	June 1, 2012	[CSS497 WINTER/SPRING 2012 FINAL REPORT]



	[CSS497 WINTER/SPRING 2012 FINAL REPORT]
	June 1, 2012


[bookmark: _Toc318802687]CSS497 Winter/Spring 2012 final report By Dmitry Zavyalov
Contents
Summary	2
Activities for this period	2
Detailed description	2
Sensor Simulator (FakeSensors)	2
Purpose	2
VikingX protocol	2
Design and implementation	3
Configuration file format	3
Delivery	4
Modifications in Connector	4
initSensor() Connector call	5
Sensors matrix support	5
Modifications in Sensor Server (VikingX)	7
Support for sensor aliases	7
Refactoring the main class	8
Separating communication layer from main class	8
Tracing support	8
New UDP listening support	8



[bookmark: _Toc326449748]Summary
[bookmark: _Toc318802688][bookmark: _Toc326449749]Activities for this period
· Gained access to dslab servers/working folders
· Made myself familiar with Connector and VicingX sensor server code base
· Added alias support functionality into VikingX sensor map file
· Refactored VikingX code by moving sensor map file related functionality to separate class
· Was able to run, trace, and debug sensor server code with connector either on local machine and remote server. Note: I am using Eclipse 3.7.1 on local machine.
· Made myself familiar with VikingX sensor UDP protocol.
· Delivered the sensor simulator, which could emulate a number of sensors via playing previously recoded data files. Simulator also able to broadcast pre-configured GPS location information and sensor’s nick name.
· Was able to run sensor simulator, sensor server, and connector based test application on one machine for debugging.
· Implemented sensors matrix support in Connector library, which involves GPS coordinates/location support.
· Refactored VikingX code for separating transport protocol from the main code
· Sensor server now is not depending on listener code; it uses event-driven class to listen for variety of UDP broadcasts from sensors by running threads in the same process
· VikingX supports location data broadcasts (MACID_BROADCAST) from sensors; this information is available for applications and sensors matrix in Connector
[bookmark: _Toc318802690][bookmark: _Toc326449750]Detailed description
[bookmark: _Toc318802691][bookmark: _Toc326449751]Sensor Simulator (FakeSensors)
[bookmark: _Toc318802692][bookmark: _Toc326449752]Purpose
Sensor simulator is designed for imitating a number of VikingX sensor servers in local network by replaying previously recorded files from real sensors. Also, The records can be generated using some mathematical modeling.
[bookmark: _Toc318802693][bookmark: _Toc326449753]VikingX protocol
The protocol is implemented via multicast UDP datagrams sent over the local network. Integer data should be presented in little-endian format. No padding between fields. The header should be sent first following by a payload.
Table 1: Header format
	Field
	Data Type
	Description
	Note

	Length
	16 bit integer
	Header+payload length
	

	FrameType
	8 bit integer
	COMMAND_XXX
	

	MacAddress
	24 bit integer
	
	

	TransactionID
	24 bit integer
	Increment it every new sample
	

	Flags
	8 bit integer
	No information
	

	Interface
	8 bit integer
	COMMAND_INTERFACE_XXX
	A bit field



Current payload is a comma-separated ASCII string contains the following fields:
<Payload Type>,<MAC Address>,<Temperature in F>,<Battery Voltage in Volts>,<RSSI in dB>

Also, sensors simulator can broadcast MACID_BROADCAST packets, which contain sensor location information:
<Nick Name>, <MAC Address>, lat: <Latitude>, lng: <Longitude>, elv: <Elevation>
[bookmark: _Toc318802694][bookmark: _Toc326449754]Design and implementation
Sensor simulator is a multithread java application, which may be executed on variety of platforms supporting Java virtual machine. However, it was tested under Windows and Linux platforms only.
The FakeSensor class reads the data file line by line and transmit the response packets. It does not analyze or alter given payload. At the end of the data file, the stream is rewind to beginning.
FakeSensorMain class provides a basic command line interface, which might be used for future extensions of the simulator functionality like on the fly modifications or specific sample injections.
[image: ]
[bookmark: _Toc318802695][bookmark: _Toc326449755]Configuration file format
The application configuration is stored in fakesensors.cfg file, which has the following format.
Sensors = 3

Sensor1Data = 0x227bdb.csv
Sensor1Enabled = 1
Sensor1ReportPeriod = 10
Sensor1Mac = 0x227bdb
Sensor1Lat = 47.759444
Sensor1Lng = -122.191111
Sensor1Elv = 0
Sensor1Nick = FakeSens1

Sensor2Data = 0x227c3c.csv
Sensor2Enabled = 1
Sensor2ReportPeriod = 10
Sensor2Mac = 0x227c3c
Sensor2Lat = 47.759454
Sensor2Lng = -122.191112
Sensor2Elv = 1
Sensor2Nick = FakeSens2

Sensor3Data = 0x227c6a.csv
Sensor3Enabled = 1
Sensor3ReportPeriod = 10
Sensor3Mac = 0x227c6a
Sensor3Lat = 47.759464
Sensor3Lng = -122.191113
Sensor3Elv = 2
Sensor3Nick = FakeSensor3

	Key
	Data type
	Description
	Note

	Sensors
	Numeric
	Number of sensors
	Required

	SensorXData
	FileName
	File to read responses for Xth sensor
	X should be between 1 and Sensors

	SensorXEnabled
	Boolean(1/0)
	Allows to disable Xth sensor
	Default = 0

	SensorXReportPeriod
	Numeric
	Report interval in seconds
	Default = 0

	SensorXMac
	Numeric
	Mac address that sensor will be reporting
	Use 0xNNNNNN for hexadecimal

	SensorXLat
	Float
	Sensor latitude
	

	SensorXLng
	Float
	Sensor longitude
	

	SensorXElev
	Float
	Sensor elevation
	

	SensorXNick
	Text
	Sensor nick name for MACID_BROADCAST
	Max 10 characters



[bookmark: _Toc318802696][bookmark: _Toc326449756]Delivery
The sensor simulator source files were uploaded to Hercules machine under dslab account.
dslab/SensorGrid/FakeSensors

To compile, just type “make” in this folder. To execute, use start.sh script.
[bookmark: _Toc318802697][bookmark: _Toc326449757]Modifications in Connector
There are two modifications to Connector were done beside minor bugfixes
1. Add support for sensor aliases
2. Sensors matrix support
[bookmark: _Toc318802698][bookmark: _Toc326449758]initSensor() Connector call
The SensorDataSplitter class implements Runnable interface, so Connector may start a splitter thread for each sensor servicing.
The SensorDataSplitter helper class implements Readable interface, so this class can feed output Scanners.
[image: ]
[bookmark: _Toc326449759]Sensors matrix support
[image: ]
[image: ]
Lat1, Lng1 – GPS coordinates of the [0,0] point in the orchard
Lat2, Lng2 – GPS coordinates that sensor reports
Interval – a distance between each sensor in the logical grid
Then, it is following the algorithm above. For calculating a distance between two GPS coordinates it uses well-known haversine formula, which is optimal for small distances.
1. Calculate angular distance between two points
[image: ]
2. Convert to linear distance 
[image: ]
Where R is the Earth radius.
Please see the following references for more information:
http://www.math.montana.edu/frankw/ccp/cases/Global-Positioning/spherical-coordinates/learn.htm
http://mathforum.org/library/drmath/view/51879.html

[bookmark: _Toc318802699][bookmark: _Toc326449760]Modifications in Sensor Server (VikingX)


[image: ]
The following changes were made to sensor server
1. Add support for sensor aliases
2. Move out the sensor map support to separate class
3. Separate and abstract communication layer
4. Add tracing support
5. Switch to event-driven threaded class for UDP broadcast listening, which is replacing listener2.java
6. LIST ftp command provides actual sensors listing including location data and aliases
7. Privileged FTP commands cannot be executed without authentication
8. Minor bug fixes
9. Graceful server shutdown is possible
[bookmark: _Toc318802700][bookmark: _Toc326449761]Support for sensor aliases
The map file (sensor-file.txt) now is supporting new command [alias]. This command allows describing a number of sensors using their implicit names or regexp expressions as a wildcard under a single alias. Besides future cloud applications, this functionality is used in Connector’s sensor matrix, which is selecting required sensor from the list by its geographic location. The alias feature will allow to limit a search scope within a given sensors set.
[bookmark: _Toc318802701][bookmark: _Toc326449762]Refactoring the main class
Before digging in into the sensor map file support extensions, I did some refactoring by moving sensor map file related functionality into the separate class (SensorMap.java.) This refactoring is improving coding style, and increases the code readability. Also, some dead code was identified during refactoring.
[bookmark: _Toc326449763]Separating communication layer from main class
Each transport protocol class should implement IServerTransport interface. From other side, main SensorServer class is implementing IServerCallbacks interface in order to provide necessary service level for the transports. This separation is improving stability and extensibility of the server. Besides better coding style, it allows another developer working on communication layer improvements without interfering with SensorServer developer.
[bookmark: _Toc326449764]Tracing support
Errors, events, and debug messages could be saved to file, printed, or transmitted to remote host by ITracer interface derivative classes. Currently, the FileTracer class saves those messages to a plain text file. Good tracing is feasible for diagnosing low-reproducing problems.
[bookmark: _Toc326449765]New UDP listening support
In the previous version, a hacked modification of Todd Elliot’s listener.java application (known as listener2) was started in separate process for piping out the temperature readings from sensors. This method had number of issues, but it also was not allowed to extend sensor server for capturing location information broadcasts. Also, it was required to run separate copy of the process for each application connected.
New SensorUDPListener class is running in the same process context and generating events for each client application connected. There are two types of events supported. First, it is the same temperature, signal strength, and battery voltage reading. Second event contains sensor location information. This type of events is not delivering to the applications directly, but caching in SensorMap to be returned by request.


[bookmark: _GoBack][image: ]
image1.emf
-sensorsField : FakeSensor

-pSender : UDPPacketsSender

FakeSensorsMain

+Initialize(in fileName : string) : bool

+getSensorCount() : int

+getReportPeriod() : int

+getSensorMacAddress(in sensorNum : int) : int

+getSensorDataFile(in sensorNum : int) : string

+getSensorSleepTime(in sensorNum : int) : int

-

FakeSensorsConfig

+FakeSensor(in _sleepTime : int, in _macAddress : int, in _dataFileName : string)

+run()

-sleepTime : int

-dataFileName : string

-macAddress : int

FakeSensor

-frameType : byte

-payloadLength : short

-payloadData : byte[]

-macAddress : byte[]

UPDPacket

+Initialize()

+Send(in packet : UPDPacket)

UDPPacketsSender

1

*

1

1

1

1

1

*


image2.emf
+initSensors(in strWildCard : string, in mySensors : Scanner[3])

Connector Scanner

+run()

+stop()

-splitHelpers : SensorDataSplitterHelper[3]

-output : Scanner[3]

-inStream : Scanner

SensorDataSplitter

+read() : int

+getNext() : string

+feedInput(in s : string)

-strings : string[]

SensorDataSplitterHelper

1 *

1 *

1

*


image3.emf
Start

Calculate expectedDistance 

from [0,0] to index

Query location 

information using 

orchard alias

Next sensor 

location?

bestDistance = -1

bestSensor = none

Calculate currentDistance 

from [0,0] to current sensor

abs(currentDistance -

expectedDistance) < bestDistance ?

End

bestDistance = currentDistance

bestSensor = currentSensor

Start streaming using 

bestSensor


image4.emf
0,3

0,1

0,2

0,0

1,3

1,1

1,2

1,0

2,3

2,1

2,2

2,0

3,3

3,1

3,2

3,0 Lat1, Lng1

Interval


image5.emf

image6.emf

image7.emf
+Initialize(in tracer : ITracer, in callbacks : ITransportCallbacks)

+Shutdown()

«interface»

IServerTransport

-tracer : ITracer

-callbacks : ITransportCallbacks

FTPTransport

+write(in traceLevel : int, in traceComponent : int, in strFmt : string, in args)

«interface»

ITracer

FileTracer

+main()

-serverTransports : IServerTransport[]

-serverTracer : ITracer

SensorServer

+getSensorNamesByAlias()

+getSensorAddress()

+getSensorName()

+getSensorsCount() : int

+buildSensorMap()

+isSensor()

+addSensor()

+deleteSensor()

+updateSensorFile()

+deleteFromRemoteFile()

SensorMap

+Initialize(in _verbose : bool, in bindInterfaces : string)

+addNewSampleEventListener(in listener : newSampleEventListener)

+removeNewSampleEventListener(in listener : newSampleEventListener)

+run()

SensorUDPListener

+ValidateCredentials()

+getData()

+getList()

«interface»

ITransportCallbacks

1

1

SensorSampleEvent

SensorMaCIDEvent

newSampleEventListener

1

1

1

*

1

1

«interface»

Runnable


image8.emf
Client connector

ConnectorDaemon localhost:11111

Map file FTPClient

Sensor server supports the 

following commands:

USER

STAT

PASV

PASS

CWD

TYPE

SYST

PORT

LIST

RETR

QUIT

Ftp://server:55555

UDP Multicast

TCP ports used:

11110 –Port used when connection to a connectorPanel [???]

11111 –Local connection to Connector Daemon (AKA defaultPort)

11112 –PanelPort (ConnectorDaemon.Java:29)

11113 –PanelPort (hardcoded in ConnectorDaemon.Java:207)

55555-remote FTP connection to sensor server

Sensor Server (VikingX)

SensorServer

SensorUDPListener

via Runtime.exec()

<MAC>.csv file

Users.txt

Sensor Simulator

FakeSensors

<MAC>.csv file

ConnectorDaemon

localhost:11110

files.txt

sensor-file.txt

Remote FTP/HTTP/SFTP server

FTPClient

ftp://user:pwd@server/url/sensor-file.txt

Client application

FileInputStream


