CSS 600: Independent Study Contract - Final Report

Student: Piotr Warczak Quarter: Fall 2011
Student ID: 9IXXXXX Credit: 2
Grading: Decimal

Independent Study Title
The GPU version of the MASS library.

Focus and Goals

The current version of the MASS library is written in java programming language and combines the
power of every computing node on the network by utilizing both multithreading and multiprocessing.
The new version will be implemented in C and C++. It will also support multithreading and
multiprocessing and finally CUDA parallel computing architecture utilizing both single and multiple
devices. This version will harness the power of the GPU a general purpose parallel processor.

My specific goals of the past quarter were:
* To create a baseline in C language using Wave2D application as an example.
* Toimplement single thread Wave2D
* Toimplement multithreading Wave2D
* Toimplement CUDA enabled Wave2D

Work Completed

During this quarter | have created Wave2D application in C language using a single thread,
multithreaded and CUDA enabled application. The reason for this is that CUDA is an extension of C and
thus we need to create baseline against which other versions of the program can be measured. This
baseline illustrates how much faster the CUDA enabled program is versus single thread and
multithreaded versions. Furthermore, once the GPU version of the MASS library is implemented, we
can compare the results to identify if there is any difference in program’s total execution time due to the
potential MASS library overhead. And if any major delays in execution are found, the problem ares will
be identified and corrected.

Wave2D Single Thread

This is program was there first step to implement Wave2D in C language. The results between
Single thread version and multithreaded version using one thread are so insignificant that |
didn’t use them when analyzing the results.

Wave2D Mulithreaded
This version uses pthreads and barrier synchronization. To compile the code please use the following:
gcc -pthread Wave2DThread.c -o Wave2DThread

Multithreaded version uses pthreads and the following synchronization methods:
* Pthread_barrier_init — initializes the barrier with the specified number of threads
* pthread_create — spawns each thread and specifies the function to be executed
* pthread_join — waits for all the threads to finish their assigned work

And the barrier is implemented like this:
// Synchronization point

CSS 600: Independent Study Contract - Final Report

Student: Piotr Warczak Quarter: Fall 2011
Student ID: 9IXXXXX Credit: 2
Grading: Decimal

int rc = pthread_barrier_wait(&barr);
if(rc I=0 && rc I= PTHREAD_BARRIER_SERIAL_THREAD)

Wave2D CUDA
This version as the name suggests uses CUDA. To compile the code please use the following:
nvcc Wave2D.cu -o Wave2D

The most important part of CUDA is that once you get the program executing correctly, you need to
figure out the number of threads per block and blocks per grid for the program. If improperly
configured, one might not gain all the power CUDA device provides. Here is a number of methods | used
in this experiment.

500 threads per block (500, 1, 1)

dim3 dimBlock(MAX_THREADS_PER_BLOCK, 1, 1);
dim3 dimGrid((SIMULATION_TOTAL_SPACE + dimBlock.x - 1) / dimBlock.x, 1, 1);

256 threads per block (16, 16, 1)

dim3 dimBlock(MAX_THREADS_PER_BLOCK, 1, 1);
dim3 dimGrid((SIMULATION_SPACE + dimBlock.x - 1)/ dimBlock.x, (SIMULATION_SPACE +
dimBlock.y - 1) / dimBlock.y, 1);

512 threads per block (32, 16, 1)

dim3 dimBlock(MAX_THREADS_PER_BLOCK, 1, 1);
dim3 dimGrid((SIMULATION_SPACE + dimBlock.x - 1)/ dimBlock.x, (SIMULATION_SPACE +
dimBlock.y - 1) / dimBlock.y, 1);

MAX_THREADS_PER_BLOCK — that’s usually the Simulation space; however , if the simulation space gets
larger than the maximum number of threads allowed per block than we have to divide the total
simulation space between number of blocks we want to use. The Tesla C1060 only supports 512 threads
per block.

SIMULATION_SPACE is width and/or height (could be either since I’'m only using even sides)
SIMULATION_TOTAL_SPACE is width * height

In order to configure threads per block and blocks per grid, one needs to identify what parameters
installed CUDA device provides. There is a program available in the SDK, which | moved to the examples
folder in MASS/GPU folder. The program returns multiple devices, since hydra has 3 nvidia cards
installed; however, we are only interested in the one we have been using in our experiment. The other
two could be used when we are ready to test distributed GPU programming.

Here is the program’s output:
[dslab@hydra examples]$ QueryCudaDevices

CSS 600: Independent Study Contract - Final Report
Student: Piotr Warczak Quarter: Fall 2011
Student ID: 9IXXXXX Credit: 2

Grading: Decimal
CUDA Device Query...

There are 3 CUDA devices.
CUDA Device #0

Major revision number: 1

Minor revision number: 3

Name: Tesla C1060

Total global memory: 4294770688

Total shared memory per block: 16384
Total registers per block: 16384
Warp size: 32

Maximum memory pitch: 2147483647
Maximum threads per block: 512
Maximum dimension 0 of block: 512
Maximum dimension 1 of block: 512
Maximum dimension 2 of block: 64
Maximum dimension 0 of grid: 65535
Maximum dimension 1 of grid: 65535
Maximum dimension 2 of grid: 1

Clock rate: 1296000
Total constant memory: 65536
Texture alignment: 256

Concurrent copy and execution: Yes
Number of multiprocessors: 30
Kernel execution timeout: ~ No

To summarize, the maximum number of threads are the following:
Maximum number of threads per block : 512
Block dimension =512 x 512 x 64 (threadldx.x, threadldx.y, threadldx.z)
Possible options:
e 512,1,1
e 16,16,1=256
e 32,16,1=512
* 32,32,1=1024 (incorrect since the cuda device only supports 512 threads per block)

Grid dimension = 65535 x 65535 x 1 (blockldx.x, blockldx.y, blockldx.z)
Possible options:

e 65535,1,1

e 256, 256,1

* 64,64,16

Based on this number, the largest Wave2D calculation with even sides is 5792 by 5792. In this
experiment, I've used 5000 as the largest width and height.

The cards available for testing have 1.3 or lower compute capability and are restricted to the numbers
above; however; the newest NVIDIA cards has 2.0 or higher compute capability which supports 1024
threads per block and a third grid dimension. This could significantly improve the results shown here.
The numbers for the newest card:

* Threads per Block: 1024

* Block Dimensions: 1024 x 1024 x 64

* Grid Dimensions: 65535 x 65535 x 65535

CSS 600: Independent Study Contract - Final Report

Student: Piotr Warczak Quarter: Fall 2011
Student ID: 99XXXXX Credit: 2
Grading: Decimal

The results below compare multithread version running with 4 threads and the CUDA version. In CUDA
version | made the thread number equal to Simulation Space up to 500; thereafter, it was also 500 since
512 is the limit of the threads per block. For example, with dimensions 100 by 100, | used 100 threads
per block, with 300 | used 300 threads per block and with dimensions 500 by 500 and greater, | used 500
threads per block. | have also tried to use 256 threads configured 16 by 16, and the numbers were
obviously slightly slower, by not by much.

Simulation Simulation Multithread CUDA (secs) Improvement (%)
Space Time (secs)

100 100 0.012218 0.002756 443.3236575
100 500 0.078713 0.011086 710.0216489
100 1000 0.155534 0.021247 732.028051
300 100 0.055218 0.011018 501.1617353
300 500 0.398841 0.044054 905.3457121
300 1000 0.660387 0.085429 773.0243828
500 100 0.149133 0.066598 223.9301481
500 500 1.172416 0.283811 413.0974487
500 1000 2.519719 0.554915 454.0729661
1000 100 0.85561 0.077878 1098.654305
1000 500 4.770346 0.286193 1666.828329
1000 1000 9.97026 0.546464 1824.50445

35

T o e e B e e e e e T —

X TT T T T T T T TTTTT1T1 —

E O | =®—Mulithreaded (4 threads)

(secs)

15 +—+—+——4+—t—+——++t+ 1 1 | =f—Cuda (secs)

ovTr———————— — T T

5 e — — ——————(———(— . eo— eo——————

100 300 500 1000 1500 2000 3000 4000 5000

CSS 600: Independent Study Contract - Final Report

Student: Piotr Warczak Quarter: Fall 2011
Student ID: 99XXXXX Credit: 2
Grading: Decimal

The graph above shows how Wave2D CUDA version outperforms the multithread version. When the
Wave2D dimensions are small, the difference is insignificant; however, as we make the dimensions
larger the multithreaded version performance exponentially deteriorates while the CUDA version
consistently generates great results.

This test showed that although small there is a difference in how you configure threads allocation.
Initially, the difference is invisible, but as we get into larger simulation space that small difference starts
to add up and eventually becomes a somewhat significant. However, even the improperly configured
CUDA version still outperforms multithreaded version by a huge margin.

Simulation Cuda (secs)(ThreadsPerBlock = Simulation Cuda (secs)Threads per block (256 = 16
Space Space) x 16)
100 0.002756 0.002874
300 0.011018 0.011044
500 0.066598 0.028317
1000 0.077878 0.096686
1500 0.156104 0.226899
2000 0.350629 0.35269
3000 0.721331 0.840495
4000 1.217904 1.419647
5000 1.853456 2.337157
2.5

2 /
15 // =®-Cuda (secs)
’ (ThreadsPerBlock =
Simulation Space)

1 == Cuda (secs)Threads per
block (256 = 16 x 16)

0.5

0 T T T T T 1
0 1000 2000 3000 4000 5000 6000

CSS 600: Independent Study Contract - Final Report

Quarter:
Credit:

Student:

Student ID:

Piotr Warczak
9I9XXXXX

Grading:

Fall 2011
2
Decimal

The images below show the difference in floating point precision between host (CPU) and device (GPU)
results. These results come from 500 by 500 simulation space and 100 simulation time comparing both

multithreaded and CUDA results.

C:...\Wave2DThread_S00_100.txt

j e N IC:1piotr'l,szkoIa\WaVEZDCudaIWaVEZDCuda_SDD_lUD.txtZI =

12/19/2011 04:12:10 AM 3,265,797 bytes <default> ~

127283 254
; 254
254
254
254
254
254
254
254
254
254
254
254
254
254

. _Ara

—3 ——38

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

Amn

20

20

20

20

20

20

20

20
19.9998
19.9972
19.9698
19.7546
15.5792
14,5958
8.1727

A AYanr

1 |Default text lPC

| ;254
254
254
254
254
254
254
254
254
254
254
254
254
5 254
254

Ara

A=Y
283
284
285
286
287
288
289
290
291
292
293
294
295
296

Amn

20
20
20
20
20
20
20
20
19.9993
19.9973
19.9698
19.7547
18.5792
14,5958
8.17278

Pa s e tatut !

ANST v | 12/19/2011 04:59:37 AM 2,783,211 bytes <default>

ANSI v

[
b H

|Default text [pC

o =

As can be seen the 4 decimal point is different due to different rounding methods used by GPU.

|C:1. . AWave2DThread_S00_100.txt

LI = e |C:'\piotriszkola'qWaveZDCuda\WaveZDCuda_SUL‘l_lUU.txt LI B [~

12/19/2011 04:12:10 AM 3,265,797 bytes <default> ~

127322 254 321 1.17192e-23
254 322 1.35046e-25
254 323 1.4184le-27
254 324 1.36265e-29

5 254 325 1.20123e-31
254 326 9.7453e-34
3 254 327 7.29554e-36
9 254 328 5.0522e-38
254 329 3.24375e-40
254 330 1.93491e-42
254 331 1.07439%e-44
254 332 5.56306e-47
254 333 2.69053e-49
254 334 1.21729e-51
; 254 335 5.15935e-54
|Default text [pC

ANSI ¥

ANSI v | 12{19/2011 04:59:37 AM 2,783,211 bytes <default>
a|| iz 254 321 1.17192e-23
254 322 1.35047e-25
254 323 1.4184le-27
254 324 1.36265e-29
254 325 1.20123e-31
254 326 9.74234e-34
254 327 7.11996e-36
254 328 0
254 329 0
254 330 0
254 331 0
254 332 0
254 333 0
5 254 334 0
r . 254 335 0
I B I e Default text pC [

m A

In this example, it shows that numbers with greater than 36 decimal points are rounded. In this case is
zero. The difference is so small that it most cases it doesn’t affect the programs final results.

All code snippets and examples are available at the following directory on hydra machine:

~ dslab/SensorGrid/MASS/GPU/Wave2D
~ dslab/SensorGrid/MASS/GPU/examples

CSS 600: Independent Study Contract - Final Report
Student: Piotr Warczak Quarter: Fall2011

Student ID: 99XXXXX Credit: 2
Grading: Decimal

Next quarter

During winter quarter, | plan on converting multithreaded MASS library to C language and then create
Wave2D version using the MASS-C library. Once completed, | will analyze the results to identify the
overhead of the MASS-C library. Once the MASS-C Library is created the next step is to create a C++
version as well as multiprocessing support.

