497 Application Report | eiad mazurek, 06/04/2011

On the Parallelization of an Air Temperature Spatial
Interpolation and Prediction Program

Contents

PRASE ONE ittt s et e b e s et e s b et s et e s ne e snees
MASS Polynomial Prediction (PPHANAIEr.java)coccuieieiiiiiiie ettt e e e

PRASE TWO ettt sttt et e st st st st s e bt e st e s b et e s r e e e s ne e snees
MASS Artificial Neural Network (NNPHaNAIEr.Java).......ueeeeicuieeeiiiiiee ettt e e

PRASE TRIEE ... ittt et st st a e s a e s e e s nees

Real-Time Processing (RealtimeProcessing.java)cccccuueeeiiciiiee it

Phase One

MASS Polynomial Prediction (PPHandler.java)

Pseudo code

This program takes output files from the air temperature spatial interpolation programs and instantiates
MASS threads to process each file and output temperature predictions from two hours after sunset until
sunrise.

The way it does this is:

* Receive the number of files to be processed, and MASS threads to instantiate

* Initialize MASS with desired number of threads

* Create a MASS grid of PPHandlers

* Perform MASS.callAll() to have each handler instantiate MassPolynomialPrediction to perform
the polynomial prediction work

How to use
The program runs with the following command line:

Java polynomialprediction.PPHandler [numFiles] [numThreads]

numpFiles — refers to the number of output files this program should process
numThreads — refers to the number of MASS threads to have working on these files

Program usage will show when starting the program with no arguments.
Design notes

* Input files
o Currently looks for grid output files in the home directory of the code
o The program is currently hardcoded to look for “gridOutput_” followed by an index
number. When MASS is invoked, each MASS thread will look for a gridOutput file that
matches its MASS id. For example:
= MASS thread 0 will look for “gridOutput_0.txt"
o First line of file has to have the height and width of the grid that was output into the file
in the following format:
= height<space>width<\r\n>
o The rest of the file follows this format:
= airTemperature<Tab>latitude<Tab> longitude<Tab>elevation<\r\n>
* output files
o will be named “predictions_" plus the thread ID
* number of predictions per hour

o is controlled by the global variable “PREDICTIONS_PER_HOUR”
o s currently set to 6 (every 10 minutes)

Phase Two

MASS Artificial Neural Network (NNPHandler.java)

Pseudo Code
This program uses MASS to initialize a grid of ANN applications that take in sensor data files to predict
and output temperature changes.

The way it does this is:

* Receive the number of files to be processed, and MASS threads to instantiate

* Initialize MASS with desired number of threads

* Create a MASS grid of NNPdrivers

¢ Perform MASS.callAll() to have each handler instantiate NeuralNetworkPrediction to initialize
the artificial neural network and predict future temperature changes

How to use
The program runs with the following command line:

Java neuralnetwork.NNPHandler [numFiles] [numThreads]

numpFiles — refers to the number of output files this program should process
numThreads — refers to the number of MASS threads to have working on these files

Program usage will show when starting the program with no arguments.
Design notes

* Initializing ANN from a previously saved state is currently disabled
* Run parameters currently hardcoded in the run() method within NNPDriver.java. Parameters
are set as following:
o Args[0] ==true
= Set to first time run
o Args[1] == input file name
= Looks for a file whose start number matches the current MASS ID + 1. This file is
set as the current input file name.
* Ex: MASS thread 0 will select ‘1_frost_ff03’ as its input file
o Args[2] == output file name
= Set to ‘outputFile_’ plus current MASS ID
Program defaults are accepted for the rest of the parameters
List of all parameters:

Every time arguments:

false 1if you have already initialized and do not want to reset required
-if inputFileName required
-bf backupFileName optional
-of outputFileName optional

- First time through arguments:

- true if it is the first time running for the Tocation or want to reset the prediction variables
required
- -if inputFileName required
- -bf backupFileName optional
- -of outputFileName optional
- -fA functionA optional
- -fB functionB optional
- -fc functionc optional
- -sh startHour optional
- -eh endHour optional
- -pph minuteIncrament optional
- -w minweight, maxweight optional

* Input files
o Practice data read has only been in SQL format
o Program is hardcoded to only read in data for 05/21/2011 19:00
= This can be altered by changing the global date & time parameters within
NeuralNetworkPrediction.java
* Variable names: yr, mo, dy, hr
o SQL format example

File Edit Format View Help

<<< Log from medusa started October 14, 2010, 13:10:47 >>>

mysql> select * from frost_ffo1 where station_id = 'ffo1' and station_name = 'ffo1';

| station_id | station_name | sensortypes | sensori | sensor2 | battery_voltage | rssi | location_x | location_y | alarm_thresh | alarm_dir | date_time
fro1 fro1 900 69.00000 77.97000 6.30000 -89.00000 200 200 [2007-03-27
ffo1 fro1 900 68.50000 74.76000 6.30000 -89.00000 200 200 8
ffo1 fro1 900 62.70000 65.20000 6.20000 -82.00000 200 200 8
ffo1 ffo1 900 76.60000 77.97000 6.60000 -86.00000 200 200 8
ffo1 fro1 900 27.10000 29.25000 6.20000 -76.00000 200 200 8
fro1 ffo1 900 40.30000 38.53000 5.50000 -79.00000 200 200 8
ffo1 ffo1 900 29.80000 28.85000 6.60000 -74.00000 200 200 B8
ffo1 ffo1 900 34.00000 35.44000 6.20000 -78.00000 200 200 B
ffo1 ffoi 200 41.70000 43.14000 4.50000 -76.00000 200 200 B
ffo1 ffo1 300 38.30000 39.82000 6.00000 -78.00000 200 200 B
ffo1i ffo1 BOF 0.00000 0.00000 2560.70000 -15118. 00000 200 200 B
ffo1i ffo1 300 80.00000 83.88000 6.50000 200 200 B
ffo1 ffo1 300 71.00000 71.44000 5.90000 200 200]
ffo1 ffo1 300 50.50000 51.53000 6.60000 200 200 B
ffo1l ffo1 300 84.50000 97.83000 6.20000 200 200 B
ffo1 ffo1 300 84.80000 97.83000 6.20000 200 200 B
ffo1 ffo1 300 84.50000 97.77000 6.30000 200 200 B
ffo1 ffo1 300 84.20000 97.66000 6.20000 200 200]
ffo1i ffo1 300 83.90000 97.60000 6.30000 200 200 8
ffo1i ffo1 300 84.50000 97.44000 6.30000 200 200 B
ffo1 ffo1 300 84.80000 97.38000 6.20000 200 200 B
ffo1 ffo1 900 84.80000 97.55000 6.20000 200 200 B
ffo1 ffo1 900 84.50000 97.60000 6.20000 200 200 B
ffo1 ffo1 900 85.10000 97.77000 6.20000 200 200 B
ffo1 ffo1 900 85.10000 97.89000 6.20000 200 200 B
ffo1 ffo1 900 84.50000 97.94000 6.20000 200 200 8
froi ffo1 200 84.20000 98.11000 6.20000 200 200 5
ffo1 ffo1 200 84.20000 98.22000 6.20000 200 200 B
ffo1 fro1 900 84.50000 98.50000 6.20000 200 200 8
ffo1 ffo1 900 84.80000 98.78000 6.20000 200 200 8
ffo1 ffo1 900 83.60000 99.07000 6.20000 200 200 5
ffo1 ffo1 900 83.60000 99.01000 6.30000 200 200 8
ffo1 ffo1 900 84.20000 98.90000 6.30000 -92.00000 200 200 5 2003-12-04

< m

* OQutput files
o Are named ‘outputFile_’ plus the MASS thread ID
= Ex: MASS thread 0 will output prediction data into ‘outputFile_0’
o Format
= First line shows the sensor time received
= Following lines:
* Time of day, predicted temp, real temp (if available)

o Output format example

175 NNP200.0200.00UT txt
Fie Edt_Format View Help

Starting Time: 19:00

01:30,
<«

m

Phase Three

Real-Time Processing (RealtimeProcessing.java)

Pseudo Code
This program uses the previously mentioned temperature prediction programs, and utilizes them to
predict temperature changes based on incoming sensor information.

The way it does this is:

* Receive sensor information in the form of a text file
* Parse in sensor data into a 2d array (data[numSensors][numArguments])
* Feed data array to the artificial Neural Network to get predictions
o Utilizes newly created methods that process real-time data within the
NeuralNetworkPrediction class
o Entry point is the NeuralNetworkPrediction.realTimeNNPRun(data, numSensors)
method
* Determine if incoming sensor data is two hours past sunset for current location
o Compare sensor report time with current sunset information for area as reported by
Yahoo weather services
¢ If sensor time is within the two hour time frame, it runs Polynomial Prediction to get 10 minute
predictions from sunset + 2 hours until sunrise
o Feed data array to MassPolynomialPrediction to get predictions
= Utilizes newly created methods that process real-time data within the
MassPolynomialPrediction class
= Entry point is the MassPolynomialPrediction.realTimePP() method
* (notyet implemented) if PP has executed, compare ANN output with that of PP

How to use

The program runs with the following command line:
Java RealtimeProcessing [name of sensor data file] [WOEID of Tocation]
WOEID - 1is the Tocation ID used by Yahoo weather services to retrieve weather

related info. 1If no ID is given, location defaults to Bothell, WwA.
Instructions are given below on how to determine WOEID of a location

Program usage will show when starting the program with no arguments.

Design notes

Weather location
o Location is currently hardcoded for Bothell Washington. To get sunset information for
other locations, the numeric portion of the XML link (WOEID) needs to change:
o Example: to get the sunset information for San Diego:
1) Go to http://weather.yahoo.com/
2) Enter ‘san diego’ in the city or zip code
3) Copy the WOEID portion directly from the hyper link
* http://weather.yahoo.com/united-states/california/san-diego-
2487889/
* WOEID is 2487889 in this example
4) start the program from the command line with the following syntax (assuming
sensor data file is called ‘test.txt’):
* java RealtimeProcessing test.txt 2487889
Input file
o Needs to conform to this format:
= First line: <number of sensors reporting>
= Second line: <year-day-month hour-minute-second>
= Following line per sensor:
* Temp </t> latitude </t> longitude </t> elevation </t>
Output file(s)
o The program outputs two files. One from ANN, and another from PP (if sensor time
received is 2 hours after sunset)

