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Integrating sensor networks in cloud computing gives new opportunities of using as many cloud-

computing nodes as necessary to analyze real-time sensor data on the fly.  However, most cloud services 

for parallelization such as OpenMP, MPI, and MapReduce are not always suitable for on-the-fly sensor-

data analyses that are implemented as model-based, entity-based, and multi-agent simulations.  To 

address this semantic gap between analyzing algorithms and their actual implementations, we have 

designed and implemented MASS: a library for multi-agent spatial simulation that composes of a user 

application of distributed array elements and multi-agents, each representing an individual simulation 

place or an active entity.  All computation is enclosed in each of elements and agents that are 

automatically distributed over different computing nodes.  Their communication is then scheduled as 

periodical data exchanges among those entities using their logical indices.  This thesis presents the design, 

implementation and evaluation of the MASS library. 
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Preface 

 
 
This thesis contains work done from September 2011 to June 2012.  It has been produced in close 

collaboration with my supervisor, Dr. Munehiro Fukuda. 

 
When professor Fukuda introduced me to the world of parallel and distributed computing during my 

undergraduate study several years ago, I was intrigued by the idea that utilizing inexpensive hardware can 

achieve high throughput performance similar to some costly high performance servers.  However, all of it 

comes at the expense of knowing how such parallelization works, which can be burdensome and time 

consuming.  

 

I immediately jumped on board after learning about the concept of a new library from professor Fukuda 

that would alleviate the parallelization challenge while allowing the application developers to focus on the 

design aspect of the application and easily tap into the resources of a computing cluster without having to 

deal with complex parallelization techniques.  

 

The challenge of designing and implementing such a library has allowed me to improve my 

understanding of parallel and distributed systems, and I am thankful for the support and the resources the 

department has provided me to make all of this possible. 
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Chapter 1: Introduction 
 

 

MASS (Multi-Agent Spatial Simulation) is a new parallelization library for multi-agent and spatial 

simulation that facilitates individual cell centered programming of multi-agents and simulation spaces.  

MASS is composed of a user application of distributed array elements and multi-agents that represent 

each individual simulation cell or an entity.  It contains a set of methods that allows users to easily 

manipulate the parallel behavior of each individual cell in their simulation space, and is designed to 

accommodate a wide array of needs for general scientific computing applications such as molecular 

dynamics, artificial society, and home automation.  

 

1.1 Background 

 

The emergent dissemination of wireless sensor networks and the recent popularity of could computing 

have brought new opportunities of sensor-cloud integration [4] that will facilitate on-the-fly analysis, 

simulation, and prediction of physical and environmental conditions by feeding real-time sensor data to 

cloud jobs.  For instance in agriculture, frost protection need to predict the overnight transition of orchard 

air temperature, which can be done by sending temperature data to prediction polynomials [10] and 

artificial neural network [9] running in the cloud. Another example is accurate car navigation that finds 

the best route to drive through a busy metropolitan area by feeding the current traffic data to traffic 

simulation models such as MatSim [6]. 

 

For on-the-fly analysis, these simulation models need to be accelerated with cloud/grid-provided common 

parallelization tools such as OpenMP, MPI, a hybrid of these two libraries, and MapReduce, all generally 

suited well to simple task parallelism. However, of concern is a big semantic gap between sensor-data 

analyzing models and these software tools.  Most model-based simulations [1] apply formula-based, 

spatial, and/or multi-agent models to sensor data, where model designers would prefer to code their 

algorithms as focusing on each individual simulation entity [3]. Therefore, the designers feel difficulty in 

mapping their algorithms to the underlying parallelization tools. 

 

Our research goal is to reduce this semantic gap by providing users with MASS, a new parallelization 

library for multi-agent and spatial simulation that facilitates: (1) individual-centered programming of 

multi-agents and simulation spaces, each automatically parallelized over the underlying platforms, and (2) 

utilization of a SMP cluster, (i.e. composed of a collection of communicating multithreaded processes). 

MASS composes a user application of distributed array elements and multi-agents, each representing an 
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individual simulation place or an active entity.  All computation is enclosed in each element or agent, and 

all communication is scheduled as periodical data exchanges among those entities using their relative 

indices.  In temperature prediction, an orchard is meshed into two-dimensional array elements over which 

agents move as air flow.  This model unleashes an application from accessing entities in for-loops, and 

thus eases dynamic allocation of entities to multiple computing nodes and multiple CPU cores. 

 

1.2 Research Objective 

 

MASS library is a part of the Sensor Grid research project that is currently underway at the UWB 

distributed systems lab.  My research goal is to design and implement MASS, gather performance and 

programmability results and present the findings. 

 

The very initial version of the multi-threaded MASS was already completed by another research student 

John Spiger [13].  As part of this research, a network platform layer has been designed, implemented and 

integrated into the multi-threaded MASS library to make use of multiple computing nodes with multi-

core CPUs.  The evaluation of the library includes:  

 

 Demonstrate the programmability advantage of the MASS library with a simple multi-agent 

application. 

 Demonstrate the competitive performance to be gained from parallel execution of the MASS 

library when computing nodes are added to the cluster with several performance benchmarks. 

 

The following chapter describes the underlying challenge and solution to the limitations in section 2.1, 

execution model in section 2.2.  Section 2.3 and section 2.4 contain MASS coding examples and language 

specification.  Section 2.5 describes system design in detail, including data structure, algorithm and 

implementation.  Chapter 3 contains the evaluation of the MASS library.  Section 3.1 presents the 

qualitative analysis and section 3.2 presents the execution performance analysis.   Chapter 4 details 

comparisons between similar software tools, and chapter 5 is the conclusion with result statements, 

encountered problems during my research and future work. 
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Chapter 2: Methods 
 
 

This chapter describes MASS library’s components, model, language specification, design and 

implementation. 

 

2.1 Challenge and Solution in Multi-Agent Individual-Based Models 

 

We identify the following three design challenges: 

 

(1) Naming is the typical problem in distributed computing when allocating agents and individual 

objects over multiple computing nodes. In general, objects are maintained in a list or an array, 

and are scanned in a loop for their method invocation. The key in naming is to hide object-to-

processor mapping, to automate loop partitioning, and to make inter-object communication 

independent from the actual distributed environment. 

 

(2) Fine granularity of each object computation is a quite familiar problem in multi-agent 

individual-based models.  These agents and individuals may be spawned and terminated 

dynamically and frequently. Therefore, we will minimize object context switches by invoking 

their methods in a batch, reduce their communication overheads by sending their messages in a 

larger packet, and utilize cache and main memory effectively by aggregating objects whose 

proximity is logically close. 

 

(3) Dynamic load balancing plays an important role, because agents and individuals are not all 

active and not all uniformly distributed over a simulation space. Therefore, we will use several 

techniques for reallocating objects to CPUs, moving a simulation job to a faster node, and adding 

more computing nodes to the job. 

 

To tackle the research challenges enumerated above, we will use MASS: a parallelizing library for multi-

agent spatial simulation.  The library instantiates multi-agents on a global array, all parallelized over a 

cluster of multithreaded computing nodes with multi-core CPUs.  The library hides the underlying 

agent/element-to-processor mapping as well as inter-processor communication/synchronization from user 

programs, so that the model designers are given one consistent programming paradigm regardless of the 

underlying parallel architecture.   
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We implement the MASS library based on the following three design principles: 

 

(1) Naming is resolved by two strategies: (1) having each array element communicate with 

neighbors, using its relative indices, (i.e., a distance from it), and (2) allowing agents to 

communicate with only those residing on the same array element unless they migrate to a 

different element.  

 

(2) Fine granularity is addressed by four library features: (1) allocating agents and array elements in 

one flat contiguous memory space, (2) invoking them at once through the library calls such as 

callAll( ), (3) processing their parallel communication at once through exchangeAll( ), and (4) 

moving agents to the actual CPU that has their next array element to reside on (to keep agent-

place proximity).  

 

(3) Dynamic load balancing is supported at the library level by two techniques: (1) repartitioning 

arrays of agents and elements at run time to balance each partition’s computation amount, and (2) 

increasing the number of partitioned blocks to acquire more CPU cores. 

 

2.2 Execution Model 
 

“Places” and “agents” are keys to the MASS library. “Places” is a matrix of elements that are dynamically 

allocated over a cluster of computing nodes.  Each element is called a place, is pointed to by a set of 

network-independent matrix indices, and is capable of exchanging information with any other places. On 

the other hand, “agents” is a set of execution instances that can reside on a place, migrate to any other 

places with matrix indices (thus as duplicating themselves), and interact with other agents as well as 

multiple places. 

 

An example of places and agents in a battle game could be territories and military units respectively. 

Some applications may need only either places or agents.  For instance, Schrödinger's wave simulation 

needs only two-dimensional places, each diffusing its wave influence to the neighbors.  Molecular 

dynamics needs only agents, each behaving as a particle since it must collect distance information from 

all the other particles for computing its next position, velocity, and acceleration. 

 

Parallelization with the MASS library assumes a cluster of multi-core computing nodes as the underlying 

computing architecture, and thus uses a set of multi-threaded communicating processes that are forked 
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over the cluster and managed under the control of typical message-passing software infrastructure such as 

sockets and MPI.  The library spawns the same number of threads as that of CPU cores per node or per 

process. Those threads take charge of method call and information exchange among places and agents in 

parallel. 

 

Places are mapped to threads, whereas agents are mapped to processes.  Unless a programmer indicates 

his/her places-partitioning algorithm, the MASS library divides places into smaller stripes in vertical or in 

the X-coordinate direction, each of which is then allocated to and executed by a different thread.  

Contrary to places, agents are grouped into bags, each allocated to a different process where multiple 

threads keep checking in and out one after another agent from this bag when they are ready to execute a 

new agent.  If agents are associated with a particular place, they are allocated to the same process whose 

thread takes care of this place. 

 

Agents are a set of execution instances that can reside on a place, migrate to any other places with array 

indices (thus as duplicating themselves), and interact with other agents and places.  As shown in Figure 1, 

parallelization with the MASS library uses a set of multi-threaded communicating processes that are 

forked over a cluster and are connected to each other through SSH-tunneled TCP links.  The library 

spawns the number of threads as specified by the application developer.  Those threads take charge of 

method call and information exchange among places and agents in parallel.  Places are mapped to threads, 

whereas agents are mapped to processes. Unless a programmer indicates a place-allocation algorithm, the 

MASS library partitions places into smaller stripes in vertical, each of which is statically allocated to and 

executed by a different thread (static scheduling).  Contrary to places, agents are allocated to a different 

process, based on their proximity to the places that this process maintains, and are dynamically executed 

by multiple threads belonging to the process (dynamic scheduling). 
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Figure 1. MASS Execution Model 

 

2.3 Language Specification 
 

All processes involved in the same MASS library computation must call MASS.init( ) and 

MASS.finalize( ) at the beginning and end of their code respectively so as to get started and finished 

together.  Upon a MASS.init( ) call, each process, running on a different computing node, spawns the 

same number of threads as that of its local CPU cores, so that all threads can access places and agents. 

Upon a MASS.finalize( ) call, each process cleans up all its threads as being detached from the places and 

agents objects.  A snippet of the MASS programming interface is shown in table 1. 
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Table 1. MASS Interface 

public static 

void 

init( String[] args, int nProc, int nThr ) 

Involves nProc processes in the same computation and has each 

process spawn nThr threads.  Args include user ID, password, 

machine file name which includes a list of remote computing nodes 

and optional parameters such as the designated port to use and 

arguments to supply to the user application. 
public static 

void 
init( String[] args ) 

Involves as many processes as requested in the same computation and 

has each process spawn as many threads as the number of CPU cores.  

Args are the same as the above method. 
public static 

void 

finalize( ) 

Finishes computation. 
public static 

Places 
getPlaces( int handle ) 

Retrieves a “Places” object that has been created by a user-specified 

handle and mapped over multiple machines. 
public static 

Agents  

getAgents( int handle ) 

Retrieves an “Agents” object that has been created by a user-specified 

handled and mapped over multiple machines. 

 

 

2.3.1 Places 

 

“Places” is a distributed matrix whose elements are allocated to different computing nodes.  Each element, 

(termed a “place”) is addressed by a set of network-independent matrix indices. Once the main method 

has called MASS.init( ), it can create as many places as needed, using the following constructor.  Unless a 

user supplies an explicit mapping method in his/her “Place” definition, a “Places” instance (simplified as 

“places” in the following discussion) is partitioned into smaller stripes in terms of coordinates[0], and is 

mapped over a given set of computing nodes, (i.e., processes). 

 

Places Class  

 public Places( int handle, [String primitive,] String className, Object argument, int size ) 

instantiates a shared array with size from className or a primitive data type as passing an 

argument to the className constructor.  This array receives a user-given handle. 

 public Object[] callAll( String functionName, Object[] arguments ) calls the method specified 

with function-Name of all array elements as passing arguments[i] to element[i], and receives a 

return value from it into Object[i].  Calls are performed in parallel among multi-processes/threads. 

In case of a multi-dimensional array, i is considered as the index when the array is flattened to a 

single dimension. 
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 public Object[] callSome( String functionName, Object[] argument, int... index ) calls a given 

method of one or more selected array elements. If index[i] is a non-negative number, it indexes a 

particular element, a row, or a column. If index[i] is a negative number, say −x, it indexes every x 

element. Calls are performed in parallel. 

 public void exchangeAll( int handle, String functionName, Vector<int[]> destinations) calls from 

each of all elements to a given method of all destination elements, each indexed with a different 

Vector element.  Each vector element, say destination[] is an array of integers where destination[i] 

includes a relative index (or a distance) on the coordinate i from the current caller to the callee 

element. The caller passes its outMessage[] data member to the callee as a set of arguments, and 

receives return values in its inMessage[]. 

 public void exchangeSome( int handle, String functionName, Vector<int[]> destinations, int... 

index) calls each of the elements indexed with index[].  The rest of the specification is the same 

as exchangeAll( ). 

 

2.3.2 Agents 

 

“Agents” is a set of execution instances, each capable of residing on a place, migrating to any other 

place(s) with matrix indices, and interacting with other agents as well as multiple places. 

 

Agents Class 

 public Agents( int handle, String className, Object argument, Places places, int population ) 

instantiates a set of agents from className, passes the argument to their constructor, associates 

them with a given Places matrix, and distributes them over these places, based on the map( ) 

method that is defined within the Agent class. 

 public void manageAll( ) updates each agent’s status, based on its latest calls of migrate( ), 

spawn( ), kill( ), sleep( ), wakeup( ), and wakeupAll( ). These methods are defined in the Agent 

base class and may be invoked from other functions through callAll( ) and exchangeAll( ). 

 

The rest of Agent’s methods such as callAll( ) and exchangeAll( ) are similar to Places.callAll( ) and 

Places.exchangeAll( ) respectively. 
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2.3.3 CallMethod 

 

Since method names are user-given, it is quite natural to invoke each array element’s method through 

Java reflection, which is however intolerably slow for parallel computing.  Thus, a selection of methods 

to call should be preferably done with switch( ), where we need to identify each method as an integer 

value.  callMethod( ) is a user-provided framework that assists the MASS library in choosing a method to 

call.  Figure 2 illustrates the general code pattern of such method calls. 

 1. public class Wave2D extends Place { 

 2.     // constants: each array element’s methods are identified by an integer  

 3.     // rather than its name. 

 4.     public static final int init_ = 0; 

 5.     public static final int computeNewWave_ = 1; 

 6.     public static final int exchangeWave_ = 2; 

 7.     public static final int collectWave_ = 3; 

 8.     public static final int startGraphics_ = 4; 

 9.     public static final int writeToGraphics_ = 5; 

10.     public static final int finishGraphics_ = 6; 

11. 

12.     // automatically called from callAll, callSome, callStatic, exchangeAll, or 

13.     // exchangeSome. 

14.     // args may be null depending on a calling method. 

15.     public static Object callMethod( int funcId, Object args ) { 

16.         switch( funcId ) { 

17.         case init: return init( args); 

18.         case computeNewWave_: return computeNewWave( args ); 

19.         case exchangeWave_: return exchangeWave( args ); 

20.         case storeWave_: return exchangeWave( args ); 

21.         case startGraphics_: return startGraphics( args ); 

22.         case writeToGraphics_: return writeToGraphics( args ); 

23.         case finishGraphics_: return finishGraphics( args ); 

24.         } 

25.         return null; 

26.     } 

27. 

28.     public Object init( Object args ) { 

29.        ...; 

30.     } 

31.     public Object computeNewWave( Object args ) { 

32.         ...; 

33.     } 

34. } 

Figure 2. Wave2D Call Methods 

 

2.4 Coding Examples 

 

To give more concrete ideas of the MASS library, this section contains two example MASS applications: 

Wave2D (a two-dimensional wave simulation) and RandomWalk (an agent-movement simulation over a 

two-dimensional space). 
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2.4.1 Wave2D 

 

Figure 3 shows an example of how Places.CallAll( ) and Places.ExchangeAll( ) can be easily utilized to 

develop a parallel spatial simulation application named Wave2D.  It is a two-dimensional matrix that 

simulates Schrödinger's wave diffusion.   

  

In this example, a two-dimensional matrix is instantiated on line 14 by simply creating a new instance of 

Places.  The application enters a cyclic simulation to calculate wave heights in every cell in parallel (line 

28), and every cell exchanges wave height information (line 32) with all of its neighboring cells (defined 

on line 20 – 23).   

 

1. import MASS.*;             // Library for Multi-Agent Spatial Data Analysis and Simulation

2. import java.util.Vector;   // for Vector

3.

4. public class Wave2D {

5. public static void main( String[] args ) {

6. // arguments

7. int size = Integer.parseInt( args[0] );

8. int maxTime = Integer.parseInt( args[1] );

9. int interval = Integer.parseInt( args[2] );

10.

11. MASS.init( args ); // start MASS

12.

13. // create a Wave2D array.

14. Places wave2D = new Places( 1, "Wave2D", null, size, size );

15. // initialize the simulation.

16. wave2D.callAll( init_, null );

17.

18. // define the four neighbors of each cell

19. Vector<int> neighbors = new Vector<int>( );

20. int[] north = { 0, -1 }; neighbors.add( north );

21. int[] east  = { 1,  0 }; neighbors.add( east );

22. int[] south = { 0,  1 }; neighbors.add( south );

23. int[] west  = { -1, 0 }; neighbors.add( west );

24.

25. // now go into a cyclic analysis

26. for ( int time = 0; time < maxTime; time++ ) {

27. // calculate wave height

28. wave2D.callAll( computeWave_, ( Object )( new Integer( time ) ) );

29.

30.

31. // update cell with neighbor wave info for next calculation 

32. wave2D.exchangeAll( 1, exchangeWave_, neighbors );

33.

34. }

35. MASS.finish( ); // finish MASS

36. }

37. }

 

Figure 3. Wave2D Code and Simulation Space 

 

2.4.2 RandomWalk 

 

Figure 4 shows an example of how Places.callAll( ), Places.exchangeAll( ), Agents.callAll( ) and 

Agents.manageAll( ) can be easily utilized to develop a parallel multi-agent application. 
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In this example, an args[0] x args[0] (defined on line 8) array over multiple processes that simulates 

“Land” is created (line 16).  “Nomad” agents are created and distributed every four places of this matrix 

(lines 18), and simulates random walking of these agents over the matrix using multiple processes and 

threads. 

 

In each simulation iteration, every individual cell exchanges population information with its neighboring 

cells, which are defined on line 21 to 25, and updates such information with calls on line 30 to 31 as 

demonstrated in the simulation mockup on the upper right corner of figure 4.  The population information 

is then utilized by “Nomad” agents to determine an un-occupied cell to migrate to (line 34) and perform 

the actual agent migration in parallel with nomad.ManageAll( ) (line 35) as demonstrated on the lower 

right corner of figure 4. 

 

1. import MASS.*;             // Library for Multi-Agent Spatial Simulation

2. import java.util.Vector;   // for Vector

3.

4. // Simulation Scenario

5. public class RandomWalk {

6. public static void main( String[] args ) {

7. // validate teh arguments

8. int size = Integer.parseInt( args[0] );

9. int nNomads = Integer.parseInt( args[1] );

10. int maxTime = Integer.parseInt( args[2] );

11.

12. // start MASS

13. MASS.init( args );

14.

15. // create a land array.

16. Places land = new Places( 1, ”Land", null, size, size );

17. // populate Nomad agents on the land.

18. Agents nomad = new Agents( 2, ”Nomad", null, land, nNomads );

19.

20. // define the four neighbors of each cell

21. Vector<int> neighbors = new Vector<int>( );

22. int[] north = { 0, -1 }; neighbors.add( north );

23. int[] east  = { 1,  0 }; neighbors.add( east );

24. int[] south = { 0,  1 }; neighbors.add( south );

25. int[] west  = { -1, 0 }; neighbors.add( west );

26.

27. // now go into a cyclic simulation

28. for ( int time = 0; time < maxTime; time++ ) {

29. // exchange #cars with four neighbors

30. land.exchangeAll( 1, Land.exchange, neighbors );

31. land.callAll( Land.update );

32.

33. // move cars to a neighbor if space is availabe

34. nomad.callAll( Nomad.decideNewPosition );

35. nomad.manageAll( );

36. }

37.

38. // finish MASS

39. MASS.finish( );

40. }

41. }

 
Figure 4. RandomWalk Code and Simulation Space 
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2.5 System Design 

 

This section contains discussions of the design decisions of the MASS library as well as data structure, 

algorithm and implementation details. 

 

Figure 5 describes the relationship between objects and computing nodes in a cluster by example of inter-

process communication.   

 

To facilitate inter-process communication, the master node launches a remote process named MProcess 

on each computing node and establishes a communication channel using Java Secure Channel (JSCH).  

JSCH is the main communication channel that allows the master node to send various commands to 

remote nodes.  A collection of Mnode objects each containing an established JSCH communication 

channel to a remote host is stored on the master node for direct communication between the master node 

and remote nodes.   An ExchangeHelper object is instantiated during the initialization phase on all nodes 

that is used to establish direct socket connection between two hosts only when such communication is 

required (i.e. during exchangeAll( )). 

 

The remote process MProcess sits in a blocking read awaiting commands from the master node.  Each 

remote process and the master node create a pool of worker threads that are ready to perform parallel 

processing. 

 

User Application

MASS

Places

Exchange 
Helper

Agents

Mnode

MProcess

MASS

Places

Exchange 
Helper

Agents

Place

Place

Agent

Agent

Socket

JSCH

Worker Thread Pool Worker Thread Pool

Master Node

 
Figure 5. Internal Classes over a Cluster 
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Log files are created to monitor progress of each remote computing node and to record errors should the 

application encounter unexpected behavior.  The master node simply outputs error messages to the 

console. 

 

2.5.1 Data Structure 

 

Figure 6 describes the data distribution in the MASS library.  The underlying data structure for Places is a 

distributed array.  The array can have n-dimension defined by the application developer.  MASS library 

translates multi-dimension indices into a linear index system for easy management.  The application 

developers can design applications without any knowledge of such index translation taking place. 
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Figure 6. MASS Data Structure 

An agent is attached to a specific Place, and a Place object can contain many agents.  MASS agents are 

reactive and have the ability to perform simple tasks that are defined within the confines of a function call 

by the application developer. 

 

2.5.2 Algorithm  

 

This section details the major functionalities of the MASS library and the underlying algorithm. 

 

(1) Places Call-All  

 

The Call-All method allows the user to perform a user-specified operation on all cells in the simulation 

space in parallel.  
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The master node sends the “Call-All” command to all remote computing nodes and every node receives 

and executes the command in parallel with the main thread.  The distributed array elements on each node 

are then further partitioned into even chunks for the worker threads and the main thread to process in 

parallel.  

 

If a return value is required, the master node uses the JSCH channel created per remote computing node 

during the initialization phase to receive the return values, and each remote computing node collects and 

sends results with the main thread to the master node, which are presented to the user by the main thread 

on the master node. 

  

 

(2) Places Exchange-All  

 

The Exchange-All method allows the user to exchange data stored in each cell with all of its user-defined 

neighboring cells in the simulation space.  

 

An exchange helper ExchangeHelper object is instantiated during the initialization phase to act as a server 

thread that constantly listens to a user-specified port, which is an optional argument provided for the 

MASS.init() call, for client connection requests from other computing nodes.  This ensures timely 

response whenever a connection needs to be established.  Figure 7 demonstrates how connections are 

established between remote processes during the execution of exchange all call.  This inter-node 

connection is dynamically established on demand and the connection objects are reusable throughout the 

entirety of the application lifespan. 
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Figure 7. Connection Establishment between Computing Nodes 

 

Figure 8 demonstrates the exchangeAll process.  During the exchangeAll call, local exchanges are 

performed first, and if the exchange needs to be made with a remote node, each available thread (worker 

and main threads all participate in the computation) writes the host name of the remote node and the 

remote exchange request that needs to be sent to an exchange request map with the host name being the 

key.   

 

After the local exchange is complete, all available threads (the main and worker threads) begin processing 

the remote exchange requests by selecting a hostname on a first-come-first-serve basis and process the 

remote exchange with the selected host.  This is done to ensure that the connection object, which is 

cached on a map per remote host using the remote host name as key, is not shared by multiple threads.  
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Figure 8. ExchangeAll Local and Remote Process 

 

When a host is selected by a thread, it checks the connection map to see if the connection has already 

been established between the local host and the remote host. If not, the thread establishes connection and 

process the remote exchange request.   

 

Ideally, there will be more threads than the computing nodes exchangeAll( ) call needs to communicate 

with.  However, there are cases where there are more computing nodes stored on the exchange request 

map than the available threads.  In this case, the thread that finishes its assigned workload first picks up 

the remaining exchange requests and processes them.  Table 2 details various threads used throughout the 

library. 

 

Table 2. MASS Thread Types 

Thread Type Remark 
Main Thread It is the main application thread that controls the pacing of the application and 

participates in the computation.  It also joins worker threads in handling remote 
exchange requests. 

Worker Thread Worker threads are spawned by the main thread that participate in the computation in 
parallel and handle remote exchange requests.  The application developer specifies the 
number of total threads to spawn, which includes the one main thread and worker 
threads.  

Server Thread Server thread is created by the ExchangeHelper object that awaits connection requests 
from remote hosts in a blocking accept( ) loop. 
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(3) Agents Initialization 

 

This method allows the application developer to specify the number of agents to create and where agents 

should be mapped to the simulation space.  A map function is provided to the user to specify how agents 

in the simulation space should be populated. 

 

(4) Agents Call All 

 

This method is similar to the regular Call All method in which each simulation space executes the same 

segment of code.  In the case of mobile agents, each agent executes the same segment of code. 

 

(5) Agents Manage All 

 

After the agents-call all call is executed, each agent can queue up a number of actions to take and the 

manage-all call executes these actions.  The main functionality is the migrate call which makes MASS 

agents autonomous. 

 

Agent migrate requires each agent to travel from one simulation cell to another.  Due to multi-process and 

multi-threaded nature of the MASS library, agent migration involves moving agents from one process to 

another.  This is done by utilizing the “Exchange-All” infrastructure that is set up for the Places 

Exchange-All call in which each process establishes a socket communication with one another to send 

and receive necessary information.   

 

Since user application’s agent implementation is an extension of the MASS Agent class, it is against the 

ease of use design principle to ask the application developer to create the extension as a Java serializable 

object.  As such, MASS agent migration is a weak migration [14].  Only the states of the agent will be 

transferred to the destination process.  Weak migration implementation in MASS offers good 

performance and does not have any negative impact on user application due to the simple nature of 

reactive agents. 

 

2.6 Implementation 

 

The MASS library was designed with client server architectural style with implicit barrier 

synchronization to ensure all processes and threads proceed at the same pace.  The client module 
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MProcess is implemented using an event-driven architectural style.  This section contains detailed 

implementation description for the major components of MASS. 

 

(1) MASS 

 

MASS is the infrastructure of the library on which the user application is executed.  It is responsible for 

construction and deconstruction of remote processes on a cluster of computing nodes, and maintains 

references to all Places and Agents instances.   

 

Init( ) identifies all remote hosts as specified in the host file machinefile.txt and through JSCH, an 

MProcess is launched on remote hosts,  and for every remote host, an Mnode instance is locally created 

on the master node as a wrapper for maintaining the master and slave JSCH connection.  After all the 

remote processes have been launched, each process creates a pool of worker threads using the MThread 

instance that handles the coordination of multiple threads. 

 

MASS can be initialized on any host running an SSH server and Java Virtual Machine.  Throughout the 

application lifecycle, MASS provides useful methods for manipulating individual cells in the user defined 

simulation space, including direct control over Place and Agent instances. 

 

Finish( ) is called at the end of an application to deconstruct the cluster.  This is done by sending 

termination commands to all slave processes and closing all connections for a graceful exit. 

 

(2) MNode 

 

MNode is a wrapper for the JSCH connection object that allows direct communication between the 

master node and the slave nodes.  A collection of MNodes will be created during initialization to facililate 

master-slave communication.  Each MNode instance contains a set of wrappers for sending and receiving 

communication messages.  This channel is also utilized for when the slave nodes need to send return 

values to the master node. 

 

(3) MProcess 

 

MProcess is run on remote hosts as a launching platform for MASS functions.  The MProcess facilitates 

all commands invoked by the master node and manages program flow on its behalf.  The MProcess has 
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three states in its lifecycle, initiation, running and deconstruction.  During initialization, the MProcess 

establishes JSCH communication with the master node, creates a logger file for outputting error messages 

and instantiates a pool of worker threads.  After the initialization has finished, it sits in an infinite loop 

and is blocked on a read() call awaiting commands from the master node.  Once a command is received, it 

calls the corresponding MASS function and return to the blocking read state for the next command.  The 

master node can terminate all MProcess instances by sending the finish command.  When a finish 

command is received, MProcess closes all existing connections and exits the loop.  Should any exceptions 

be encountered during the lifecycle of MProcess, it executes the finish command to free up all 

connections and logs the error to the logger file for debugging purposes. 

 

(4) Mthread 

 

Mthread is an extension of Java Thread class that is used to facilitate multi-threaded processing of the 

MASS library.  All threads are synchronized on the MASS.STATUS object that can be changed by the 

calling process to different states to either wake up the worker threads or put them to sleep. 

 

(5) ExchangeHelper 

 

ExchangeHelper is a utility class used to establish and cache socket connection objects to facilitate inter-

node communication.  It is an extension of Java Thread class that is run during the MASS initialization 

phase to start a server thread that is blocked on accept( ) awaiting client connection requests.   

 

If a connection between two nodes needs to be established, the node with lower process ID acts as a 

server and the node with higher process ID sends a connection request.  The request is picked up by the 

server thread and a socket connection is established and cached on a connection map with the remote host 

name as its key and the connection object as its value.  This connection will be reused for future requests. 

 

Connection establishment is done on demand.  Whenever two nodes need to communicate with each other 

during an exchangeAll( ) call, one of the worker threads first attempts to retrieve a connection object from 

the connection map.  If the return value is null, it then calls establishConnection( ) to establish connection 

to the remote host.  All worker threads are synchronized on the connection map object to ensure that a 

cached socket connection is not shared by multiple threads. 

 

 



20 
 

(6) Places Implementation 

 

Places manages all place elements in the simulation space.  Every process maintains a collection of Places 

instances, each Places instance created by a user program on the master node has a corresponding 

instance on a number of slave processes in the cluster. There are two major methods for place 

manipulation in the Places class: callAll and exchangAll. The Places class utilizes ExchangeHelper 

instance to assist in the implementation of the exchangeAll algorithm. 

 

1. CallAll/Some( ):  These calls are  for issuing commands and sending data to all or some place elements. 

Each MProcess receives a method identifier, place element indices, and arguments from the master node, 

and invokes the given method of the specified place elements. The return value of this method may be 

returned to master node after all executions have been completed.  If there is a return value, the master 

node is blocked on receive via the JSCH channel until all return values have been received from the 

remote hosts. 

 

2. ExchangeAll/Some( ): These calls are for exchanging data among place elements.  Each MProcess 

receives a method identifier, and a collection of invoking destinations from the master node.  All the local 

exchanges will be processed first.  If a destination is outsides the bounds the local process, this remote 

exchange request is wrapped in a message and queued up on a hash map with the host name this message 

needs to be delivered to as the key.  At the end of the local exchange process, ExchangeHelper instance is 

utilized to establish connection to the remote hosts, and each of the worker thread processes a set of 

requests that is stored on the hash map.  The remote exchange step is deferred to the end of the local 

request and organized into key and value pair to avoid worker threads asynchronously sending exchange 

requests to the remote hosts that could potentially cause performance degradation and network congestion. 

 

(7) Agents Implementation 

 

Agents manages all agent elements in the simulation space.  Unlike a place element which is tied to a 

specific cell in the simulation space, agents are free to migrate to other cells.  At any given time in the 

simulation, a host can contain one to many agents.  There are three major methods for Agents 

manipulation in the Agents class:  CallAll, ExchangeAll and ManageAll. 
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1. CallAll( ):  This call is similar to the Places.CallAll in a way that it is also used to issue commands to 

all agents. Each MProcess receives a method identifier and arguments from the master node, and invokes 

the given method of the specified agent elements.    

 

There are a number of methods inside the Agent class such as migrate, spawn, suicide, sleep and wake up 

that are exposed to the application developer which can be used in the Agents.CallAll( ) call. 

 

2. ExchangeAll( ): Similar to the Places.ExchangeAll( ), this method allows data exchange among all 

agents in the simulation space.  It utilizes the ExchangeHelper instance to complete the exchange request 

in the same manner as Places.ExchangeAll( ). 

 

3. ManageAll( ): This method is invoked to process Agent actions such as migrate, spawn and suicide.  

Each MProcess utilizes its worker thread pool to divide the agents up and iterate through all the agents in 

parallel to perform the user specified actions.   

 

Migrate( ): Given a set of coordinates, the agent will migrate to the destination upon the next 

ManageAll( ) call.  This method utilizes the ExchangeHelper instance to establish communication 

with the destination host and transmit agent states for re-instantiation.  As opposed to 

Places.ExchangeAll( ) where communications are all two-way, in the case of Agent.Migrate( ), it 

is not atypical for agents to migrate from local host to the destination host but not the other way 

around.  If there are no agents to migrate, each host sends a simple acknowledgement byte to the 

destination host signaling that no remote migration needs to be performed to avoid being blocked 

on read( ). 

 

Spawn( ): This call allows the application developer to dynamically create any number of agents 

at the current place element.   

 

Kill( ): This call allows the application developer to terminate an agent.  This is simply done by 

setting the agent’s alive flag to false, and the next ManageAll( ) call de-allocates all the agents 

with false alive flag. 
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Chapter 3: Evaluation 

 

This chapter details the MASS library evaluation with programmability and performance analyses.   

 

3.1 Programmability Analysis 

 

This section gives the qualitative analysis of the MASS library, using Wave2D and RandomWalk. 

 

3.1.1 Wave2D 

 

Spatial simulation programmability analysis was conducted using Wave2D whose model and code are 

represented in figure 3.  The steps to develop this spatial simulation program and any program using 

MASS are as follows.  First, create a class that inherits from the Place, in this example Wave.  Second, 

create call methods within the classes and assign them function IDs.  Lastly, define a main function in 

which the simulation will be run. 

The simulation starts with three parameters such as the size of the simulation, max time to finish the 

simulation and the interval on which the graphical updates are periodically displayed to the user.  Then, it 

invokes the MASS library, creates a two-dimensional array that represents the simulation space by 

instantiating a new Places object.  It sets up communication links from each array element to its four 

neighbors.  Thereafter, the program enters a cyclic simulation where each iteration calculates the current 

wave height in every cell in parallel with a simple Places.callAll( ), and exchanges the wave height 

information among all array elements with a simple Places.exchangeAll( ). 

The same application can be coded using a combination of MPI and OpenMP to take advantage of multi-

process and multi-core CPUs on a cluster.  However, the array representing Wave2D simulation space 

must be created and distributed by the application developer among multiple computing nodes with 

several MPI calls.   Thereafter, in each iteration, all cells, and therefore, all computing nodes, need to 

exchange wave height information with neighboring nodes in order to calculate the wave height in the 

next iteration.  This needs to be strategically planned to arrange the order in which MPI_Read( ) and 

MPI_Recv( ) calls are made to prevent processes from being blocked.  To utilize multi-core CPUs, the 

application developer needs to enclose computation iterations in OpenMP compiler directives while 

identifying potential critical sections to avoid performance degradation. 
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Compared to the simple interfaces MASS provides to the application developer, MPI and OpenMP 

combination requires the application developer to possess knowledge of the programming interfaces of 

MPI and OpenMP and a certain degree of understanding of parallel programming paradigm.   On the plus 

side, this approach allows application developers more fine-grained control over how distributed array 

elements are managed.  MASS, on the other hand, offers simple, automatic solution to utilize multiple 

computing nodes equipped with multi-core CPUs, but does not allow any performance optimization 

beyond the confines of callMethod function definitions. 

3.1.2 RandomWalk 

Multi-agent programmability analysis was conducted using a simple multi-agent simulation program 

RandomWalk whose model and code are represented in figure 4.  The program simulates a piece of land 

that is constructed as a two-dimensional Places array over which a number of nomads, each controlled by 

an individual agent and denoted as a red dot in the map, chooses the next un-occupied location to migrate 

to every iteration. 

The steps to develop this multi-agent and spatial simulation program is similar to the above Wave2D 

example with only a few extra steps to add agents to the simulation.  First, create a class that inherits from 

the Place and Agent classes, in this example Land and Nomad respectively.  Second, create call methods 

within the classes and assign them function IDs.  Lastly, create a driver program that will run the 

simulation. 

 

The simulation starts with three parameters such as a map size, a given nNomads number of nomads and 

max-Time to finish the simulation.  Then, it invokes the MASS library, creates a land array and distributes 

nomad objects on it.  It also sets up communication links from each array element to its four neighbors.  

Thereafter, the program enters a cyclic simulation where each iteration exchanges the population status 

among all array elements with Places.exchangeAll( ), decides each nomad’s next destination, and moves 

it there with Agents.callAll( ) and Agents.manageAll( ). 

 

The same application can also be developed using a combination of MPI and OpenMP.  With this 

approach, in addition to instantiating and distributing an array that represents the simulation space array 

elements across multiple MPI ranks, which involves a series of MPI send/receive function calls, adding 

multi-agent functionalities requires instantiating a list of agents that represents Nomad and distribute list 

elements across multiple computing nodes in the same manner.   It is up to the application developer to 

keep track of the process each nomad currently resides on and develop inter-process communication 
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strategies with the available interfaces MPI provides that will facilitate agent migration from one process 

to another.  Once the multi-process parallelization is complete, the application developer then has to 

utilize OpenMP to take advantage of multi-core CPUs by strategically enclosing the simulation loops 

with OpenMP compiler directives while identifying critical sections to avoid performance degradation. 

 

Adding agents on top of a distributed array translates to another layer of programming complexity with 

traditional MPI/OpenMP approach, whose individual behavior can be easily handled in parallel with the 

MASS library. 

 

3.1.3 Summary 

 

The above two examples demonstrate two programming advantages of the MASS library.  One is a clear 

separation of the simulation scenario from the simulation models.  The main( )  function in both Wave2D 

and RandomWalk works as a scenario that introduces necessary models, instantiates/constructs entities 

and controls their interaction.  This separation allows model designers to focus on each model design.  

The other advantage is automatic parallelization.  The MASS library construct the simulation space array 

over multiple computing nodes, populates mobile agents on it as maintaining the mobile agent to 

simulation space array proximity, and calls their functions in parallel.  These advantages can be applied to 

other multi-agent spatial simulations such as Fourier’s heat simulation and artificial societies. 

 

3.2 Execution Performance Analysis 

 

Performance evaluation was conducted in the following areas: computation granularity, simulation size 

granularity, and application performance.  All tests were conducted on a cluster of nodes each equipped 

with similarly configured dual 3.2 Xeon Ghz Intel processor with 1 GB of memory.  The master node has 

an Intel Xeon E5520 processor with 6 GB of memory.   

 

3.2.1 Data Size and Computation Granularity Analysis 

 

(1) Places Simulation Size Granularity  

 

First, we evaluated the performance of multi-threaded implementation of the MASS library.  Multi-

threaded simulation size granularity test was used to determine how large the simulation size needs to be 

in order to benefit from multi-threaded execution on a single node with up to 6 hardware threads.  This 
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test was conducted for 1000 iterations.  Each iteration contains a single CallAll( ) and ExchangeAll( ), 

each having one iteration of floating point multiplications while the simulation size increases from 100 to 

500.  The results presented in Figure 9 indicate near linear scaling even with a small simulation size such 

as a 100x100 grid for up to four threads.  

 

 

 
Figure 9. Multi-Threaded Places Granularity 

 

The results demonstrated in figure 9 indicate that performance increases in a near linear fashion with 

additional threads, and the lab machines are configured to support up to four hardware threads, with the 

exception of the master node that can support up to six threads.  Therefore, all tests from this point on 

were performed with one main thread and three worker threads for a total of four threads on each 

computing node for maximum performance. 

 

Multi-threaded and multi-process Simulation size granularity test was performed to determine how large 

the simulation size needs to be in order to observe tangible performance increase as more computing 

nodes are added to the simulation.  This test was conducted for 1000 iterations.  Each iteration contains a 

single CallAll( ) and ExchangeAll( ) with one iteration of floating point multiplications to simulate a real 

world simulation, and the master node collects results once every 10 iterations while the simulation size 
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increases from 100 to 500 to provide near real time update to the user.  This is particularly straining on 

the master node and is a very network performance bound operation. 

 

Figure 10 shows that there is no tangible performance gain when the simulation size is smaller than a 300 

by 300 grid, and the multi-node performance is bottle-necked by the master node and the network latency, 

but the performance increase can be observed when the simulation size increases to 500 by 500. 

 

 
Figure 10. Multi-threaded and Multi-Process Places Granularity 
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expected since this simulates an embarrassingly parallel application where the user is only interested in 

the end result. 

 

 

 
Figure 11. Performance of CallAll 

 

In certain applications, user expects periodic updates of simulation states.  Figure 12 shows the 

performance of callAll( ) where the intermittent results are collected by the master node once every 10 

iterations.  The test was conducted using a simulation space of 500 by 500 grid for 1000 iterations.  Each 

iteration contains a single callAll( ) call while the computation granularity increases from 1 to 500 

iterations of floating point operations.   

 

Performance advantage a single node holds over multiple nodes can be observed with fine to medium 

computation granularity, and the performance gain is minimal with additional computing nodes due to the 

fact that frequent result collection introduces large network overhead with multiple nodes.  However, as 

the computation granularity increases to 100 iterations of floating point computation, the performance of 

two nodes starts to outperform single node execution as the network overhead starts to be outweighed by 

the heavy computation, and the performance of 16 nodes finally shows improvement over 8 nodes when 

the granularity is increased to 500 iterations of floating point multiplications. 
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Figure 12. Performance of CallAll with Return Values 

 

exchangeAll( ) performance was evaluated using the same criteria as the test above.  Figure 13 shows that 

the single node outperformed multiple nodes up until the computation granularity increases to 100 

iterations of floating point multiplications, and the increase is not as observable as the increase gained 

from parallel execution of callAll( ) due to the fact that each exchangeAll ( ) call involves communication 

with the nearest neighbors, however, the result indicates favorable performance gain as more computing 

nodes are added, and computation granularity is at least more than 100 iterations of floating point 

multiplication in such a network performance bound execution. 
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Figure 13. Performance of ExchangeAll with Return Values 

 

(3) Agents Granularity 

 

Agents granularity test was performed to see how many agents need to be created and distributed in order 

to observe tangible performance increase as more computing nodes are added to the simulation.  This test 

was conducted for 1000 iterations on a 500 by 500 simulation grid with agents evenly distributed.  Each 

iteration contains an Agents.callAll( ) function call with one iteration of fine-grained floating point 

multiplications and an Agent.migrate( ) call.  Results are collected by the master node once every 10 

iterations.   
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acknowledgement message is sent when there are no agents to send for migrate, which results in a low 

network overhead and little computation overhead. 

 

 
Figure 14. Agents Granularity 
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which is particularly dependent on the network and the master node performance.  The performance gain 

with additional nodes is still desirable. 

 

 
Figure 15. Total Execution Time of Wave 2D 

Now we take a closer look at the ExchangeAll( ) performance where the application spends the majority 

of the time processing.  Figure 16 demonstrates that as more computing nodes are added into the 
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Figure 16. Total ExchangeAll Execution Time 
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3.2.3 Application Performance: Agents 

 

This evaluation focuses on the agent evaluation, using RandomWalk. 

 

Based on the performance results of agent and simulation size granularity shown in figure 14 and 10 

respectively, simulation size of 500 by 500 with 1000 simulation iterations and 300000 agents were 

selected to meet the minimum performance scalability requirements.   

 

Figure 17 demonstrates the performance.  The blue bars (bars on the left) show the execution performance 

of RandomWalk application where each iteration contains a Agents.callAll( ) , Agents.manageAll( ) and 

Places.callAll( ) to collect results once every 10 iterations.  The performance increase with additional 

nodes exhibits similar pattern as the Places.exchangeAll( ) execution performance due to the fact that 

Agents.migrate( ) uses the same logic.   

 

The red bars (bars on the right) demonstrate the execution performance where each iteration contains   

Agents.callAll( ),  Agents.manageAll( ), Places.exchangeAll( ) to update neighboring cells and 

Places.callAll( ) to collect results once every 10 iterations.  This simulates a situation where fine-grained 

computation is bottlenecked by the master node and the network performance as each iteration requires a 

node to exchange information with neighboring nodes twice.  The results demonstrate that even with 

frequent periodic result collection by the master node, the performance increase is noticeable when more 

computing nodes are added to the simulation, and in all situations, multiple computing nodes outperform 

single computing node performance even with such fine grained computation. 
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Figure 17. Execution Performance of RandomWalk 

 

3.3 Summary 

 

Execution performance results demonstrate that when the user is only interested in the end result, the 

performance increase is near linear regardless of computation granularity, and in applications where users 

require intermittent updates of simulation states, having additional nodes still provides performance 

enhancement for medium to coarse grained computation that is in-line with network bound, centralized 

management style where the performance is bottlenecked by the master node. 

 

Based on the performance evaluation results, the minimum condition to benefit from automatic parallel 

execution using the MASS library is as follows: 

 Places (Simulation size): 500 x 500. 

 Agents: 300,000 over 500 x 500. 

 Computation granularity:  

o If intermittent updates are required: 100 floating point operations. 

o If only end result is required: 1 floating point operation. 
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Chapter 4: Related Work 

 

This chapter differentiates MASS from its related work in two major aspects: (1) distributed shared arrays 

and (2) parallel multi-agent simulation environments. 

 

4.1 Distributed Array 

 

Example systems supporting distributed shared arrays include UPC: Unified Parallel C [11], Co-Array 

Fortran [8] and GlobalArray [7].  UPC allocates global memory space in the sequential consistency model, 

which is then shared among multiple threads running on different computing nodes.  Co-Array Fortran 

allows “so-called” images, (i.e. different execution entities including ranks, processes and threads) to co-

allocated, to perform one-sided operations onto, and to synchronize on shared arrays.    

 

GlobalArray (GA) facilitates not only one-sided but also collective operations onto global arrays that are 

shared among different computing nodes.  Parallelization of user application is done with the use of 

Message Passing Interface (MPI), and GA provides various degrees of control to the application 

developer to exploit data locality for increased performance and multiple levels of memory hierarchy for 

data access optimization.  However, all of the performance optimization features GA offers require 

advanced understanding of parallel programming paradigm, whereas, MASS aims to ease application 

development by hiding parallel programming complexity by exposing a set of interfaces to the user to 

easily manipulate the behavior of each individual cell (array element) in parallel with implicit 

synchronization. 

 

Although MASS has a similarity as these language-based runtime systems in allocating global shared 

arrays, it is unique in implementing both one-sided and collective operations as the form of user-defined 

remote method invocations rather than providing users with a system-predefined operations.  In particular, 

exchangeAll/Some operations in MASS do not invoke a method call to each array element, but rather 

invoke a parallel call from each to other elements (In other words, inter-element parallel calls). 

 

4.2 Multi-Agents 

 

Most multi-agent simulation environments such as PDES-MAS [5] and MACE3J [2] focus on parallel 

execution of coarse-grained cognitive agents, each with rule-based behavioral autonomy.  These systems 

provide agents with interest managers that work as inter-agent communication media to exchange spatial 
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information as well as multi-cast an event to agents.  From the viewpoints of agent-to-space or agent-to-

event proximity, PDES-MAS recursively divides each interest manager into child managers, structures 

them in a hierarchy, and maps them over a collection of computing nodes for parallelization.  MASS is 

different from these systems in handling fine-grain reactive agents that sustain a partial view of their 

entire space and interact with other agents in their neighborhood.  Although an array element in MASS 

can be considered as interest manager in PDES-MAS and MACE3J, MASS instantiates a large number of 

array elements (i.e. interest managers), and define their logical connection with exchangeAll/Some 

functions. 

 

Another similar framework to consider is Nomadic Threads [12].  Nomadic Threads also places emphasis 

on parallel execution of coarse-grained cognitive agents that reside on top of a distributed array.    

Agent’s autonomy is achieved through thread migration, and it is able to take advantage of data locality 

by processing all computation locally before migrating to a different computing node and ultimately 

migrating back to the user’s computer where the results will be stored.  Similarly, MASS deploys 

multiple agents that reside on top of a distributed array.  However, agents in MASS are fine-grained 

reactive agents that can perform tasks in parallel, and whenever migration is required, only the current 

states of an agent are transferred to the destination host for re-instantiation.  In contrast to Nomadic 

Threads’ strong migration where execution states of a thread are required to be transferred to the 

destination host, MASS agent migration can be quickly performed in parallel with little implication on 

performance, and have the ability to facilitate inter-agent communication whenever desired by the 

application developer with the exposed interfaces such as the exchangeAll function. 

 

In summary, MASS offers a unique approach in facilitating user-defined inter-element communication in 

distributed arrays and realizing fine-grain reactive agents, each interacting with others through numerous 

array elements. 
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Chapter 5: Conclusion 

 

The MASS library is intended to facilitate entity-based simulation for on-the-fly sensor-data analysis.  We 

have demonstrated the programming advantages in using the MASS library for such simulation as well as 

its highly scalable performance in parallel execution of fine-to-medium grained computation.  This work 

is a proof of concept that MASS is an excellent parallel execution platform that is centered on the ease of 

use aspect and provides a scalable solution for entity based simulations.  The MASS library has ample 

room for further performance enhancements to achieve competitive performance compared with similar 

execution platforms. 

 

5.1 Result Statement 

 

The MASS library provides application developers with an easy-to-use parallelization framework that is 

highly scalable.  Its unique approach is well suited for model based simulations where application 

developers can focus on the behavior of each individual entity without having any knowledge of complex 

parallelization techniques.  

 

5.2 Problems Encountered 

 

During the development of the MASS library, it became immediately apparent that the multi-threaded 

nature of the library would require the use of shared memory, which resulted in an over-abundance of 

global variable declarations that are needed for thread synchronization.  As such, for optimal performance, 

the master node needs to be the most capable node in the cluster and is oftentimes the bottle neck in the 

MASS execution performance. 

 

The machines utilized in the performance evaluation are shared among all students on campus.  There 

were times where tests conducted would have very different results using the same computing nodes.  To 

better validate the test results, all tests were run multiple times and any outliers were removed from the 

results.  Conducting large tests with complex simulation applications that would consume all resources on 

shared computing nodes were prohibitive as all students on campus have equal access to the equipment.  

The largest test size was restricted to 500 by 500, and any higher would render multiple computing nodes 

unusable. 
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5.3 Future Work 

 

MASS is an on-going project and is a part of the Sensor Grid integration.  The current implementation of 

MASS is missing some multi-agent functionality, which will be implemented and tested in the near future.  

There is also room for more performance optimization in the current incarnation.  For instance, the 

Agent’s migrate( ) is currently locally handled in parallel by the worker thread pool, but the remote 

migration is handled by one single thread.  This can be expanded to multi-thread for enhanced 

performance similar to Places exchangeAll/Some functions.  The next step with the Java version is to 

perform benchmarks using Java-Grande suite and further fine-tune the library. 

 

There are also multiple versions of MASS currently in development to support different platforms such as 

a version to support CUDA based Nvidia GPU and a version to support C++.  In the near future, we hope 

to combine the C++ and CUDA/OpenCL versions to be able to utilize a cluster of computing nodes each 

having a high performance GPU to achieve supercomputer-like performance. 
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Appendix A: Source Code and User Manual 
 
 
The MASS library source code and user manual are available for download on the UWB 
distributed systems lab website at 
http://depts.washington.edu/dslab/SensorCloud/index.html 
 

  

http://depts.washington.edu/dslab/SensorCloud/index.html
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Appendix B: Detailed Language Specification 

 
public class Places 

 
Public Places( int handle, String className, Object argument, int… 

size ) 

Instantiates a shared array with “size” from the “className” class as 

passing an Object argument to the “className” constructor. This array 

is associated with a user-given handle that must be unique over 

machines. 
public int getHandle( ) 

Returns the handle associated with this array. 
public int[] size( ) 

Returns the size of this multi-dimensional array. 
public void callAll( int functionId ) 

Calls the method specified with functionId of all array elements. Done 

in parallel among multi-processes/threads. 
public void callAll( int functionId, Object argument ) 

Calls the method specified with functionId of all array elements as 

passing an Object argument to the method. Done in parallel among 

multi-processes/threads. 
public Object[] callAll( int functionId, Object[] arguments ) 

Calls the method specified with functionId of all array elements as 

passing arguments[i] to element[i]’s method, and receives a return 

value from it into Object[i]. Done in parallel among multi-

processes/threads. In case of a multi-dimensional array, “i” is 

considered as the index when the array is flattened to a single 

dimension. 
public void callSome( int functionId, int... index ) 

Calls the method specified with functionId of one or more selected 

array elements as passing. If index[i] is a non-negative number, it 

indexes a particular element, a row, or a column. If index[i] is a 

negative number, say –x, it indexes every x element. Done in parallel 

among multi-processes/threads. 
public void callSome( int functionId, Object argument, int... index ) 

Calls the method specified with functionId of one or more selected 

array elements as passing an Object argument to the method. The 

format of index[] is the same as the above callSome( ). Done in 

parallel among multi-processes/threads. 
public Object[] callSome( int functionId, Object[] argument, int... index ) 

Calls the method specified with functionId of one or more selected 

array elements as passing argument[i] to element[i]’s method, and 

receives a return value from it into Object[i]. The format of index[ ] is 

the same as the above callSome( ). Done in parallel among multi-

processes. In case of a multi-dimensional array, “i” is considered as the 

index when the array is flattened to a single dimension. 
public void exchangeAll( int handle, int functionId, Vector<int[]> 

destinations ) 
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Calls from each of all cells to the method specified with functionId of 

all destination cells, each indexed with a different Vector element. 

Each vector element, say destination[] is an array of integers where 

destination[i] includes a relative index (or a distance) on the coordinate 

i from the current caller to the callee cell. The caller cell’s outMessage, 

(i.e., an Object) is a set of arguments passed to the callee’s method. 

The caller’s inMessages[], (i.e., an array of Objects) stores values 

returned from all callees. More specifically, inMessages[i] maintains a 

set of return values from the i
th

 callee. 
public void  exchangeSome( int handle, int functionId, Vector<int[]> 

destinations, int... index) 

Calls from each of the cells indexed with index[ ] (whose format is the 

same as the above callSome( )) to the method specified with functionId 

of all destination cells, each indexed with a different Vector element. 

Each vector element, say destination[ ] is an array of integers where 

destination[i] includes a relative index (or a distance) on the coordinate 

i from the current caller to the callee cell. The caller cell’s 

outMessages[], (i.e., an array of Objects) is a set of arguments passed 

to the callee’s method. The caller’s inMessages[], (i.e., an array of 

Objects) stores values returned from all callees. More specifically, 

inMessages[i] maintains a set of return values from the i
th

 callee. 

 

public abstract class Place 

 
public Place( Object args ) 

Is the default constructor. No primitive data types can be passed to the 

methods, since they are not derivable from the “Object” class. 
public final 

int[] 

size 

Defines the size of the matrix that consists of application-specific places. 

Intuitively, size[0], size[1], and size[2] correspond to the size of x, y, and 

z, or that of i, j, and k. 

public final 

int[] 

index 

Is an array that maintains each place’s coordinates. Intuitively, index[0], 

index[1], and index[2] correspond to coordinates of x, y, and z, or those of 

i, j, and k. 

public Vector agents 

Includes all the agents residing locally on this place. 

public 

boolean[] 

eventIds 

includes eventIds[0] through to eventIds[9], each corresponding to event 1 

through to 10. If eventIds[i] is set true, Agents.manage( ) wakes up all 

agents sleeping on event i +1. After a call from Agents.mange( ), 

eventIds[i] is resent false. 
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public static 

Object 

callMethod( int functionId, Object[] arguments ) 

Is called from Places.callAll( ), callSome( ), callStatic( ), exchangeAll( ), 

and exchangeSome( ); and invokes mass_0, mass_1, mass_2, mass_3, or 

mass_4 whose postfix number corresponds to functionId. An application 

may override callMethod( ) so as to direct Places to invoke an application-

specific method 
public Object outMessages 

Stores a set arguments to be passed to a set of remote-cell functions that 

will be invoked by exchangeAll( ) or exchangeSome( ) in the nearest 

future. 
public 

Object[] 

inMessages 

Receives a return value in inMessages[i] from a function call made to the 

i-th remote cell through exchangeAll( ) and exchangeSome( ). 

 
public class Agents  

 

 
Public Agents( int handle, String className, Object argument, 

Places places, int initPopulation ) 

Instantiates a set of agents from the “className” class, passes the 

“argument” object to their constructor, associates them with a given 

“Places” matrix, and distributes them over these places, based the 

map( ) method that is defined within the Agent class. If a user does not 

overload it by him/herself, map( ) uniformly distributes an 

“initPopulation” number of agents. If a user-provided map( ) method is 

used, it must return the number of agents spawned at each place 

regardless of the initPopulation parameter. Each set of agents is 

associated with a user-given handle that must be unique over 

machines. 
public int getHandle( ) 

Returns the handle associated with this agent set. 
public int[] nAgents( ) 

Returns the total number of agents. 
public void callAll( int functionId ) 

Calls the method specified with functionId of all agents. Done in 

parallel among multi-processes/threads. 
public void callAll( int functionId, Object argument ) 

Calls the method specified with functionId of all agents as passing an 

Object argument to the method. Done in parallel among multi-

processes/threads. 
public Object[] callAll( int functionId, Object[] arguments ) 

Calls the method specified with functionId of all agents as passing 

arguments[i] to agent[i]’s method, and receives a return value from it 

into Object[i]. Done in parallel among multi-processes/threads. The 

order of agents depends on the index of a place where they resides, 

starts from the place[0][0]…[0], and gets increased with the right-most 

index first and the left-most index  last. 
public void manageAll( ) 
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Updates each agent’s status, based on each of its latest migrate( ), 

spawn( ), kill( ), sleep( ), wakeup( ), and walekupAll( ) calls. These 

methods are defined in the Agent base class and may be invoked from 

other functions through callAll and exchangeAll. Done in parallel 

among multi-processes/threads. 
public void sortAll( boolean descending ) 

Sorts agents within each place in the descending order of their “key” 

values. 
public void exchangeAll( int handle, int functionId ) 

Allows each agent to call the method specified with functionId of all 

the other agents residing within the same place as where the calling 

agent exists as well as belonging to the agent group with “handle”. The 

caller agent’s outMessage, (i.e., an Object) is a set of arguments passed 

to the callee’s method. The caller’s inMessages[], (i.e., an array of 

Objects) stores values returned from all callee agents. More 

specifically, inMessages[i] maintains a set of return values from the i
th

 

callee. 

 
public abstract class Agent 

 
public Agent( Object args ) 

Is the default constructor. No primitive data types can be passed to the 

methods, since they are not derivable from the “Object” class. 
public Place place 

Points to the current place where this agent resides. 

private int[] index 

Is an array that maintains the coordinates of where this agent resides. 

Intuitively, index[0], index[1], and index[2] correspond to coordinates of 

x, y, and z, or those of i, j, and k. 

Public final 

int 

agentId 

Is this agent’s identifier. It is calculated as: the sequence number * the size 

of this agent’s belonging matrix + the index of the current place when all 

places are flattened to a single dimensional array. 

Public final 

int 

parented 

Is the identifier of this agent’s parent. 

private int newChildren 

Is the number of new children created by this agent upon a next call to 

Agents.manageAll( ). 

private 

Object[] 

arguments 

Is an array of arguments, each passed to a different new child. 

private 

boolean 

alive 

Is true while this agent is active. Once it is set false, this agent is killed 

upon a next call to Agents.manageAll( ). 
private int eventId 

indicates which event this agent sleeps on. The eventId should be between 

1 and 10. All the other numbers mean that the agent does not sleep. 
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private int Key 

Is the value used to sort agents. 

public static 

int 

map( int maxAgents, int[] size, int[] coordinates ) 

Returns the number of agents to initially instantiate on a 

place indexed with coordinates[]. The maxAgents parameter 

indicates the number of agents to create over the entire 

application. The argument size[] defines the size of the 

“Place” matrix to which a given “Agent” class belongs. The 

system-provided (thus default) map( ) method distributes 

agents over places uniformly as in: 

            maxAgents / size.length  

The map( )  method may be overloaded by an application-

specific method. A user-provided map( ) method may ignore 

maxAgents when creating agents. 

public 

boolean 

migrate( int... index ) 

Initiates an agent migration upon a next call to Agents.manageAll( ). More 

specifically, migrate( ) updates the calling agent’s index[]. 
public void create( int numAgents, Object[] arguments ) 

Spawns a “numAgents’ of new agents, as passing arguments[i] to the i-th 

new agent upon a next call to Agents.manageAll( ). More specifically, 

create( ) changes the calling agent’s newChildren. 
public void kill( ) 

Termiantes the calling agent upon a next call to Agents.manageAll( ). 

More specifically, kill( ) sets the “alive” variable false. 
public 

boolean 

sleep( int eventId )  

Puts the calling agent to sleep on a given eventId whose value should be 1 

through to 10. If eventId is not in the range of 1 through to 10, the agent 

will not be suspended. The sleep( ) function returns true if the agent is 

suspended successfully. 
public void wakeup( int eventId )  

Wakes up only one agent that is sleeping on a given eventId within the 

same place as where this calling agent resides. 
public void wakeupAll( int eventId )  

Wakes up all agents that are sleeping on a given eventId within the same 

place as where this calling agent resides. 
public void setKey( int value ) 

Substitutes the calling agent’s “key” variable a given value. It is used for 

sorting agents within the same place. 
public Object callMethod( int functionId, Object[] arguments ) 

Is called from Agents.callAll( ) and exchangeAll( ), and invokes mass_0, 

mass_1, mass_2, mass_3, or mass_4 whose postfix number corresponds to 

functionId. An application may override callMethod( ) so as to direct 

Agents to invoke an application-specific method 

public Object outMessages 

Stores a set arguments to be passed to a set of remote-cell functions that 

will be invoked by exchangeAll( ) in the nearest future. 
public 

Object[] 

inMessages 

Receives a return value in inMessages[i] from a function call made to the 

i-th remote cell through exchangeAll( ). 
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Appendix C: Wave2D Source Code 
 
 1. import MASS.*;             // Library for Multi-Agent Spatial Simulation 

 2. import java.util.*;        // for Vector 

 3. import java.awt.*;         // uses the abstract windowing toolkit 

 4. import java.awt.event.*;   // also uses key events so we need this 

 5. 

 6. public class Wave2D extends Place { 

 7.     // constants 

 8.     public static final int init_ = 0; 

 9.     public static final int computeWave_ = 1; 

10.     public static final int exchangeWave_ = 2; 

11.     public static final int collectWave = 3; 

12.     public static final int startGraphics_ = 4; 

13.     public static final int writeToGraphics_ = 5; 

14.     public static final int finishGraphics_ = 6; 

15. 

16.     // wave height at each cell 

17.     // wave[0]: current, wave[1]: previous, wave[2]: one more previous height 

18.     double[] wave = new double[3]; 

19. 

20.     int time = 0; 

21.     int interval = 0; 

22. 

23.     // wave height from four neighbors: north, east, south, and west 

24.     private final int north = 0, east = 1, south = 2, west = 3; 

25.     double[] neighbors = new double[4]; 

26. 

27.     // simulation constants 

28.     private final double c  = 1.0; // wave speed 

29.     private final double dt = 0.1; // time quantum 

30.     private final double dd = 2.0; // change in system 

31. 

32.     // the array size and my index in (x, y) coordinates 

33.     private int sizeX, sizeY; 

34.     private int myX, myY; 

35. 

36.     /** 

37.      * Is the constructor of Wave2D. 

38.      * @param interval a time interval to call writeToGraphics( ) 

39.      */ 

40.     public Wave2D( Object interval ) { 

41.  this.interval = ( ( Integer )interval ).intValue( ); 

42.     } 

43. 

44.     public static Object callMethod( int funcId, Object args ) { 

45.  switch( funcId ) { 

46.  case init_: return init( args ); 

47.  case computeNewWave_: return computeNewWave( args ); 

48.  case exchangeWave_: return ( Object )exchangeWave( args ); 

49.  case collecdtWave_: return ( Object )collectWave( args ); 

50.  case startGraphics_: return startGraphics( args ); 

51.  case writeToGraphics_: return writeToGraphics( args ); 

52.  case finishGraphics_: return finishGraphics( args ); 

53.  } 

54.  return null; 

55.     } 

56. 

57.     /** 

58.      * Since size[] and index[] are not yet set by 

59.      * the system when the constructor is called, this init( ) method must 

60.      * be called "after" rather than "during" the constructor call 
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61.      * @param args formally declared but actually not used 

62.      */ 

63.     public Object init( Object args ) { 

64.  sizeX = size[0]; sizeY = size[1]; // size  is the base data members 

65.  myX = index[0];  myY = index[1];  // index is the base data members 

66. 

67.  // reset the neighboring area information. 

68.  neighbors[north] = neighbors[east] = neighbors[south] =  

69.      neighbors[west] = 0.0 

70. 

71.  return null; 

72.     } 

73. 

74.     /** 

75.      * Compute this cell's wave height at a given time. 

76.      * @param arg_time the current simulation time in Integer 

77.      */ 

78.     public Object computeWave( Object arg_time ) { 

79.  // retrieve the current simulation time 

80.  time = ( Integer )arg_time.intValue( ); 

81. 

82.  // move the previous return values to my neighbors[]. 

83.  if ( inMessage != null ) { 

84.      for ( int i = 0; i < 4; i++ ) 

85.   neighbors[i] = ( Double )inMessage[i].doubleValue( ); 

86.  } 

87. 

88.  if ( myX == 0 || myX == sizeX - 1 || myY == 0 || myY == sizeY ) { 

89.      // this cell is on the edge of the Wave2D matrix 

90.      if ( time == 0 ) 

91.   wave[0] = 0.0; 

92.      if ( time == 1 ) 

93.   wave[1] = 0.0; 

94.      else if ( time >= 2 ) 

95.   wave[2] = 0.0; 

96.  } 

97.  else { 

98.      // this cell is not on the edge 

100.      if ( time == 0 ) { 

101.        // create an initial high tide in the central square area 

102.   wave[0] =  

103.       ( sizeX * 0.4 <= myX && myX <= sizeX * 0.6 && 

104.         sizeY * 0.4 <= myY && myY <= sizeY * 0.6 ) ? 20.0 : 0.0; 

105.   wave[1] = wave[2] = 0.0; 

106.      } 

107.      else if ( time == 1 ) { 

108.   // simulation at time 1 

109.   wave[1] = wave[0] + 

110.       c * c / 2.0 * dt * dt / ( dd * dd ) * 

111.       ( neighbors[north] + neighbors[east] + neighbors[south] +  

112.         neighbor[west] - 4.0 * wave[0] ); 

113.      }  

114.      else if ( time >= 2 ) { 

115.   // simulation at time 2 

116.   wave[2] = 2.0 * wave[1] - wave[0] + 

117.       c * c * dt * dt / ( dd * dd ) * 

118.       ( neighbors[north] + neighbors[east] + neighbors[south] +  

119.         neighbors[west] - 4.0 * wave[1] ); 

120.      } 

121.  } 

122.  wave[0] = wave[1]; wave[1] = wave[2]; 

123.  return null; 

124.     } 
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125. 

126.     /** 

127.      * Exchange the local wave height with all my four neighbors. 

128.      * @param args formally declared but actually not used. 

129.      */ 

130.     public Double exchangeWave( Object args ) { 

131.  return new Double( ( ( time == 0 ) ? wave[0] : wave[1] ) ); 

132.     } 

133. 

134.     /** 

135.      * Return the local wave height to the cell[0,0] 

136.      * @param args formally declared but actually not used. 

137.      */ 

138.     public Double collectWave( Object args ) { 

139.  return new Double( wave[2] );  

140.     } 

141. 

142.     // Graphics 

143.     private static final int defaultN = 100; // the default system size 

144.     private static final int defaultCellWidth = 8; 

145.     private static Color bgColor;            //white background 

146.     private static Frame gWin;               // a graphics window 

147.     private static int cellWidth;            // each cell's width in the window 

148.     private static Insets theInsets;         // the insets of the window  

149.     private static Color wvColor[];          // wave color 

150.     private static int N = 0;                // array size 

151.     private static int interval = 1;         // graphic interval 

152. 

153.     // start a graphics window 

154.     public Object startGraphics( Object args ) { 

155.  // define the array size 

156.  N = size[0]; 

157. 

158.        // Graphics must be handled by a single thread 

159.        bgColor = new Color( 255, 255, 255 );//white background 

160. 

161.        // the cell width in a window 

162.        cellWidth = defaultCellWidth / ( N / defaultN ); 

163.  if ( cellWidth == 0 ) 

164.      cellWidth = 1; 

165.         // initialize window and graphics: 

166.         gWin = new Frame( "Wave Simulation" ); 

167.         gWin.setLocation( 50, 50 );  // screen coordinates of top left corner 

168.         gWin.setResizable( false ); 

169.         gWin.setVisible( true );     // show it! 

170.         theInsets = gWin.getInsets(); 

171.         gWin.setSize( N * cellWidth + theInsets.left + theInsets.right, 

172.                       N * cellWidth + theInsets.top + theInsets.bottom ); 

173. 

174.         // wait for frame to get initialized 

175.         long resumeTime = System.currentTimeMillis() + 1000; 

176.         do {} while (System.currentTimeMillis() < resumeTime); 

177. 

178.         // paint the back ground 

179.         Graphics g = gWin.getGraphics( ); 

180.         g.setColor( bgColor ); 

181.         g.fillRect( theInsets.left, 

182.                     theInsets.top, 

183.                     N * cellWidth, 

184.                     N * cellWidth ); 

185. 

186.  // prepare cell colors 

187.         wvColor = new Color[21]; 
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188.         wvColor[0] = new Color( 0x0000FF );   // blue 

189.         wvColor[1] = new Color( 0x0033FF ); 

190.         wvColor[2] = new Color( 0x0066FF ); 

191.         wvColor[3] = new Color( 0x0099FF ); 

192.         wvColor[4] = new Color( 0x00CCFF ); 

193.         wvColor[5] = new Color( 0x00FFFF ); 

194.         wvColor[6] = new Color( 0x00FFCC ); 

195.         wvColor[7] = new Color( 0x00FF99 ); 

196.         wvColor[8] = new Color( 0x00FF66 ); 

197.         wvColor[9] = new Color( 0x00FF33 ); 

198.         wvColor[10] = new Color( 0x00FF00 );  // green 

199.         wvColor[11] = new Color( 0x33FF00 ); 

201.         wvColor[12] = new Color( 0x66FF00 ); 

202.         wvColor[13] = new Color( 0x99FF00 ); 

203.         wvColor[14] = new Color( 0xCCFF00 ); 

204.         wvColor[15] = new Color( 0xFFFF00 ); 

205.         wvColor[16] = new Color( 0xFFCC00 ); 

206.         wvColor[17] = new Color( 0xFF9900 ); 

207.         wvColor[18] = new Color( 0xFF6600 ); 

208.         wvColor[19] = new Color( 0xFF3300 ); 

209.         wvColor[20] = new Color( 0xFF0000 );  // red 

210. 

211.         System.out.println( "graphics initialized" ); 

212.  return null; 

213.     } 

214. 

215.     // update a graphics window with new cell information 

216.     public Object writeToGraphics( Object arg_waves ) { 

217.  Double[] waves = ( Double[] )arg_waves; 

218.  

219.  Graphics g = gWin.getGraphics( ); 

220.  

221.  for ( int i = 0; i < sizeX; i++  )  

222.      for ( int j = 0; j < sizeY; j++ ) { 

223.   // convert a wave height to a color index ( 0 through to 20 ) 

224.   int index = ( int )( wave[i * sizeY + j ] / 2 + 10 ); 

225.   index = ( index > 20 ) ? 20 : ( ( index < 0 ) ? 0 : index ); 

226.    

227.   // show a cell 

228.   g.setColor( wvColor[index] ); 

229.   g.fill3DRect( theInsets.left + myX * cellWidth, 

230.          theInsets.top  + myY * cellWidth, 

231.          cellWidth, cellWidth, true ); 

232.  } 

233.  return null; 

234.     } 

235. 

236.     // finish the graphics window 

237.     public Object finishGraphics( Object args ) { 

238.  Graphics g = gWin.getGraphics( ); 

239.        g.dispose( ); 

240.        gWin.removeNotify( ); 

241.        gWin = null; 

242.  

243.  return null; 

244.     } 

245. 

246.     /** 

247.      * Starts a Wave2 application with the MASS library. 

248.      * @param receives the array size, the maximum simulation time, the graphic 

249.      *        updating time, the number of processes to spawn, and the 

250.      *        number of threads to create. 

251.      */ 
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252.     public static void main( String[] args ) { 

253.  // validate the arguments. 

254.   if ( args.length != 5 ) { 

255.             System.err.println( "usage: " + 

256.                                 "java Wave2D size time graph_interval" + 

257.          "#processes #threads" ); 

258.             System.exit( -1 ); 

259.         } 

260.        int size = Integer.parseInt( args[0] ); 

261.        int maxTime = Integer.parseInt( args[1] ); 

262.        int interval = Integer.parseInt( args[2] ); 

263.  int nProcesses = Integer.parseInt( args[3] ); 

264.  int nThreads = Integer.parseInt( args[4] ); 

265. 

266.  // start MASS 

267.  MASS.init( args, nProcesses, nThreads ); 

268. 

269.        // create a Wave2D array 

270.        Places wave2D = new Places( 1, "Wave2D",  

280.         ( Object )( new Integer( interval ) ),  

281.         size, size ); 

282.        wave2D.callAll( init_, null ); 

283. 

284.  // start graphics 

285.  if ( interval > 0 ) 

286.      wave2D.callSome( startGraphics_, null, 0, 0 ); 

287. 

288.  // define the four neighbors of each cell 

289.  Vector<int[]> neighbors = new Vector<int[]>( ); 

290.  int[] north = { 0, -1 }; neighbors.add( north ); 

291.  int[] east  = { 1,  0 }; neighbors.add( east ); 

292.  int[] south = { 0,  1 }; neighbors.add( south ); 

293.  int[] west  = { -1, 0 }; neighbors.add( west ); 

294. 

295.        Date startTime = new Date( ); 

296. 

297.  // now go into a cyclic simulation 

298.        for ( int time = 0; time < maxTime; time++ ) { 

299.     wave2D.callAll( computeWave_, ( Object )( new Integer( time ) ) ); 

300.     wave2D.exchangeAll( 1, exchangeWave_, neighbors ); 

301.     // at every given time interval, display the array contents 

302.     if ( time % interval == 0 ) { 

303.        Object[] waves = wave2D.callAll( collectWave_, null ); 

304.        wave2D.callSome( writeToGraphics_, waves, 0, 0 ); 

305.     } 

306.        } 

307. 

308.        Date endTime = new Date( ); 

309.        System.out.println( "elapsed time = " + 

310.                            ( endTime.getTime( ) - startTime.getTime( ) ) ); 

311. 

312.  // stop graphics 

313.  if ( interval > 0 ) 

314.      wave2D.callSome( finishGraphics_, null, 0, 0 ); 

315.  

316.  MASS.finalize( ); 

317.     } 

318. } 
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Appendix D: RandomWalk Source Code 
 
  1. import MASS.*;             // Library for Multi-Agent Spatial Simulation 

  2. import java.util.Vector;   // for Vector 

  3. 

  4. // Simulation Scenario 

  5. public class RandomWalk { 

  6.     /** 

  7.      * Starts a RandomWalk application with the MASS library 

  8.      * @param receives the Land array size, the number of initial agents, and 

  9.      *                 the maximum simaution time. 

 10.      */ 

 11.     public static void main( String[] args ) { 

 12.  // validate teh arguments 

 13.  if ( args.length != 3 ) { 

 14.      System.err.println( "usage: " +  

 15.     "java RanodomWalk size nAgents maxTime" ); 

 16.      System.exit( -1 ); 

 17.  } 

 18.  int size = Integer.parseInt( args[0] ); 

 19.  int nAgents = Integer.parseInt( args[1] ); 

 20.  int maxTime = Integer.parseInt( args[2] ); 

 21. 

 22.  // start MASS 

 23.  MASS.init( args ); 

 24. 

 25.  // create a Land array. 

 26.  Places land = new Places( 1, "Land", null, size, size ); 

 27. 

 28.  // populate Nomda agents on the land. 

 29.  Agents nomad = new Agents( 2, "Nomad", null, land, nAgents ); 

 30.  

 31.  // define the four neighbors of each cell 

 32.  Vector<int> neighbors = new Vector<int>( ); 

 33.  int[] north = { 0, -1 }; neighbors.add( north ); 

 34.  int[] east  = { 1,  0 }; neighbors.add( east ); 

 35.  int[] south = { 0,  1 }; neighbors.add( south ); 

 36.  int[] west  = { -1, 0 }; neighbors.add( west ); 

 37. 

 38.  // now go into a cyclic simulation 

 39.  for ( int time = 0; time < maxTime; time++ ) { 

 40.      // exchange #agents with four neighbors 

 41.      land.exchangeAll( 1, Land.exchange, neighbors ); 

 42.      land.callAll( Land.update ); 

 43. 

 44.      // move agents to a neighbor with the least population 

 45.      nomad.callAll( Nomad.decideNewPosition ); 

 46.      nomad.manageAll( ); 

 47.  } 

 48. 

 49.  // finish MASS 

 50.  MASS.finalize( ); 

 51.     } 

 52. } 

 53. 

 54. // Land Array 

 55. public class Land extends Place { 

 56.     // function identifiers 

 57.     public static final int exchange_ = 0; 

 58.     public static final int update_ = 1; 
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 59. 

 60.     /** 

 61.      * Is called from callAll( ) or exchangeAll( ), and forwards this call to  

 62.      * update( ) or exchange( ). 

 63.      * @param funcId the function Id to call 

 64.      * @param args argumenets passed to this funcId. 

 65.      */ 

 66.     public static Object callMethod( int funcId, Object args ) { 

 67.  siwtch ( funcId ) { 

 68.  case exchange_: return exchange( args ); 

 69.  case update_: return update( args ); 

 70.  } 

 71.  return null; 

 72.     } 

 73. 

 74.     int[][] neighbors = new neighbors[2][2]; // keep my four neighbors' #agents 

 75. 

 76.     /** 

 77.      * Is called from exchangeAll( ) to exchange #agents with my four neighbors 

 78.      * @param args formally requested but actuall not used. 

 79.      */ 

 80.     public Object exchange( Object args ) { 

 81.  return new Integer( agents.size( ) ); 

 82.     } 

 83. 

 84.     /** 

 85.      * Is called from callAll( ) to update my four neighbors' #agents. 

 86.      * @param args formally requested but actuall not used. 

 87.      */ 

 88.     public Object update( Object args ) { 

 89.  int index = 0; 

 90.  for ( int x = 0; x < 2; x++ ) 

 91.      for ( int y = 0; y < 2; y++ ) 

 92.   neighbors[x][y] = ( inMessages[index] == null ) ? 

 93.       Integer.MAX_VALUE ?  

 94.       ( Integer )inMessages[index].intValue( ); 

 95.  return null; 

 96.     } 

 97. } 

 98. 

 99. // Nomad Agents 

100. public class Nomad extends Agent { 

101.     /** 

102.      * Instantiate an agent at each of the cells that form a square 

103.      */ in the middle of the matrix 

104.     public static int map( int maxAgents, int[] size, int[] coordinates ) { 

105. 

106.  sizeX = size[0], sizeY = size[1]; 

107.  int populationPerCell = maxAgents / ( sizeX * 0.6 * sizeY * 0.6 ); 

108.  currX = coordinates[0], currY = coordinates[1]; 

109.  if ( sizeX * 0.4 < currX && currX < sizeX * 0.6 && 

110.       sizeY * 0.4 < currY && currY < sizeY * 0.6 ) 

111.      return populationPerCell; 

112.  else 

113.      return 0; 

114.     } 

115. 

116.     // function identifiers 

117.     public static final int decideNewPosition = 0; 

118. 

119.     /** 

120.      * Is called from callAll( ) and forwards this call to  

121.      * decideNewePosition( ) 
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122.      * @param funcId the function Id to call 

123.      * @param args argumenets passed to this funcId. 

124.      */ 

125.     public static Object callMethod( int funcId, Object args ) { 

126.  siwtch ( funcId ) { 

127.  case decideNewPosition_: return decideNewPosition( args ); 

128.  } 

129.  return null; 

130.     } 

131. 

132.     /** 

133.      * Computes the index of a next cell to migrate to. 

134.      * @param args formally requested but actually not used 

135.      */ 

136.     public Object decideNewPositioin( Object args ) { 

137.  int newX = 0;                 // a new destination's X-coordinate 

138.  int newY = 0;                 // a new destination's Y-coordinate 

139.  int min = Integer.MAX_VALUE;  // a new destination's # agents 

140. 

141.  int currX = place.index[0], currY = place.index[1]; // the curr index 

142.  int sizeX = place.size[0]; sizeY = place.size[1];   // the land size 

143. 

144.  for ( int x = 0; x < 2; x++ ) 

145.      for ( int y = 0; y < 2; y++ ) { 

147.   if ( currY < 0 ) 

148.       continue; // no north 

149.   if ( currX >= sizeX ) 

150.       continue; // no east 

151.   if ( currY >= sizeY ) 

152.       continue; // no south 

153.   if ( currX < 0 ) 

154.       continue; // no west 

155.   if ( place.neighbors[x][y] < min ) {  

156.       // found a candidate cell to go. 

157.       newX = x; 

158.       newY = y; 

159.       min = ( Land )place.neigbors[i]; 

160.   } 

161.      } 

162. 

163.  // let's migrate 

164.  migrate( newX, newY ); 

165. 

166.  return null; 

167.     } 

168. } 


