
1

Term report – CSS 600

Introduction
There are many scheduling algorithms out there developed for a distributed system or
to get more fancy “cloud” or grid computing. Most of these algorithms are based on an
advance knowledge or user-specified knowledge about the job duration.
The proposed scheduling algorithm assumes no information about a submitted job. It
generates information about a job’s run at runtime and makes decisions on how to best
run this job to completion. For example, the preemption frequency, and migration
frequency of a job are generated across job preemptions locally and job migrations
across different computing nodes.

Related work

Condor
Condor allows any machine to simultaneously execute jobs and serve as a submission
point. Every machine in the condor system can submit and run batch jobs including the
central manager, which is the central scheduler for the whole system. Condor matches
idle jobs with available machines by using ClassAds. ClassAds are advertised by both
machines and jobs and is a flexible representation of the characteristics and constraints
of machines and jobs in the Condor system.

Open PBS
OpenPBS uses a central scheduler that gets resource requests from a server (on the same
machine or different machine), and then forwards the resource requests to the MOM
(machine oriented mini-server) component. After a resource has been found and
returned by MOM to the scheduler, the scheduler requests job information from the
server, makes a policy decision to run, and sends a run request to the server. The server
eventually sends the job to MOM to run.

Baseline schedulers
Condor and Open PBS would be used as the baseline schedulers for comparison with
the proposed scheduling algorithm. This is because both Condor and Open PBS are
made for batch jobs running in a distributed system. One drawback of these schedulers
is that there is no support for interactive jobs like GUI applications like a text editor, or
word processor.

2

Problem
Job scheduling in distributed systems like Condor migrate jobs based on finding the
best computing nodes to execute batch jobs, however, the frequency migration of these
jobs are not taken into consideration. This migration overhead is unaccounted for but
adds up with disproportionately higher compute-bound batch jobs than others causing
frequent migrations across the pool as the current computing node become “less fit” for
execution.

Preliminary design of scheduler

Hypothesis
Given a set of jobs J, with considerably higher CPU-intensive jobs, scheduling the
higher CPU-intensive jobs using their migration frequency across a pool of computing
nodes would improve their overall runtime efficiency.

Proof by induction
A list of n jobs submitted to the head node of the proposed scheduler would all get a
chance to execute and eventually complete their CPU-burst cycle without risk of
starvation.
Solution: Let P(n) be the proposition that n jobs would complete their CPU-burst
BASIS STEP: P(1) is true, because a job submitted to the head node would get its chance
to execute without preemption if there are no other jobs present. However, if this job
exceeds the maximum preemption frequency, it would be migrated to the remote pool
for scheduling by the migration frequency scheduler. At the worst case, if this job’s
migration count is greater than or equal to the maximum allowable for any job in the
remote pool, it is migrated to the fastest node in the pool for execution. An assumption
in this system is that a job that reaches the remote pool has the highest available
resources and hence, is guaranteed to run to completion.
INDUCTIVE STEP: Prove for P(k), P(k+1), then P(n) – in progress

Algorithms

Preemption Frequency Scheduler, PFS
The PFS schedules jobs on a round robin order to be executed within a specified time
window. A job is preempted if execution is not completed with the time quantum and
this preemption frequency PF, is used to determine local execution versus sending the
job to the remote execution pool.
Variables:
PF: Preemption frequency is the running count of the number of times a job has been
preempted

Algorithm PFS (L, n)
Input: L (a list of jobs of size n)
Output: L (a list of completed interactive jobs)

3

Begin
LocalQuantum := MAX_QUANTUM;
LocalPF := MAX_PREEMPTION;
if n = 0 then do nothing
else
 for i := 0 to n do
 job := L[i];
 unpreempted_queue.addToBack(job);
 {check for jobs waiting in the unpreempted_queue}
 while unpreempted_queue.length > 0 do
 job := unpreempted_queue.removeFromFront();
 execute(job);
 while job.is_still_executing & ElapsedTime < LocalQuantum do

 if LocalQuantum >= job.RemainingExecutionTime then
 job.PF = job.PF + 1;
 preempt(job);
 preempted_queue.addToBack(job);
 else if job.RemainingExecutionTime = 0 then
 job.PF = 0;

 {check for jobs waiting in the preempted_queue}
 while preempted_queue.length > 0 do
 job := preempted_queue.removeFromFront();
 if job.PF >= LocalPF then
 remote_queue.addToBack(job);
 else if LocalQuantum * 1.1 >= job.RemainingExecutionTime then
 job.PF = job.PF + 1;
 preempt(job);
 preempted_queue.addToBack(job);
 check (unpreempted_queue);
 else if job.RemainingExecutionTime = 0 then
 job.PF = 0;
 check (unpreempted_queue);
 {check for jobs waiting in the remote_queue}
 while remote_queue.length > 0 do
 job := remote_queue.removeFromFront();
 if unpreempted_queue.length = 0 then
 if preempted_queue.length = 0 then
 unpreempted_queue.addToBack(job);
 else if preempted_queue.length = 0 then
 preempted_queue.addToBack(job);
 else
 job.MF := job.MF + 1;
 preempt(job);
 mobile_agent := job

4

 checkpoint(mobile_agent);
 remote := findMostAvailableRemote();
 send(mobile_agent, remote);
 check (unpreempted_queue);

End

Algorithm findMostAvailableRemote()
Input:
Output: N (most available computing node or least busy node)
begin
 QuickSort_By_CPU_Availability(computing_nodes)
 return computing_nodes[0];
end

Migration Frequency Scheduler, MFS
The MFS schedules a job for execution if it has a higher migration count than other
potential jobs in the queue of jobs; selecting a job at random breaks ties, and a job that
exceeds the maximum migration frequency, MF, is sent to the fastest computing node
and banned for further migrations.
Variables:
MF: Migration frequency is the running count of the number of times a job has been
migrated
PF: Preemption frequency is the running count of the number of times a job has been
preempted
K: KC + KC/R
KC is the communication overhead; KC/R is a job’s checkpoint/restart overhead

Algorithm MFS (M, n, R)
Input: M (List of mobile agents M of size n, to be assigned to nodes R)
Output: Completed status of mobile agent jobs
begin
 available_nodes := R;
 assigned_nodes := 0;
 QuickSort_By_CPU_Availability(available_nodes);

 for i := 0 to n do
 if available_nodes.size > 0 then
 node := available_nodes.removeFromFront();
 job := extract_job(M[i]);
 assigned_nodes.addToBack(node);
 if current_node != node then
 if current_node.CPU_Avail < node.CPU_Avail then
 {attempt to send for another remote node}
 if job.MF <= localMF then
 PFS(job, 1);

5

 else
 job.MF := job.MF + 1;
 send(M[i], node);
 else
 PFS(job, 1);
 else
 PFS(job, 1);
end

Algorithm send(mobile_agent, node)
Input: mobile_agent
Output: Status of send
begin
 QuickSort_By_CPU_Availability(total_nodes);
 if job.MF > MAX_MF then
 job.MF := job.MF + 1;
 send_to_fastest_node(mobile_agent);
 else
 execute_at(mobile_agent, node);
end

Mathematical comparison with related schedulers
TBD

6

Solution

Applications
Some applications of this solution is dependent on the fact that

1. General-purpose commodity machines can be used to execute batch jobs, as well
interactive application programs like: word processors, DVD/music player, and
streaming a YouTube video online.

2. A stream of compute-intensive scientific applications can benefit from the
computational capacity of this scheduling system.

3. Image processing applications would also benefit from this system. The image
processing job can start out as an interactive application with minimal CPU-

7

usage and eventually morph into more CPU-intensive computation which has
the potential of remotely being executed.

Table comparing related schedulers
Feature Scheduler MF Scheduler
Batch jobs Condor, Open PBS Supported
Interactive jobs Supported
Migration-frequency based Supported
Central resource manager Condor, Open PBS N/A
Multiple resource
managers

 Supported – each node has
pool resource information

Conclusion
The proposed algorithm is focused on establishing a correlation between the migration
frequency of CPU-bound (batch) jobs and the average turnaround time of the total jobs
in the system. It is important to note that the interactive (low CPU-bursts) jobs are
relatively unaffected by the migration frequency based scheduling because they do not
participate in migration, however, the preemption based scheduling would also impact
average turnaround time of the jobs in the system. This is because two separate
schedulers – the preemption frequency scheduler, and the migration frequency
scheduler would schedule CPU-bound jobs; this extra overhead would be investigated
and analyzed.

