4026
21164460

20805244

2
3

150
31402331

31339110
31379577

31677126
31517990

31856263
31174151

31774219
32002049

31410504
31553332

249307.13
32002049

31174151

2
3

200
41877214

42268603
42068061

41776238
41487814

41991096
42094385

41859336
42309118

41883886
41961575.1

229631.4535
42309118

41487814

2
3

250
52073644

52453827
52888752

52601495
52587369

52936714
52343977

52171503
52684727

52371117
52511312.5

269332.8458
52936714

52073644

4
3

1
127344

108791
110774

109169
108844

100819
124118

114079
107661

104049
111564.8

7883.833126
127344

100819

4
3

50
3609973

3468572
3546464

3510898
3674701

3527274
3545403

3554839
3362012

3578434
3537857

79090.81137
3674701

3362012

4
3

100
7000502

6978116
7178387

6931481
7007804

6997624
7064420

6880257
6928979

7157784
7012535.4

91607.43278
7178387

6880257

4
3

150
10333230

10343470
10560789

10663510
10216857

10252368
10211414

10520177
10213940

10413988
10372974.3

153557.2715
10663510

10211414

4
3

200
13683220

13839360
13884030

14053064
13939124

13544895
14255613

13768864
13802662

13616521
13838735.3

199485.164
14255613

13544895

4
3

250
17378956

17326316
17381579

17663094
17534686

16940685
17675712

17405203
17185942

17337695
17382986.8

206734.8506
17675712

16940685

8
3

1
88963

90331
87172

87605
90984

86266
90214

91271
89314

87888
89000.8

1625.974219
91271

86266

8
3

50
3045125

2992632
2980162

3014059
3051818

2955891
2985527

3041685
3023396

3064359
3015465.4

33995.93867
3064359

2955891

8
3

100
6053570

5945871
6017855

6004196
6010629

5817903
5970316

5945285
5709319

5965995
5944093.9

98833.25793
6053570

5709319

8
3

150
8813122

9051914
8948821

8919155
9004237

8615108
8982818

8864433
8539655

8926311
8866557.4

159023.7101
9051914

8539655

8
3

200
11860973

11952355
12303467

11767437
11937623

11407661
11882852

11803110
11430001

11876094
11822157.3

244743.4016
12303467

11407661

8
3

250
14951452

14951375
14727609

14874887
14997562

14264545
14833657

14860765
14301701

15125585
14788913.8

272093.191
15125585

14264545

16
3

1
49971

53144
57421

61252
84902

48534
63105

61452
44881

52703
57736.5

10722.53915
84902

44881

16
3

50
1764924

1730027
1886350

2125934
2097085

1668261
1938778

1781245
1973740

2208054
1917439.8

174302.6604
2208054

1668261

16
3

100
3465107

3455682
3831135

3715970
3659219

3322231
3774612

3742358
3794050

4113916
3687428

215091.2363
4113916

3322231

16
3

150
5208812

5120871
5608209

5714687
5507337

4932376
5720963

5930184
5870673

5728160
5534227.2

319406.1913
5930184

4932376

16
3

200
6842011

6869383
7489403

7916487
7259701

6821350
7608381

7633979
7589250

7496739
7352668.4

366485.6724
7916487

6821350

16
3

250
8964751

8675176
9498918

9620038
9083676

8229625
9431101

9775735
9555739

9495150
9232990.9

462534.6857
9775735

8229625

University of Washington Bothell 154

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
4

1
86304

85085
84240

82509
83972

84486
84633

85039
86434

85009
84771.1

1071.447474
86434

82509

1
4

50
2421281

2486953
2382114

2470148
2471737

2462339
2487446

2458621
2370585

2447600
2445882.4

39305.19641
2487446

2370585

1
4

100
4961091

4854867
4858291

4794346
4663168

4921269
4837366

4778882
4893351

4858700
4842133.1

78784.50284
4961091

4663168

1
4

150
7363262

7339224
7480150

7335908
7179090

7228562
7293672

7343388
7294978

7221283
7307951.7

81558.86163
7480150

7179090

1
4

200
9827127

9636042
9447860

9697352
9756564

9529767
9797972

9529384
9680688

9706276
9660903.2

118257.0623
9827127

9447860

1
4

250
12233625

12069182
12079499

12078521
12274742

12172492
12079871

12236175
12073539

12195605
12149325.1

77418.69137
12274742

12069182

2
4

1
71291

106775
110052

116902
107486

59958
75581

79156
59189

63000
84939

21709.8825
116902

59189

2
4

50
2915397

2917639
1311131

1305168
1326986

1319702
2952190

1299775
2978785

1295520
1962229.3

799382.5716
2978785

1295520

2
4

100
2622725

2553123
2552961

5862385
2507894

2557393
2590517

2587285
2505246

4307194
3064672.3

1068780.572
5862385

2505246

2
4

150
3789107

8705599
3803326

8727473
8648460

3843587
8747035

3776220
3795434

8180369
6201661

2404913.808
8747035

3776220

2
4

200
8162531

6446362
8588547

11484729
5134870

5071523
11638130

5097298
7677852

5113263
7441510.5

2422694.203
11638130

5071523

2
4

250
10534881

9493911
9401056

6327349
6293071

6342685
7453032

6303996
9611424

14409450
8617085.5

2492464.758
14409450

6293071

4
4

1
58475

63387
62565

63161
63588

50476
63114

61249
60775

69767
61655.7

4623.714374
69767

50476

4
4

50
1518993

1501447
1492592

1525547
1513335

1523569
1511653

1506410
1529962

1529674
1515318.2

11884.23844
1529962

1492592

4
4

100
3036082

2987378
3001638

2982893
2980553

2994407
3018779

2996384
2993257

2989485
2998085.6

16282.30898
3036082

2980553

4
4

150
4495275

4467902
4490338

4430610
4510313

4462604
4495802

4426592
4511076

4462045
4475255.7

28831.52095
4511076

4426592

4
4

200
5983105

6044965
5935156

5944387
5933200

5973515
5951987

5923232
5978600

5950537
5961868.4

33662.25001
6044965

5923232

4
4

250
7473329

7475783
7451423

7494378
7362319

5183225
7429004

7522296
7421480

7450583
7226382

682317.2627
7522296

5183225

8
4

1
46846

48659
46401

45785
48182

46503
46955

46896
46716

45276
46821.9

948.8747494
48659

45276

8
4

50
879280

872750
869867

879756
874737

876633
860048

875499
866369

876939
873187.8

5867.780514
879756

860048

8
4

100
1710399

1691026
1703038

1708680
1696346

1713633
1715024

1713231
1686228

1704983
1704258.8

9520.286559
1715024

1686228

8
4

150
2510937

2517247
2511754

2523182
2521013

2546244
2526716

2507743
2527753

2516421
2520901

10572.37565
2546244

2507743

8
4

200
3359381

3343219
3317333

3343392
3321360

3362326
3336326

3297556
3302577

3329099
3331256.9

20801.60983
3362326

3297556

8
4

250
4164496

4192580
4176684

4133608
4174493

4207753
4121828

4151472
4118769

4146066
4158774.9

28206.26062
4207753

4118769

16
4

1
32713

31909
32006

33599
33141

30084
32797

32850
34236

31593
32492.8

1101.860227
34236

30084

16
4

50
544742

537837
527100

531052
532858

515492
531822

525789
529971

529825
530648.8

7237.30835
544742

515492

16
4

100
1026870

1024112
1014132

1031061
1026994

1010417
1022020

1023185
1030997

1020298
1023008.6

6374.678128
1031061

1010417

16
4

150
1490277

1498629
1473104

1467106
1476642

1450666
1445513

1467752
1496848

1481213
1474775

16999.74423
1498629

1445513

16
4

200
1923636

1930854
1915804

1934345
1921354

1896057
1916483

1938083
1915276

1926634
1921852.6

11405.63396
1938083

1896057

16
4

250
2380388

2401464
2342228

2356491
2353881

2351412
2355876

2356229
2353930

2359873
2361177.2

16212.70384
2401464

2342228

University of Washington Bothell 155

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
5

1
183881

187696
175511

178191
180293

184754
181173

190181
189632

183463
183477.5

4574.57063
190181

175511

1
5

50
187693

185997
175879

179343
174615

175848
185939

176354
179834

176495
179799.7

4682.673319
187693

174615

1
5

100
176081

185661
187930

174431
178317

182318
173925

178546
180034

185853
180309.6

4709.88047
187930

173925

1
5

150
185133

180718
177742

186260
177901

181593
178129

183394
180531

186215
181761.6

3177.869481
186260

177742

1
5

200
177711

177246
179488

176596
184112

185305
179646

182493
182451

178667
180371.5

2871.750311
185305

176596

1
5

250
184738

181228
182294

180234
183853

186068
174820

183152
183427

186683
182649.7

3223.434102
186683

174820

2
5

1
300888

346740
385568

302489
357521

259625
387619

279217
349700

261871
323123.8

45976.22384
387619

259625

2
5

50
260510

288783
318025

264342
254874

259178
260087

264717
249748

253615
267387.9

19656.41132
318025

249748

2
5

100
331771

287044
279582

398483
307820

254792
265719

369444
279927

263041
303762.3

45850.80822
398483

254792

2
5

150
362490

252710
363281

264218
249527

263671
358522

258076
286752

251410
291065.7

47131.97148
363281

249527

2
5

200
392016

279250
255038

299871
282874

263327
271332

338851
282409

399334
306430.2

49650.5591
399334

255038

2
5

250
400820

258476
261967

338084
259003

259478
299646

277715
351906

298713
300580.8

46149.60896
400820

258476

4
5

1
192888

202139
166627

228381
196675

149314
224547

191799
235962

236417
202474.9

27897.21136
236417

149314

4
5

50
173477

190310
207335

232171
198914

145173
203049

222682
177337

233533
198398.1

26513.20948
233533

145173

4
5

100
210576

189490
187529

165696
173161

140118
169295

236038
181687

165315
181890.5

25221.41499
236038

140118

4
5

150
222054

224569
232184

210726
234796

143878
201041

162447
228342

171254
203129.1

30893.87061
234796

143878

4
5

200
192690

174264
170361

226973
229520

144282
231397

162729
166236

223641
192209.3

31248.31249
231397

144282

4
5

250
171625

190224
194782

183221
229147

158839
212933

190750
230860

163506
192588.7

23960.28306
230860

158839

8
5

1
124242

228664
110370

183149
195561

118077
129947

187642
213823

191828
168330.3

41106.90467
228664

110370

8
5

50
199191

213624
202432

193878
233093

117099
130560

184017
195517

228072
189748.3

36099.74328
233093

117099

8
5

100
182559

229703
220380

189971
224048

129443
195784

199932
207216

195119
197415.5

26992.32517
229703

129443

8
5

150
186029

230953
115869

179371
178359

123778
220904

170163
227372

186855
181965.3

37325.22092
230953

115869

8
5

200
228917

134874
174329

180853
201400

111245
201694

181536
116569

228845
176026.2

40461.99512
228917

111245

8
5

250
230417

229005
172826

197454
231455

130093
117658

231797
118566

118712
177798.3

49486.49576
231797

117658

16
5

1
152272

140771
143065

143104
146458

108538
146045

105088
143641

136325
136530.7

15373.94069
152272

105088

16
5

50
142899

148860
139071

143084
141696

115169
137401

146312
140743

141785
139702

8753.166593
148860

115169

16
5

100
143535

145533
140484

141355
143006

110835
116782

144356
148333

119904
135412.3

13136.52278
148333

110835

16
5

150
169681

149650
139770

147962
150890

104630
148562

137072
142778

144832
143582.7

15465.27966
169681

104630

16
5

200
112729

135649
155682

155460
142059

115448
119530

137503
138983

149520
136256.3

14937.81528
155682

112729

16
5

250
144702

140113
140074

149558
136450

110654
145540

141876
133733

141541
138424.1

10189.69561
149558

110654

University of Washington Bothell 156

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
6

1
275899

272211
256943

242628
345882

351429
266064

319016
243704

262988
283676.4

38257.5839
351429

242628

1
6

50
257118

351961
353099

245261
263488

252962
260158

394863
274678

349693
300328.1

52532.15027
394863

245261

1
6

100
386029

260106
306959

262180
258674

233071
251410

253034
257158

243908
271252.9

42359.43174
386029

233071

1
6

150
264317

294333
296803

234163
322451

382659
360263

259009
256427

394651
306507.6

53602.70631
394651

234163

1
6

200
352805

257063
255792

252355
258408

252546
264155

246152
262473

272266
267401.5

29280.4089
352805

246152

1
6

250
245738

243875
263397

249351
255986

274877
258672

303860
258553

260646
261495.5

16526.97041
303860

243875

2
6

1
208341

200588
192572

222325
214073

179994
211496

192927
214460

208611
204538.7

12170.52377
222325

179994

2
6

50
200904

185586
195939

204902
205680

177407
201552

214085
190330

193001
196938.6

10204.78866
214085

177407

2
6

100
207589

177338
222668

189491
176318

184028
195111

213900
187751

221845
197603.9

16728.17914
222668

176318

2
6

150
205035

209209
219466

199280
203976

211484
185713

203709
188522

202636
202903

9537.217802
219466

185713

2
6

200
201865

190989
193688

181399
223962

187615
182707

206136
192248

170568
193117.7

14097.71081
223962

170568

2
6

250
190699

205600
214830

195593
207796

209418
204427

183966
199101

226596
203802.6

11605.77755
226596

183966

4
6

1
111003

105687
96028

106696
98324

105703
93774

104544
106630

83341
101173

7851.65757
111003

83341

4
6

50
106094

92535
111705

115648
139117

139979
110857

141152
97345

98671
115310.3

17547.97446
141152

92535

4
6

100
96067

91450
109893

100834
94344

106584
108975

103622
139247

105784
105680

12677.95157
139247

91450

4
6

150
102920

93477
98235

94663
104462

115673
137974

136838
94572

94481
107329.5

16340.12503
137974

93477

4
6

200
96046

97393
123823

134304
103546

99652
99178

89821
112898

105114
106177.5

13017.71713
134304

89821

4
6

250
102980

84307
108421

113008
95281

111014
104441

101351
101685

101834
102432.2

7793.866855
113008

84307

8
6

1
101652

99280
96449

97447
96822

96380
97523

96518
99637

89183
97089.1

3102.33333
101652

89183

8
6

50
99759

97177
103719

97585
100948

91275
100747

103348
100079

97664
99230.1

3406.137327
103719

91275

8
6

100
98829

94283
98227

98350
97806

96844
93838

92493
97850

98264
96678.4

2152.360434
98829

92493

8
6

150
98472

97707
98324

98025
101626

98216
98018

94745
104105

91250
98048.8

3271.29677
104105

91250

8
6

200
100808

98586
100488

98029
107282

94967
94123

97118
98172

96005
98557.8

3556.418305
107282

94123

8
6

250
99813

100894
97278

98148
101090

101235
95669

101224
97495

100082
99292.8

1895.333364
101235

95669

16
6

1
60753

59855
57606

60053
85315

55020
61293

65541
57648

62219
62530.3

8067.080749
85315

55020

16
6

50
56475

60310
57684

75065
52682

55518
61223

62310
64290

61283
60684

5836.820299
75065

52682

16
6

100
59161

58746
63472

63560
58926

57582
59395

72785
63735

58906
61626.8

4318.675139
72785

57582

16
6

150
59651

58211
60248

56981
61353

58437
60551

61629
76083

62462
61560.6

5099.986435
76083

56981

16
6

200
61481

59027
58612

60266
59762

56037
71231

57077
60459

59135
60308.7

3944.421911
71231

56037

16
6

250
58553

58062
57724

58551
60773

54074
57288

57402
62350

57583
58236

2078.374653
62350

54074

University of Washington Bothell 157

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Agents Baseline Test R
esults (256 Places, 256 Agents, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
7

1
181610

168719
178365

167208
178735

176168
169793

166885
180052

183518
175105.3

6011.906687
183518

166885

1
7

50
172226

177811
180999

174513
185014

168507
166844

169627
176430

181869
175384

5808.650256
185014

166844

1
7

100
189224

179770
171082

177916
166736

158956
167325

167261
175207

175089
172856.6

8046.983089
189224

158956

1
7

150
166802

173607
179909

172677
189996

169111
171761

176353
172692

169199
174210.7

6350.376761
189996

166802

1
7

200
169895

169331
170750

189024
175665

170453
167503

164839
169542

175899
172290.1

6408.310315
189024

164839

1
7

250
167298

178222
171265

179510
171128

173919
168709

184850
170138

170185
173522.4

5307.944898
184850

167298

2
7

1
285149

287398
266723

292112
276324

265218
289667

289140
285975

292277
282998.3

9538.134996
292277

265218

2
7

50
255447

277961
269026

310858
274675

261937
288394

271907
289379

290678
279026.2

15371.2007
310858

255447

2
7

100
288828

269964
294967

287003
256017

285079
269090

266521
292117

288067
279765.3

12508.98631
294967

256017

2
7

150
259973

259384
271142

269881
300608

271354
279621

290403
293044

287928
278333.8

13490.754
300608

259384

2
7

200
279209

285137
265753

289213
265432

270073
279237

285151
262025

285272
276650.2

9441.614055
289213

262025

2
7

250
250976

281281
288724

275891
274846

268454
291162

276721
257960

261350
272736.5

12402.58557
291162

250976

4
7

1
154250

123822
139656

123695
132243

132589
143777

137098
150033

128820
136598.3

9891.818377
154250

123695

4
7

50
139509

135806
120000

132233
154256

114575
147777

153087
130333

128522
135609.8

12617.56426
154256

114575

4
7

100
124512

131793
130331

129723
149555

123214
137900

125454
155529

155423
136343.4

12002.97777
155529

123214

4
7

150
146842

129295
134141

149157
133886

132938
127640

124641
133079

142912
135453.1

7779.118388
149157

124641

4
7

200
115955

150481
138037

132457
139749

136904
129631

142376
125853

121633
133307.6

9803.955724
150481

115955

4
7

250
128414

131348
129156

156889
125087

127637
133224

112252
153499

138766
133627.2

12572.39092
156889

112252

8
7

1
100910

107586
104300

113069
108460

104453
105226

102419
114671

112452
107354.6

4490.176348
114671

100910

8
7

50
104955

108340
108290

110133
104975

112940
105931

108852
107353

111034
108280.3

2478.313703
112940

104955

8
7

100
105166

116018
108534

109223
108403

105844
103624

106666
105508

109399
107838.5

3282.482056
116018

103624

8
7

150
98009

98067
105147

106179
103384

99507
106844

110924
108693

108817
104557.1

4425.799034
110924

98009

8
7

200
105368

98697
100620

107309
112366

100859
106254

109913
104673

114351
106041

4880.638852
114351

98697

8
7

250
111217

111595
104427

105081
104069

115505
104879

113996
108980

112548
109229.7

4105.527129
115505

104069

16
7

1
68522

67939
63989

68340
67321

63231
84657

66355
66858

64543
68175.5

5768.821478
84657

63231

16
7

50
65821

66853
69610

71466
80457

65493
91590

64665
64116

70260
71033.1

8233.694365
91590

64116

16
7

100
66148

68850
65876

75310
71140

65945
71606

88007
65244

64992
70311.8

6728.039816
88007

64992

16
7

150
64904

64128
68956

74531
65065

65983
76587

62695
72349

65600
68079.8

4553.215629
76587

62695

16
7

200
68031

66424
67263

66550
67070

62650
67881

74485
69993

72624
68297.1

3180.533491
74485

62650

16
7

250
65198

68748
62374

77278
67062

62906
73972

64320
67435

70790
68008.3

4585.655549
77278

62374

University of Washington Bothell 158

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

I Places Baseline Results: Iterations

Places Baseline Test Results (256 Places, Time in Microseconds)

Hosts Test 
Type Iterations Time  

(Run 1)
Time  

(Run 2)
Time  

(Run 3)
Time  

(Run 4)
Time  

(Run 5)
Time  

(Run 6)
Time  

(Run 7)
Time  

(Run 8)
Time  

(Run 9)
Time  

(Run 10)
Time

(Average)
Time  

(St. Dev)
Time  
(Max)

Time  
(Min)

1 1 1 1251863 1341601 1297171 1282954 1291578 1221523 1635269 1354330 1199359 1331042 1320669 115218.5511 1635269 1199359
1 1 10 1283905 1215949 1280625 1690915 1229687 1428037 1342395 1230291 1225108 1246060 1317297.2 139296.096 1690915 1215949
1 1 50 1429693 1341308 1323571 1336843 1348973 1325617 1392257 1430222 1453402 1317051 1369893.7 48923.35819 1453402 1317051
1 1 100 1492678 1486125 1470677 1497651 1464013 1601255 1472693 1494560 1487491 1523147 1499029 37572.88751 1601255 1464013
1 1 200 1775434 1780687 1882329 1996444 1976983 1828562 1832835 1786399 1786421 1797472 1844356.6 77628.85073 1996444 1775434
1 1 500 2645416 2633441 2726285 2880429 2695066 2673043 2972950 2629282 2631703 2674104 2716171.9 111188.3899 2972950 2629282
1 1 1000 4157837 4112822 4118991 4158759 4108456 4160057 4123765 4124023 4122144 4102545 4128939.9 20651.10892 4160057 4102545
1 1 10000 30507485 30518838 30522620 30558411 30537812 30531069 30574195 30513888 30518940 30550949 30533420.7 20523.89286 30574195 30507485
2 1 1 1036620 1071539 969164 950486 912302 971725 879466 1067418 930579 981159 977045.8 61098.85455 1071539 879466
2 1 10 908396 1065282 1059774 1019467 855866 1027672 870709 927305 863141 1042909 964052.1 82337.75305 1065282 855866
2 1 50 905377 1137839 1010448 1046942 1121036 973176 1019162 947683 917814 979697 1005917.4 74535.82984 1137839 905377
2 1 100 939595 1181955 1033492 985549 1210290 1147030 1056496 962471 948217 1259478 1072457.3 112266.0094 1259478 939595
2 1 200 1333787 1347702 1313068 1142922 1205500 1225124 1145686 1043449 1308389 1259909 1232553.6 94136.44317 1347702 1043449
2 1 500 1536561 1931565 1933536 1656128 1429456 1649151 1451311 1493856 1659399 1847957 1658892 179877.9459 1933536 1429456
2 1 1000 2205277 2703695 2243005 2258103 2354938 2267921 2255912 2463173 2216009 2229477 2319751 147542.9686 2703695 2205277
2 1 10000 15970304 16392578 15433893 15479460 15408289 15555518 15462141 15521562 15378847 15480453 15608304.5 305585.7053 16392578 15378847
4 1 1 753059 648173 751652 697859 731043 732866 785817 688371 777749 651036 721762.5 46285.80513 785817 648173
4 1 10 696206 781253 668443 743059 761019 786843 684343 729792 736974 737191 732512.3 37475.12074 786843 668443
4 1 50 820904 718052 734336 695374 790438 816249 718433 763669 793917 704666 755603.8 44894.0311 820904 695374
4 1 100 820619 834829 728687 784571 752964 765465 856219 891329 810875 887054 813261.2 52731.85415 891329 728687
4 1 200 916693 845872 714037 970301 971297 844656 887456 970850 1030661 814700 896652.3 89606.12454 1030661 714037
4 1 500 1197516 1228856 1190400 1202865 1323237 1228119 1339508 1294447 1275945 1059681 1234057.4 76914.21277 1339508 1059681
4 1 1000 1658082 1516751 1326552 1558392 1521660 1261488 1157706 1776880 1342997 1318218 1443872.6 183341.48 1776880 1157706
4 1 10000 7896016 8075371 7798121 8060173 7833418 8019348 8037106 7867756 7780125 7909376 7927681 105884.8273 8075371 7780125
8 1 1 666234 628695 654272 663456 668986 656278 671274 645332 707860 682097 664448.4 20202.59603 707860 628695
8 1 10 655314 666519 667968 687522 659779 664252 674140 682054 686918 697724 674219 13098.59388 697724 655314
8 1 50 688055 694022 724673 693010 714394 688803 695697 714638 739329 705920 705854.1 16249.60064 739329 688055
8 1 100 753446 726306 745581 760599 759886 747425 752206 732191 731423 720110 742917.3 13668.97249 760599 720110
8 1 200 844509 815580 839303 827413 829614 785939 843602 843120 849002 830964 830904.6 17788.13556 849002 785939
8 1 500 1022498 1093787 1084006 1087165 1068849 1089610 1060024 1085738 1058629 1085235 1073554.1 20691.15113 1093787 1022498
8 1 1000 1234270 1267644 1338089 1256091 1293205 1338831 1286063 1292706 1231838 1389825 1292856.2 47698.87516 1389825 1231838
8 1 10000 4470845 4412800 4294733 4522646 4362018 4287909 4450755 4387530 4559983 4347141 4409636 86893.46429 4559983 4287909
16 1 1 511577 504893 488597 499868 497239 512513 499717 484936 486554 490436 497633 9462.847394 512513 484936
16 1 10 496385 503696 503554 490127 519505 512650 489197 511825 496978 507013 503093 9468.298728 519505 489197
16 1 50 520751 526134 538573 546273 531573 517816 518737 525676 526275 529018 528082.6 8445.998262 546273 517816
16 1 100 544155 561910 572708 545146 564000 561428 538553 554968 554461 553484 555081.3 9855.87846 572708 538553
16 1 200 585222 595474 605927 591489 583062 596786 599797 601757 613761 597929 597120.4 8703.605623 613761 583062
16 1 500 735440 733121 749594 724044 743337 719925 726949 723685 727487 743746 732732.8 9528.314434 749594 719925
16 1 1000 959788 950549 968020 958557 965024 958559 945352 960447 953121 950924 957034.1 6630.072043 968020 945352
16 1 10000 2876661 2856580 2838700 2808409 2908021 2914767 2887688 2824798 2882572 2889374 2868757 33647.18421 2914767 2808409

University of Washington Bothell 159

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
2

1
103863

108108
98657

107620
104334

97779
98209

106767
107003

99501
103184.1

4014.385767
108108

97779
1

2
10

120227
108039

131620
102046

104094
101377

101384
124428

105871
101430

110051.6
10588.83415

131620
101377

1
2

50
222628

223181
244225

237813
246030

222621
239483

226509
223495

223095
230908

9270.992719
246030

222621
1

2
100

381144
375644

380458
375643

373250
381620

374819
373920

372073
375579

376415
3245.5056

381620
372073

1
2

200
707355

662955
698878

704867
709169

674143
677595

669680
724731

690197
691957

19199.31962
724731

662955
1

2
500

1548900
1547801

1569108
1550793

1577626
1556869

1552625
1566156

1577474
1551864

1559921.6
11063.40733

1577626
1547801

1
2

1000
3020422

3046863
3028358

3019391
3022748

3032390
3022256

3017386
3020335

3023999
3025414.8

8294.068179
3046863

3017386
1

2
10000

29425615
29417319

29435782
29430159

29442054
29430098

29425594
29442562

29421752
29427725

29429866
7804.124294

29442562
29417319

2
2

1
105685

100027
120105

133282
112931

100652
111709

124533
124174

130021
116311.9

11294.64049
133282

100027
2

2
10

119625
141812

154902
154937

161684
133651

142695
146186

173559
157357

148640.8
14493.03455

173559
119625

2
2

50
195830

189246
278008

273274
295123

225279
264386

290837
291651

290565
259419.9

38686.39936
295123

189246
2

2
100

266727
284736

359005
352718

331375
283160

304556
464874

430955
405632

348373.8
64015.71307

464874
266727

2
2

200
427492

421124
444894

423480
434793

392002
397558

410138
451853

403294
420662.8

18926.56689
451853

392002
2

2
500

884666
896974

834852
842731

824282
838568

849634
824964

837867
859512

849405
23116.61195

896974
824282

2
2

1000
1678592

1686068
1578921

1581352
1567994

1565392
1601273

1587136
1588459

1557836
1599302.3

43210.88483
1686068

1557836
2

2
10000

14787413
15619499

14815962
14769695

14772602
14774759

14811910
14780973

14792318
14776720

14870185.1
250228.5644

15619499
14769695

4
2

1
102286

93566
111037

114528
114728

113130
116458

112430
111966

108441
109857

6610.695879
116458

93566
4

2
10

128845
127738

129691
121611

127069
123645

128977
126616

125102
116122

125541.6
3952.369219

129691
116122

4
2

50
206208

211407
198752

208114
206360

193847
206378

206936
204397

206531
204893

4751.026016
211407

193847
4

2
100

283844
320869

299900
297335

281197
280525

285697
289775

291847
285895

291688.4
11489.96988

320869
280525

4
2

200
451224

458672
477024

457407
427938

461139
459881

469400
476111

447762
458655.8

13726.72408
477024

427938
4

2
500

537757
856925

746250
643228

751323
618743

722506
589268

492314
578202

653651.6
107145.5557

856925
492314

4
2

1000
1069952

1051675
1037722

822338
1031387

821954
1070263

1052829
1055478

846033
985963.1

102847.9157
1070263

821954
4

2
10000

7559831
7519951

7540157
7448340

7551495
7468522

7468317
7495805

7440390
7481019

7497382.7
40949.07704

7559831
7440390

8
2

1
109727

112662
116084

112907
114776

116333
115320

116091
115738

114497
114413.5

1982.525019
116333

109727
8

2
10

117511
122580

122738
121809

123235
122390

122766
120185

121533
120591

121533.8
1632.694019

123235
117511

8
2

50
162502

158502
161934

160106
165066

160275
158871

158178
173912

157447
161679.3

4630.885165
173912

157447
8

2
100

202257
205313

208812
206952

209636
203110

205217
206196

218374
210976

207684.3
4416.192411

218374
202257

8
2

200
303013

304915
296995

294904
292210

296381
303427

296122
299084

296799
298385

3921.763838
304915

292210
8

2
500

557181
566113

560347
549197

553748
560224

571189
548472

553764
549272

556950.7
7213.614268

571189
548472

8
2

1000
878739

883298
900654

900546
895008

899278
900176

900084
904718

900110
896261.1

7997.937415
904718

878739
8

2
10000

3997497
4026541

3963667
3945498

3998462
3946632

3997380
4013446

4046461
4009181

3994476.5
31586.76547

4046461
3945498

16
2

1
160115

156782
157939

156064
158346

153978
157781

165833
158070

153448
157835.6

3284.264703
165833

153448
16

2
10

169010
161360

162910
160270

159634
159218

167942
161560

163624
158437

162396.5
3405.427528

169010
158437

16
2

50
177555

180622
184503

180318
154315

180066
157559

176279
181791

179168
175217.6

9894.934827
184503

154315
16

2
100

203727
201007

206743
202250

205711
204869

210707
178066

206508
197167

201675.5
8601.191572

210707
178066

16
2

200
246604

246521
259590

257887
244255

231678
246196

246175
245447

236523
246087.6

7905.071008
259590

231678
16

2
500

382911
373646

387375
382836

374689
384377

382693
377387

385314
370838

380206.6
5333.663191

387375
370838

16
2

1000
584799

598098
617595

600759
607912

596975
582012

597740
611143

602741
599977.4

10377.61363
617595

582012
16

2
10000

2324556
2332681

2294087
2324586

2283713
2337046

2327701
2305227

2311964
2335242

2317680.3
17326.35292

2337046
2283713

University of Washington Bothell 160

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
3

1
55085

54850
61568

58581
53497

53487
61478

56329
53719

58032
56662.6

2957.404443
61568

53487
1

3
10

71474
74558

73365
75746

59610
58033

78035
74810

73479
75313

71442.3
6524.380523

78035
58033

1
3

50
197587

175392
197703

199785
191970

203236
202987

197827
203404

183879
195377

8735.261461
203404

175392
1

3
100

333724
323082

330937
322524

326760
322438

332696
328907

332331
322741

327614
4425.343331

333724
322438

1
3

200
649752

629463
654450

620101
617045

622383
625854

625230
619203

617541
628102.2

12600.79738
654450

617045
1

3
500

1500753
1506529

1498462
1505855

1504053
1499672

1498787
1499970

1503853
1501305

1501923.9
2781.774666

1506529
1498462

1
3

1000
2968366

2965939
2969338

2968014
2966571

2971889
2970553

2985119
2973705

2978977
2971847.1

5726.746187
2985119

2965939
1

3
10000

29390250
29413462

29369216
29378407

29373560
29379949

29372954
29366066

29369155
29384568

29379758.7
13292.01758

29413462
29366066

2
3

1
65731

54341
56125

67312
57171

55588
67835

42331
34044

55791
55626.9

10171.47464
67835

34044
2

3
10

103412
71382

58209
105494

82509
78365

86748
77611

68302
95287

82731.9
14502.74909

105494
58209

2
3

50
120314

122561
254552

107830
252655

127967
224724

143146
124924

117263
159593.6

56371.87939
254552

107830
2

3
100

197106
203422

197564
200457

182498
184345

220828
183473

193824
182726

194624.3
11541.78129

220828
182498

2
3

200
330209

366839
340864

351100
351817

343357
331731

336871
361131

325726
343964.5

12893.11317
366839

325726
2

3
500

788615
829446

776038
778547

787820
772819

785138
784651

808276
766121

787747.1
17577.44871

829446
766121

2
3

1000
1515861

1609894
1514608

1513974
1504619

1525922
1505168

1505765
1511579

1510575
1521796.5

29975.30206
1609894

1504619
2

3
10000

14773835
15028424

14742780
14763925

14727824
14712402

14723805
14717414

14721925
14716580

14762891.4
90681.14198

15028424
14712402

4
3

1
46029

43943
50381

46733
47728

48956
43759

48390
38871

41312
45610.2

3430.760639
50381

38871
4

3
10

55836
61108

64835
61639

62438
57696

59006
64018

59804
54584

60096.4
3198.331884

64835
54584

4
3

50
139474

140172
144836

148260
136745

133337
139244

140535
134699

131906
138920.8

4793.076482
148260

131906
4

3
100

234528
223427

229532
140839

120394
226407

233005
232661

226531
210835

207815.9
39387.93489

234528
120394

4
3

200
190157

374508
186666

194366
395096

230832
202794

276627
196937

229859
247784.2

73293.70599
395096

186666
4

3
500

437144
464752

411778
425612

427090
423530

426868
424326

417985
432801

429188.6
13594.07553

464752
411778

4
3

1000
775709

780898
784098

772732
770286

782470
790913

779027
787817

771271
779522.1

6666.007447
790913

770286
4

3
10000

7415853
7470582

7407169
7409516

7389533
7384118

7406283
7373787

7380601
7384176

7402161.8
26539.52714

7470582
7373787

8
3

1
38348

38487
41699

45649
39543

39292
40480

40612
43177

40144
40743.1

2138.298878
45649

38348
8

3
10

47535
47209

52729
44685

47025
47158

44852
42344

46651
48302

46849
2577.157271

52729
42344

8
3

50
86708

85178
88167

88649
85824

88656
84190

88962
84280

86595
86720.9

1736.097661
88962

84190
8

3
100

132507
133731

128337
140651

130490
132270

130509
131719

133956
134217

132838.7
3128.460805

140651
128337

8
3

200
221466

220263
221182

222837
223225

224797
222562

222415
221334

231213
223129.4

2950.447464
231213

220263
8

3
500

446456
412952

317077
465287

464608
451059

460168
459679

456996
450789

438507.1
42927.39915

465287
317077

8
3

1000
689892

698273
485011

448286
677541

764837
512423

814282
743839

774649
660903.3

124437.9056
814282

448286
8

3
10000

3778478
3979690

3754261
3743102

3753009
3806828

3777580
3787625

3742980
3819508

3794306.1
66557.75033

3979690
3742980

16
3

1
39228

40735
38476

37067
37131

37562
38957

44496
35364

41349
39036.5

2481.272224
44496

35364
16

3
10

48671
48069

42121
42353

47171
45550

43354
40895

51189
43907

45328
3181.019711

51189
40895

16
3

50
64448

86460
66218

62414
72798

63021
64902

63312
62218

64498
67028.9

7095.199736
86460

62218
16

3
100

82644
85498

87460
94281

88805
83842

87057
87269

88111
82836

86780.3
3253.497135

94281
82644

16
3

200
134113

137013
134115

133864
134564

132573
132770

135974
130838

131384
133720.8

1815.181357
137013

130838
16

3
500

273377
277993

268186
273345

266820
272663

284297
268594

271435
268454

272516.4
5044.635412

284297
266820

16
3

1000
490259

502539
497550

484014
491771

486525
484170

495444
493973

490343
491658.8

5633.405751
502539

484014
16

3
10000

2025061
2040630

2043532
1942157

1942944
1989703

1981098
1951825

1943181
1976086

1983621.7
38310.60025

2043532
1942157

University of Washington Bothell 161

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

Iterations
Tim

e 
(R

un 1)
Tim

e 
(R

un 2)
Tim

e 
(R

un 3)
Tim

e 
(R

un 4)
Tim

e 
(R

un 5)
Tim

e 
(R

un 6)
Tim

e 
(R

un 7)
Tim

e 
(R

un 8)
Tim

e 
(R

un 9)
Tim

e 
(R

un 10)
Tim

e
(Average)

Tim
e 

(St. D
ev)

Tim
e 

(M
ax)

Tim
e 

(M
in)

1
4

1
126393

107890
130175

119130
128989

126184
127825

125751
122569

123816
123872.2

6134.989532
130175

107890
1

4
10

148528
121164

138175
128609

129776
136353

138813
147961

154304
131118

137480.1
9814.376398

154304
121164

1
4

50
257767

224147
232015

237875
244644

229812
229940

234773
248392

221699
236106.4

10690.64082
257767

221699
1

4
100

394315
418448

396220
409815

376435
417663

370058
386908

403416
417008

399028.6
16462.04761

418448
370058

1
4

200
685656

672953
683419

685131
661553

673973
662969

696210
659465

698503
677983.2

13313.43411
698503

659465
1

4
500

1541540
1542829

1554770
1547789

1545096
1546709

1560930
1566558

1543911
1539550

1548968.2
8454.470602

1566558
1539550

1
4

1000
3026844

3009494
3018674

3011129
3010428

3008511
3013972

3026023
3007950

3008480
3014150.5

6853.096413
3026844

3007950
1

4
10000

29414859
29428983

29430485
29427039

29426185
29418858

29437914
29420167

29424571
29432638

29426169.9
6534.837526

29437914
29414859

2
4

1
323513

325555
331028

347944
360537

337103
352817

342910
338701

355866
341597.4

12061.87452
360537

323513
2

4
10

347447
348454

341049
357228

366257
338531

333689
356507

348080
360877

349811.9
9834.285957

366257
333689

2
4

50
460640

470376
466315

455418
441475

485078
465673

505058
462146

505381
471756

19711.51451
505381

441475
2

4
100

612344
616492

680998
623596

572261
624776

624300
628612

672819
621338

627753.6
28964.70324

680998
572261

2
4

200
699671

680434
708953

728573
746929

727045
717925

732068
700427

730974
717299.9

18787.33631
746929

680434
2

4
500

1069011
1060732

1089389
1091610

1105364
1093691

1068954
1090406

1073565
1099647

1084236.9
14226.50664

1105364
1060732

2
4

1000
1760121

1769111
1790716

1794802
1792038

1781118
1770240

1773706
1776696

1780443
1778899.1

10619.34594
1794802

1760121
2

4
10000

15249124
15093157

15231844
15098230

15138235
15068578

15124732
15132430

15109330
15117236

15136289.6
55676.00849

15249124
15068578

4
4

1
384167

385256
390866

384709
387759

391095
398711

397683
389000

380567
388981.3

5531.80956
398711

380567
4

4
10

385499
395133

387393
383452

397080
397150

382626
386636

388830
385650

388944.9
5219.001388

397150
382626

4
4

50
425022

456719
442704

453100
438291

403470
468877

441850
430511

440974
440151.8

17170.35712
468877

403470
4

4
100

515027
515296

528370
514317

519965
517986

512022
509872

491399
519213

514346.7
9047.279061

528370
491399

4
4

200
679288

686075
693288

697402
684499

691247
706985

707718
697507

696705
694071.4

8749.491245
707718

679288
4

4
500

951768
950846

983101
976597

959304
938238

965049
944890

944856
939930

955457.9
14540.94434

983101
938238

4
4

1000
1222338

1220190
1222959

1217183
1237465

1222149
1250443

1231042
1240523

1238089
1230238.1

10395.95348
1250443

1217183
4

4
10000

7794475
7787360

7762266
7785188

7761989
7756585

7795246
7775536

7755606
7770170

7774442.1
14535.90415

7795246
7755606

8
4

1
429096

424814
443057

428704
451846

417177
452101

441920
436628

431563
435690.6

10929.95147
452101

417177
8

4
10

431814
412387

454903
452443

460140
418750

428088
436424

441957
438621

437552.7
14710.94953

460140
412387

8
4

50
436153

423934
441006

451243
451526

459001
429457

449282
458808

456940
445735

11846.23195
459001

423934
8

4
100

493555
469206

496176
488003

488099
499700

468376
481267

463399
486232

483401.3
11895.83339

499700
463399

8
4

200
552414

554759
570783

583744
595622

581398
586079

585144
573037

581782
576476.2

13168.02793
595622

552414
8

4
500

780723
757282

787032
787548

765982
776391

772062
784775

762600
765617

774001.2
10335.22099

787548
757282

8
4

1000
996554

1019072
995829

995365
993768

1000272
994188

996622
982317

982885
995687.2

9582.316409
1019072

982317
8

4
10000

4162181
4165000

4177535
4169843

4187474
4176393

4154701
4156278

4175594
4148268

4167326.7
11591.41396

4187474
4148268

16
4

1
442671

447905
459602

456629
467448

452734
447791

446469
449381

453520
452415

6913.405268
467448

442671
16

4
10

441599
448625

464597
466805

439235
449745

453952
448391

457888
455609

452644.6
8519.669174

466805
439235

16
4

50
455436

457221
468905

454854
470081

463108
464225

459684
453637

456788
460393.9

5593.059314
470081

453637
16

4
100

471527
481857

471809
499434

464412
491895

495498
477892

480307
470479

480511
11123.19168

499434
464412

16
4

200
485764

513699
527042

544210
534484

526696
513781

517904
511953

519379
519491.2

14858.54329
544210

485764
16

4
500

613713
649569

654640
664704

650980
645751

637107
647089

657895
644914

646636.2
13127.96265

664704
613713

16
4

1000
781845

787259
795181

811133
791938

788772
784719

785002
779698

800187
790573.4

9012.295193
811133

779698
16

4
10000

2396393
2401529

2394676
2408252

2403412
2385043

2358516
2383489

2355455
2410870

2389763.5
18426.15625

2410870
2355455

University of Washington Bothell 162

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

J Places Baseline Results: Max Time

Places Baseline Test Results (256 Places, Time in Microseconds)

Hosts Test 
Type

Max
Time

Time  
(Run 1)

Time  
(Run 2)

Time  
(Run 3)

Time  
(Run 4)

Time  
(Run 5)

Time  
(Run 6)

Time  
(Run 7)

Time  
(Run 8)

Time  
(Run 9)

Time  
(Run 10)

Time
(Average)

Time  
(St. Dev)

Time  
(Max)

Time  
(Min)

1 1 1 32070 33212 50486 51904 38215 32248 32416 32733 55155 56768 41520.7 10109.12407 56768 32070
1 1 50 1018715 1034104 1043011 1020715 1008647 1007563 1038547 1013007 1215955 1010170 1041043.4 59559.88441 1215955 1007563
1 1 100 2024908 2013618 2020382 2010280 2073415 2042387 2047024 2076336 2156781 2073887 2053901.8 41877.62466 2156781 2010280
1 1 150 2986386 3006215 3003097 3001875 2996766 3043293 3056521 3002152 3145262 3033277 3027484.4 44694.02236 3145262 2986386
1 1 200 3962644 4200560 4000245 3999341 4006951 3975836 4007125 4022087 4036161 4005924 4021687.4 62793.60926 4200560 3962644
1 1 250 4991837 5013961 5042553 5024573 5015647 4992842 4993254 5091065 4977070 4974178 5011698 33368.65458 5091065 4974178
2 1 1 22992 34929 26198 21032 26927 25099 22282 26551 31876 23201 26108.7 4141.705061 34929 21032
2 1 50 766448 686634 765669 748652 795867 683136 710974 745758 755350 776154 743464.2 35964.16015 795867 683136
2 1 100 1351469 1608002 1474270 1619415 1436581 1616053 1400530 1456446 1533737 1337685 1483418.8 101323.4167 1619415 1337685
2 1 150 2270045 2411000 2426394 2084260 2146852 2170546 2319238 2159084 2412915 2120913 2252124.7 125729.4985 2426394 2084260
2 1 200 2760747 2820097 3126672 2776349 2807168 2963925 2989532 2961247 2943230 2755586 2890455.3 117783.8002 3126672 2755586
2 1 250 4269006 3764924 3680121 3571074 3475455 3568704 3547681 3573865 3724154 3824349 3699933.3 216290.6146 4269006 3475455
4 1 1 21628 20148 25321 21280 20529 26183 19460 20780 19377 18552 21325.8 2386.219512 26183 18552
4 1 50 653297 642135 611035 609700 507535 554283 659322 650529 673434 618743 618001.3 49038.01983 673434 507535
4 1 100 1239359 1315308 1302566 1333345 1174023 1262574 1145477 1224013 1328776 1327881 1265332.2 64450.9702 1333345 1145477
4 1 150 1981309 1891482 1863369 2025316 1834360 1904909 1985839 1775044 1829610 2005341 1909657.9 81340.89477 2025316 1775044
4 1 200 2569826 2588021 2567170 2421877 2480862 2482128 2517692 2589482 2613128 2604840 2543502.6 60916.90511 2613128 2421877
4 1 250 3229953 3199167 3206738 3175454 3178932 3080387 3063013 3279825 3346493 3198193 3195815.5 79197.69311 3346493 3063013
8 1 1 16776 18424 17359 17225 16303 17881 17412 18248 17262 15357 17224.7 866.5949515 18424 15357
8 1 50 562499 577307 581592 566733 569130 576126 578181 565871 574765 574411 572661.5 5901.639641 581592 562499
8 1 100 1148558 1140797 1128310 1140012 1131194 1153809 1169415 1112472 1134883 1117550 1137700 16059.52718 1169415 1112472
8 1 150 1691203 1686984 1698492 1696242 1657590 1734012 1685637 1708306 1635395 1665968 1685982.9 26193.7051 1734012 1635395
8 1 200 2230259 2246549 2269993 2242806 2284422 2246556 2290308 2282785 2258177 2294902 2264675.7 21630.32063 2294902 2230259
8 1 250 2807513 2800415 2847801 2851213 2784282 2845481 2832739 2786148 2837396 2779958 2817294.6 27115.92145 2851213 2779958
16 1 1 14253 17669 14847 27911 18544 25383 29331 14784 39651 13764 21613.7 8197.432294 39651 13764
16 1 50 730776 870957 963762 860292 955017 912736 904661 859182 952226 841854 885146.3 66258.33858 963762 730776
16 1 100 1612854 1767155 1745708 1640601 1960989 1734700 1742439 1919506 2003794 1860889 1798863.5 125483.5173 2003794 1612854
16 1 150 2563332 2708529 2556804 2536031 2772747 2786366 2976373 2669663 3036474 2846145 2745246.4 164406.8553 3036474 2536031
16 1 200 3218170 3036357 3447223 3484269 3600222 3708121 3925672 3628601 3773751 3660038 3548242.4 250159.5501 3925672 3036357
16 1 250 4160542 4150150 4184219 4218050 4799649 4564770 4790644 4640685 4603687 5484360 4559675.6 394866.4217 5484360 4150150

University of Washington Bothell 163

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

M
ax

Tim
e

Tim
e 

(R
un 1)

Tim
e 

(R
un 2)

Tim
e 

(R
un 3)

Tim
e 

(R
un 4)

Tim
e 

(R
un 5)

Tim
e 

(R
un 6)

Tim
e 

(R
un 7)

Tim
e 

(R
un 8)

Tim
e 

(R
un 9)

Tim
e 

(R
un 10)

Tim
e

(Average)
Tim

e 
(St. D

ev)
Tim

e 
(M

ax)
Tim

e 
(M

in)
1

2
1

2225
2510

2174
2187

2248
2212

2156
2456

2381
2456

2300.5
128.3684151

2510
2156

1
2

50
97933

84339
95717

88384
86883

84162
85274

98769
93241

86749
90145.1

5423.705992
98769

84162
1

2
100

209992
168925

169382
173228

167756
168586

170367
184597

175852
167431

175611.6
12480.00299

209992
167431

1
2

150
253201

258524
252067

253709
256776

309077
258675

253853
260002

261609
261749.3

16066.70429
309077

252067
1

2
200

335227
398076

342882
338495

340654
335048

336613
400590

335014
337112

349971.1
24804.66999

400590
335014

1
2

250
420775

431801
504108

419211
444563

423873
427067

472268
429133

426041
439884

26040.43132
504108

419211
2

2
1

1950
2420

2389
1838

2404
2113

2250
2562

2379
2343

2264.8
217.0008295

2562
1838

2
2

50
122678

111135
134531

128649
105886

131362
128822

120881
113252

131687
122888.3

9366.523689
134531

105886
2

2
100

236265
257253

244950
241540

249154
234897

253462
271078

265112
260514

251422.5
11584.88612

271078
234897

2
2

150
401893

378008
381504

357488
362739

377152
379276

387534
391648

382586
379982.8

12239.37323
401893

357488
2

2
200

525552
523827

513898
491374

521074
516649

490791
510886

578819
503302

517617.2
23521.23907

578819
490791

2
2

250
582056

622818
619894

636342
658887

581147
594772

592401
634525

665447
618828.9

28978.20268
665447

581147
4

2
1

2599
2426

2238
2034

2178
2359

2476
1810

2290
2178

2258.8
216.1776122

2599
1810

4
2

50
107210

104949
106470

109343
103272

103044
101000

99446
103804

97088
103562.6

3506.238132
109343

97088
4

2
100

213552
205302

191575
193179

199139
211063

201449
205472

208573
206206

203551
6858.301568

213552
191575

4
2

150
308110

311129
306605

299165
330175

320590
312213

321569
294634

304967
310915.7

10221.29065
330175

294634
4

2
200

401308
395027

413159
409844

426483
408406

392971
408408

420769
418701

409507.6
10323.52084

426483
392971

4
2

250
540162

517763
509225

526688
499691

506671
519119

502265
482056

526970
513061

15762.59914
540162

482056
8

2
1

2417
2442

2503
2442

2603
2500

2735
2186

2437
2175

2444
160.0905993

2735
2175

8
2

50
103951

99014
102569

107958
100127

102875
102576

104871
102132

104546
103061.9

2379.40154
107958

99014
8

2
100

212264
216721

201258
197843

198821
200908

203805
208636

205698
202255

204820.9
5767.557862

216721
197843

8
2

150
305241

292181
303431

304546
300036

305887
305209

305911
307347

303818
303360.7

4163.974953
307347

292181
8

2
200

396750
402330

406365
397609

407820
400962

405772
407207

406544
409240

404059.9
4158.483364

409240
396750

8
2

250
497100

502056
511145

509958
507633

492306
500618

501621
509334

534068
506583.9

10820.14142
534068

492306
16

2
1

3956
6989

4240
6383

8789
10104

3937
5301

3861
7832

6139.2
2133.167401

10104
3861

16
2

50
193563

194985
191504

182955
203291

205130
201067

205170
232462

211816
202194.3

12804.54599
232462

182955
16

2
100

358474
372092

397310
363934

393601
394629

408600
408355

415039
424387

393642.1
21074.8353

424387
358474

16
2

150
559598

548933
556140

559807
558715

632228
600612

599122
604185

643600
586294

32501.54988
643600

548933
16

2
200

729834
736297

747025
729167

746853
788540

832092
740738

751568
808313

761042.7
33971.86035

832092
729167

16
2

250
900581

956211
928780

941234
1025653

1008243
1009756

976944
1016123

1062182
982570.7

47716.74196
1062182

900581

University of Washington Bothell 164

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

M
ax

Tim
e

Tim
e 

(R
un 1)

Tim
e 

(R
un 2)

Tim
e 

(R
un 3)

Tim
e 

(R
un 4)

Tim
e 

(R
un 5)

Tim
e 

(R
un 6)

Tim
e 

(R
un 7)

Tim
e 

(R
un 8)

Tim
e 

(R
un 9)

Tim
e 

(R
un 10)

Tim
e

(Average)
Tim

e 
(St. D

ev)
Tim

e 
(M

ax)
Tim

e 
(M

in)
1

3
1

1436
1436

1460
1907

1407
1345

1323
1428

1248
1449

1443.9
167.111011

1907
1248

1
3

50
54935

52103
51622

64768
62261

62163
60994

64328
48722

47998
56989.4

6253.447181
64768

47998
1

3
100

92943
97968

113002
105469

126405
114831

94246
96103

96572
107672

104521.1
10414.30394

126405
92943

1
3

150
140571

145057
142687

139256
154082

155860
143459

142248
147231

164009
147446

7581.712115
164009

139256
1

3
200

211889
186865

188829
241316

232791
193587

185811
189719

184680
195329

201081.6
19529.22075

241316
184680

1
3

250
242472

245661
233864

243334
253403

232650
244978

242699
231431

233379
240387.1

6844.111987
253403

231431
2

3
1

1032
1774

1483
1577

1336
1526

1403
1467

1185
1290

1407.3
198.9422278

1774
1032

2
3

50
63577

86352
87563

68615
52564

85469
70176

67252
67976

70385
71992.9

10650.98522
87563

52564
2

3
100

154060
126534

130454
137518

92538
171118

132739
134131

144996
80223

130431.1
25430.40133

171118
80223

2
3

150
199786

213785
180122

129823
158882

198653
118404

110621
149143

198982
165820.1

35712.53359
213785

110621
2

3
200

272371
259340

270483
248412

211278
195456

255043
251233

305756
209097

247846.9
32010.30175

305756
195456

2
3

250
429837

325368
314688

308724
405134

272900
321995

313199
234655

327831
325433.1

53679.32276
429837

234655
4

3
1

971
989

1085
983

930
1034

815
1051

947
1018

982.3
71.66456586

1085
815

4
3

50
50640

49861
42918

52846
53050

46506
47786

51378
48595

48787
49236.7

2908.843449
53050

42918
4

3
100

97595
92673

96355
89451

96376
89408

96921
84223

108898
90444

94234.4
6370.434023

108898
84223

4
3

150
150658

140478
139129

157420
147921

148674
150394

152231
142252

141837
147099.4

5639.865888
157420

139129
4

3
200

187917
204205

191332
204797

184109
201956

197227
190465

198650
190140

195079.8
6882.879758

204797
184109

4
3

250
225423

230215
231790

241393
242748

208551
216208

231199
255234

220697
230345.8

13001.27864
255234

208551
8

3
1

1114
776

884
800

790
833

951
948

874
929

889.9
96.65345312

1114
776

8
3

50
40187

34503
39658

42395
40950

40859
37375

40283
39787

40072
39606.9

2078.97424
42395

34503
8

3
100

79452
71593

75289
73295

84842
76172

78076
83012

80716
78414

78086.1
3942.066551

84842
71593

8
3

150
123906

108490
117327

112421
114356

118517
115169

114269
118053

116213
115872.1

3876.81115
123906

108490
8

3
200

158642
153114

157455
140720

154431
151152

160074
156578

156879
154421

154346.6
5193.549619

160074
140720

8
3

250
191049

173693
191827

187988
201426

193250
192093

188184
197649

188957
190611.6

6921.37059
201426

173693
16

3
1

1088
1082

1160
1099

1294
1254

1196
1065

1120
1152

1151
72.77087329

1294
1065

16
3

50
54243

57936
63514

44510
56969

89708
71277

61048
68849

61220
62927.4

11418.44645
89708

44510
16

3
100

117822
103937

108394
109601

118047
129578

143569
125913

113829
133750

120444
11902.8908

143569
103937

16
3

150
170065

172461
169191

163895
183097

194887
173088

177278
180979

206573
179151.4

12320.82387
206573

163895
16

3
200

233530
227710

227552
215442

239107
246756

259025
279083

260688
246735

243562.8
17981.2227

279083
215442

16
3

250
268075

272861
283417

279767
286141

315528
321520

318841
302464

320363
296897.7

20039.62545
321520

268075

University of Washington Bothell 165

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

Places Baseline Test R
esults (256 Places, Tim

e in M
icroseconds)

H
osts

Test 
Type

M
ax

Tim
e

Tim
e 

(R
un 1)

Tim
e 

(R
un 2)

Tim
e 

(R
un 3)

Tim
e 

(R
un 4)

Tim
e 

(R
un 5)

Tim
e 

(R
un 6)

Tim
e 

(R
un 7)

Tim
e 

(R
un 8)

Tim
e 

(R
un 9)

Tim
e 

(R
un 10)

Tim
e

(Average)
Tim

e 
(St. D

ev)
Tim

e 
(M

ax)
Tim

e 
(M

in)
1

4
1

1254
1483

1410
1421

1455
1412

1458
1260

1417
1508

1407.8
81.37788397

1508
1254

1
4

50
117311

119542
103569

112338
103071

99708
103743

121276
114278

115217
111005.3

7395.749537
121276

99708
1

4
100

210392
205047

205932
246017

202328
209984

242226
215746

237692
220088

219545.2
15576.76602

246017
202328

1
4

150
333688

310695
304249

299720
324547

336535
368113

323517
341246

316813
325912.3

19148.43292
368113

299720
1

4
200

431908
439928

391466
409653

449698
408769

418186
421693

450992
426464

424875.7
17997.22611

450992
391466

1
4

250
579615

503722
543436

594898
547006

529322
506607

541956
597040

545536
548913.8

31117.05434
597040

503722
2

4
1

994
1655

1503
1431

883
1198

945
1046

1038
1366

1205.9
252.4513617

1655
883

2
4

50
303231

308850
287671

282878
316923

305841
286432

297587
281647

298867
296992.7

11366.72844
316923

281647
2

4
100

592853
553996

555570
556752

566064
595136

586432
583884

562419
572850

572595.6
15067.95065

595136
553996

2
4

150
870462

857672
821419

856858
873805

858640
893242

865381
817226

834303
854900.8

22736.72048
893242

817226
2

4
200

1154455
1105127

1130228
1126267

1182039
1104786

1128267
1113600

1097599
1176063

1131843.1
28256.18804

1182039
1097599

2
4

250
1375232

1434777
1367905

1376154
1400890

1419435
1380169

1468186
1375213

1363662
1396162.3

32604.127
1468186

1363662
4

4
1

993
1136

1005
859

920
985

1064
941

899
959

976.1
76.69608856

1136
859

4
4

50
332551

344378
333965

343886
331115

331089
343786

330444
336679

342789
337068.2

5683.571356
344378

330444
4

4
100

612935
628712

589633
625802

624174
602807

612467
611780

622711
632510

616353.1
12449.16825

632510
589633

4
4

150
908647

896422
890037

873203
864238

865665
881705

879614
891246

883811
883458.8

13098.18851
908647

864238
4

4
200

1159985
1125429

1169151
1152167

1147575
1158953

1138980
1160223

1178214
1140637

1153131.4
14739.46005

1178214
1125429

4
4

250
1420686

1446000
1421993

1430394
1443470

1431105
1422028

1466492
1456538

1443329
1438203.5

14811.6583
1466492

1420686
8

4
1

889
881

779
758

885
880

848
853

874
871

851.8
43.71452848

889
758

8
4

50
379301

379041
374123

367359
369033

378593
376116

372713
354249

364339
371486.7

7548.516464
379301

354249
8

4
100

644101
672382

644411
622758

643207
645756

648227
648093

645124
639694

645375.3
11384.91407

672382
622758

8
4

150
902402

952922
919073

914150
915828

922033
919805

925571
912386

906705
919087.5

13067.69189
952922

902402
8

4
200

1186160
1216315

1193712
1169592

1204281
1198420

1199330
1195790

1203493
1202711

1196980.4
11786.76089

1216315
1169592

8
4

250
1469161

1506878
1482382

1422627
1459535

1440388
1456052

1478853
1464007

1469807
1464969

21909.72074
1506878

1422627
16

4
1

1159
1160

7783
1242

1146
3567

1183
1138

1030
1096

2050.4
2043.491776

7783
1030

16
4

50
414953

400701
402067

393106
399509

396697
390290

403713
385900

407080
399401.6

8002.87616
414953

385900
16

4
100

670216
662295

674298
674523

662590
679510

659489
665428

669454
679948

669775.1
6883.542249

679948
659489

16
4

150
956462

950088
963933

928605
927229

948155
966977

937370
910511

969994
945932.4

18592.96925
969994

910511
16

4
200

1221554
1201440

1231961
1224821

1243211
1246227

1229313
1248260

1204411
1238346

1228954.4
15501.42426

1248260
1201440

16
4

250
1477340

1518562
1462244

1476666
1480147

1512176
1490913

1472049
1491021

1497135
1487825.3

16854.79325
1518562

1462244

University of Washington Bothell 166

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

K FluTE Data File Details
1. label la-1.6

The “label” is simply a convenience name that the output will use when referring to results of this FluTE
simulation. In this case, the value (label) used was “la-1.6”

2. R0 1.6
This is the reproductive number assigned to outbreak virus (influenza) being modeled. This can be thought of
as a numerical measure of how transmissable a given disease is - for comparison, the default value is set to 0.1
(so, this represents a fairly nasty flu - and, thus, a bit more computational cycles to deal with its transmission)

3. seed 1
This is simply the value used to seed the random number generator

4. datafile la
This is the prefix to use for the data file names. In this case, the “la” is meant to model “Los Angeles”

5. logfile 0
This value controls how often results are printed to a log file. In this case, the zero value indicates that no log
file was generated

6. individualfile 0
This is a binary value that controls whether or not an individuals file is created as part of the simulation. A zero
value here means that no individuals file was created during the application’s execution

7. prestrategy none
String values can be assigned here to mimic strategies for dealing with outbreaks before the exist. In this case,
no strategies were employed, simulating absolutely zero preparation on the part of the population under test

8. reactivestrategy none
String values can be assigned here to indicate vaccination strategies that can be used during the simulation
(post-outbreak). A value of “none” here indicates that the population has no vaccination strategy in place

9. vaccinationfraction 0.7
This value is used to control the percentage of folks that receive a vaccination. However, since there is no
vaccination strategy being modeled, this value is irrelevant for the simulation that was run

10. responsethreshhold 0.0
This value indicates the percentage of the population that needs to be affected by an outbreak before respon-
sive strategies (vaccinations, etc) are employed. Since the value used in this simulation is 0%, it means that
responsive strategies will begin with the first incidence of infection

11. responsedelay 9
This value tracks how many days to wait before responsive strategies are actually employed. So, while the
responsethreshhold indicates that a responsive strategy should begin on the first infection, this value will delay
actual implementation of countermeasures for 9 days (from first infection)

12. ascertainmentdelay 1
This value represents the number of days that it takes medical personnel to correctly diagnose an incidence of
the influenza being simulated

13. ascertainmentfraction 0.6
This value indicates the percentage of people displaying symptoms of the disease, whom will be diagnosed by
medical personnel. For this simulation, the percentage was set to 60%

14. seedinfected 10
This number represents the initial number of infected people across the entire population. In this case, 10
individuals were infected at the start of the simulation

15. seedinfecteddaily 0
This number indicates whether or not new infected individuals should be introduced to the population each day.
The zero value here indicates that they should only be introduced when the simulation begins

University of Washington Bothell 167

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

16. AVEs 0.3
This is how effective the antiviral is at preventing people from contracting infection. The value for our perfor-
mance test set this to 30%

17. AVEp 0.6
This is how effective the antiviral is at preventing illness from people that have contracted the infection. The
value for our performance test sets this to 60%

18. AVEi 0.62
This is how effective the antiviral is at preventing those infected from further infecting others. The value for our
performance test sets this at 62%

University of Washington Bothell 168

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

List of Figures
1 Use of programmability . 14
2 Parallel Execution with MASS Library . 30
3 General Programmability Comparison . 33
4 Impartial General Programmability Comparison . 34
5 Time to Learn Library: OpenMP/MPI . 36
6 Time to Learn Library: MASS . 37
7 Time to Design the Program: OpenMP/MPI . 38
8 Time to Design the Program: MASS . 39
9 Time to Write the Program: OpenMP/MPI . 40
10 Time to Write the Program: MASS . 41
11 Time to Debug the Program: OpenMP/MPI . 42
12 Time to Debug the Program: MASS . 43
13 Time Summary Between OpenMP/MPI and MASS . 43
14 Difference in Lines of Code . 45
15 Total Lines of Code: OpenMP/MPI . 46
16 Parallel/Distributed-Specific Lines of Code: OpenMP/MPI . 47
17 Total Lines of Code: MASS . 48
18 Parallel/Distributed-Specific Lines of Code: MASS . 49
19 Lines of Code Summary Between OpenMP/MPI and MASS . 49
20 Learning Curve: OpenMP/MPI . 50
21 Learning Curve: MASS . 51
22 Application Suitability: OpenMP/MPI . 52
23 Application Suitability: MASS . 53
24 Difference Between Sequential and Parallel Programs: OpenMP/MPI 54
25 Difference Between Sequential and Parallel Programs: MASS . 55
26 Debugging Difficulty: OpenMP/MPI . 56
27 Debugging Difficulty: MASS . 57
28 Programmability Summary Between OpenMP/MPI and MASS . 58
29 OpenMP/MPI vs MASS Comparison: Call All . 59
30 OpenMP/MPI vs MASS Comparison: Exchange All . 60
31 OpenMP/MPI vs MASS Comparison: Manage All . 61
32 Comparison Summary Between Like Functionality in OpenMP/MPI and MASS 61
33 Difference Summary Between Spring 2014 & Winter 2015 Results 62
34 Students t-Test of Results Between Spring 2014 & Winter 2015 Surveyed Questions (p-levels) 64
35 Agents: callAll (null return value) Performance Chart - Iterations . 66
36 Agents: callAll (null return value) Performance Chart - Max Time 67
37 Agents: Random Migration Performance Chart - Iterations . 68
38 Agents: Random Migration Performance Chart - Max Time . 69
39 Agents: Full Migration Performance Chart - Iterations . 70
40 Agents: Full Migration Performance Chart - Max Time . 71
41 Agents: callAll (with return value) Performance Chart - Iterations 72
42 Agents: callAll (with return value) Performance Chart - Max Time 73
43 Agents: Best Migrate (once) Performance Chart - Iterations . 74
44 Agents: Best Migrate (once) Performance Chart - Max Time . 75
45 Agents: Random Migrate (once) Performance Chart - Iterations . 76
46 Agents: Random Migrate (once) Performance Chart - Max Time . 77

University of Washington Bothell 169

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

47 Agents: Worst Migrate (once) Performance Chart - Iterations . 78
48 Agents: Worst Migrate (once) Performance Chart - Max Time . 79
49 Places: callAll and exchangeAll Performance Chart - Iterations . 80
50 Places: callAll and exchangeAll Performance Chart - Max Time . 81
51 Places: exchangeBoundary, callAll, and store Performance Chart - Iterations 82
52 Places: exchangeBoundary, callAll, and store Performance Chart - Max Time 83
53 Places: callAll Performance Chart - Iterations . 84
54 Places: callAll Performance Chart - Max Time . 85
55 Places: callAll with periodic return Performance Chart - Iterations 86
56 Places: callAll with periodic return Performance Chart - Max Time 87
57 Agent Performance Summary Table . 88
58 Agent Performance Summary Chart . 89
59 Place Performance Summary Table . 90
60 Place Performance Summary Chart . 91
61 Combined General Performance Summary Table . 92
62 Combined General Performance Summary Chart . 92
63 Wave2D Performance using Hybrid OpenMP/MPI . 93
64 Wave2D Performance using Hybrid OpenMP/MPI . 94
65 Wave2D Performance using MASS . 94
66 Wave2D Performance using MASS . 95
67 Wave2D Performance Comparison . 95
68 Wave2D Performance Comparison . 96
69 Sugarscape Performance using Hybrid OpenMP/MPI . 96
70 Sugarscape Performance using Hybrid OpenMP/MPI . 97
71 Sugarscape Performance using MASS . 97
72 Sugarscape Performance using MASS . 98
73 Sugarscape Performance Comparison . 98
74 Sugarscape Performance Comparison . 99
75 FluTE Performance using Hybrid OpenMP/MPI . 100
76 FluTE Performance using Hybrid OpenMP/MPI . 100
77 FluTE Performance using MASS . 101
78 FluTE Performance using MASS . 101
79 FluTE Performance Comparison . 102
80 FluTE Performance Comparison . 102
81 Practical Application Performance Summary . 103
82 OpenMP/MPI Variable Correlation . 104
83 MASS Variable Correlation . 105
84 Two-Sample T-Test Result: OpenMP/MPI - To Learn the Library . 122
85 Two-Sample T-Test Result: MASS - To Learn the Library . 123
86 Two-Sample T-Test Result: OpenMP/MPI - To Design the Program 124
87 Two-Sample T-Test Result: MASS - To Design the Program . 125
88 Two-Sample T-Test Result: OpenMP/MPI - To Write the Program 126
89 Two-Sample T-Test Result: MASS - To Write the Program . 127
90 Two-Sample T-Test Result: OpenMP/MPI - To Debug the Program 128
91 Two-Sample T-Test Result: MASS - To Debug the Program . 129
92 Two-Sample T-Test Result: OpenMP/MPI - Total Lines . 130
93 Two-Sample T-Test Result: MASS - Total Lines . 131
94 Two-Sample T-Test Result: OpenMP/MPI - Parallel-Specific Lines 132

University of Washington Bothell 170

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

95 Two-Sample T-Test Result: MASS - Parallel-Specific Lines . 133
96 Two-Sample T-Test Result: OpenMP/MPI - Learning Curve . 134
97 Two-Sample T-Test Result: MASS - Learning Curve . 135
98 Two-Sample T-Test Result: OpenMP/MPI - Application Suitability 136
99 Two-Sample T-Test Result: MASS - Application Suitability . 137
100 Two-Sample T-Test Result: OpenMP/MPI - Difference Between Parallel and Sequential Algorithms . 138
101 Two-Sample T-Test Result: MASS - Difference Between Parallel and Sequential Algorithms 139
102 Two-Sample T-Test Result: OpenMP/MPI - Debugging Difficulty 140
103 Two-Sample T-Test Result: MASS - Debugging Difficulty . 141
104 Two-Sample T-Test Result: callAll Comparison . 142
105 Two-Sample T-Test Result: exchangeAll Comparison . 143
106 Two-Sample T-Test Result: manageAll Comparison . 144

University of Washington Bothell 171

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

References
[1] Abdulhadi Ali Alghamdi. Performance analysis of hybrid omp/mpi and mass. From PDF attached to email sent

to thesis author, May 2015.

[2] Dieter an Mey. compunity: The community of openmp users, researchers, tool developers and providers. http:
//www.compunity.org/training/faq/index.php, Nov 2012.

[3] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the chapel language. International
Journal of High Performance Computing Applications, 21(3):291–312, 2007.

[4] Narayani Chandrasekaran. Implementation of mass c++ library over cluster of multi-core computing nodes.
CSS596 Capstone Final Report, Computing and Software Systems, University of Washington Bothell, ap-
pearing at http://depts.washington.edu/dslab/MASS/reports/NarayaniChandrasekaran_au12.
docx, December 2012.

[5] DL Chao, ME Halloran, VJ Obenchain, and IM Longini Jr. Flute, a publicly available stochastic influenza
epidemic simulation model. PLoS Comput Biol, 6(1), 2010.

[6] Timothy Chuang. Design and qualitative/quantitative analysis of multi-agent spatial simulation library. Master’s
thesis, University of Washington, 2012.

[7] Timothy Chuang and Munehiro Fukuda. A parallel multi-agent spatial simulation environment for cluster sys-
tems. In Computational Science and Engineering (CSE), 2013 IEEE 16th International Conference on, pages
143–150, Dec 2013.

[8] Wikipedia contributors. Pearson product-moment correlation coefficient. http://en.wikipedia.org/wiki/
Pearson_product-moment_correlation_coefficient, April 2014.

[9] Wikipedia contributors. Sugarscape. http://en.wikipedia.org/wiki/Sugarscape, April 2014.

[10] Wikipedia contributors. Message passing interface. http://en.wikipedia.org/wiki/Message_Passing_
Interface, May 2015.

[11] Wikipedia contributors. Openmp. http://en.wikipedia.org/wiki/OpenMP, April 2015.

[12] J. Emau, T. Chuang, and M. Fukuda. A multi-process library for multi-agent and spatial simulation. In Commu-
nications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on, pages 369–375,
Aug 2011.

[13] The Eclipse Foundation. Eclipse ptp. https://eclipse.org/ptp/, Jan 2015.

[14] Munehiro Fukuda. Css 543 - program 2: Multithreaded schroedingers wave simulation. http://courses.

washington.edu/css543/prog/prog2.pdf, Dec 2013.

[15] Munehiro Fukuda. Css 534 - parallel programming in grid and cloud. http://courses.washington.edu/
css534/, Dec 2015.

[16] Munehiro Fukuda and Distributed Systems Lab Members. Sensor cloud integration: An agent-based workbench
for on-the-fly senor-data analysis. http://depts.washington.edu/dslab/SensorCloud/, April 2012.

[17] Osmond Gunarso. Flute-mass. From PPT presentation provided to Distributed Systems Lab, May 2015.

[18] Jay Hennan. Baseline. MASS Performance Testing Application, Dec 2014.

University of Washington Bothell 172

Critical Mass: Performance and Programmability Evaluation of MASS (Multi-Agent Spatial Simulation) and Hybrid
OpenMP/MPI

[19] Hung Ho. Asynchronous and automatic migration of agents in mass. CSS596 Capstone Final Report, Computing
and Software Systems, University of Washington Bothell, to appear in http://depts.washington.edu/

dslab/MASS, June 2015.

[20] Cameron Hughes and Tracey Hughes. Parallel and distributed programming using C++. Addison-Wesley,
Boston, 2004.

[21] IBM. Dynamic performance monitoring for openmp. http://www.research.ibm.com/actc/projects/

dynaperf2.shtml, Jan 2004.

[22] Somu Jayabalan. Field-based job dispatch and migration. Master’s thesis, University of Washington, 2012.

[23] Prabhanjan Kambadur, Douglas Gregor, and Andrew Lumsdaine. Openmp extensions for generic libraries. In
OpenMP in a New Era of Parallelism, volume 5004, pages 123–133, West Lafayette, IN, USA, May 2008.
Springer-Verlag Berlin Heidelberg. In 4th International Workshop, IWOMP 2008, Proceedings.

[24] Jennifer Kowalsky. Mass c++ updates. CSS497 Capstone Final Report, Computing and Software Systems,
University of Washington Bothell, to appear in http://depts.washington.edu/dslab/MASS, June 2015.

[25] Elad Mazurek and Munehiro Fukuda. A parallelization of orchard temperature predicting programs. In Pro-
ceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pages
179–184, Aug 2011.

[26] Microsoft. Using the hpc cluster debuggers for soa and mpi applications. https://www.microsoft.com/

en-us/download/details.aspx?id=23213, Jan 2015.

[27] Bhargav A. Mistry. Dynamic load balancing in mass. Master’s thesis, University of Washington, 2013.

[28] Chris Rouse. Agents implementation for c++ mass library. CSS497 Capstone Final Report, Computing and
Software Systems, University of Washington Bothell, appearing at http://depts.washington.edu/dslab/
MASS/reports/ChrisRouse_wi14.pdf, Winter 2014.

[29] J. S. Squire and S. M. Palais. Programming and design considerations of a highly parallel computer. In Proceed-
ings of the May 21-23, pages 395–400, Detroit, Michigan (USA), May 1963. Spring Joint Computer Conference.

[30] Cherie Lee Wasous and Munehiro Fukuda. Distributed agent management in a parallel simulation and analysis
environment. Master’s thesis, University of Washington, 2014.

[31] Kathleen Weessies. Finding census tract data: About census tracts. http://libguides.lib.msu.edu/

tracts, May 2015.

[32] Michael Wong, Eduard Ayguad, Justin Gottschlich, Victor Luchangco, Bronis R. de Supinski, Barna Bihari, and
other members of the WG21 SG5 Transactional Memory Sub-Group. Towards transactional memory for openmp.
In Using and Improving OpenMP for Devices, Tasks, and More, volume 8766, pages 130–145, Salvador, Brazil,
September 2014. Springer International Publishing. In 10th International Workshop on OpenMP, IWOMP 2014,
Proceedings.

University of Washington Bothell 173

