
TOSA OJIRU 0960921 

1 
 

Implementing Multi-Agents Spatial 
Simulation (MASS) Library on Graphics 
Processing Units 
Term report – summer 2012 

1 Introduction 
Multi-agent spatial simulation (MASS) is a parallel library (Emau, Chuang, & Fukuda, 2011) that 

improves the performance of compute-intensive functions when objects in the library are extended. A 

previous implementation of the MASS library using Java running on multiple CPU cores showed 

improvements on data parallel algorithms but degraded on larger arrays. A new approach is presented 

in this research work by optimizing the algorithm used to perform communication and 

synchronization among the data elements and implementing the library on the graphics processing 

units (GPUs). The Compute Unified Device Architecture (CUDA) (Sanders & Kandrot, 2011) 

programming language (a GPU API developed by NVIDIA) is used to implement the MASS library on 

a manycore single GPU. This research study implements the Schrodinger wave simulation as a multi-

agents simulation and a performance of up to 80% is obtained over the multi-core CPU implementation 

of this wave simulation. 

2 Experimental setup 
Operating system: Red Hat Enterprise Client Linux release 5.8 (Tikanga) 

CPU Core: Intel® Xeon® CPU E5520 @ 2.27GHz 

Number of CPU Cores: 16 

A wave simulation program based on the Schrödinger wave equation (Starr, 1940) was programmed in 

C++, MASS-C++, CUDA, and MASS-CUDA. Each version of the wave simulation is run 10 times, and 

an average of 8 runs is taken after discarding the execution times of the highest and lowest value. 

2.1 Wave2d CPU 

The simulation version of the program is parallelized using OpenMP to execute from 1 up to 16 parallel 

threads. This is repeated for both the C++ and MASS-C++ version of the wave simulation. 

2.2 Wave2d GPU 

The simulation version of the program is parallelized using CUDA to execute up to 256 blocks with up 

to 256 threads in each block. The overall experiment is run by executing increments of 16 blocks with 



TOSA OJIRU 0960921 

2 
 

corresponding increments of 16 threads up to 256 threads and 256 blocks. However, the best 

performing thread/block combination of 192 blocks and 64 threads per block is used for the results. 

3 Results  

3.1 Table 1: Performance improvement of MASS-CUDA over MASS-C++ 

size 
wave2d_cpp 

8 thr (ms) 
wave2d_mass_cpp 8 

thr (ms) 
wave2d_cuda 

192 64 (ms) 
wave2d_mass_cuda 

192 64 (ms) 
mass_cpp 
vs cpp (%) 

mass_cuda 
vs cuda (%) 

mass_cuda 
vs mass_cpp 
(%) 

10000 295.716 675.54 164.612 168.02 -128.44 -2.07 43.18 

40000 1218.17 3095.19 451.571 415.514 -154.09 7.98 65.89 

90000 2541.58 5674.73 925.614 789.667 -123.28 14.69 68.93 

160000 4422.06 9024.16 1526.39 1350.53 -104.07 11.52 69.46 

250000 6553.46 12481.3 2097.79 2143.42 -90.45 -2.18 67.29 

360000 9441.41 18540 2604.39 2479.75 -96.37 4.79 73.74 

490000 11730.7 24941.4 3054.36 3068.4 -112.62 -0.46 73.84 

640000 15854.9 30082.4 3581.71 3460.73 -89.74 3.38 78.17 

810000 19014.2 36475.5 4438.73 4293.8 -91.83 3.27 77.42 

1000000 22763.5 45204.4 5409.2 5078.75 -98.58 6.11 77.69 

1210000 26146.1 54852.1 6341.4 5720.3 -109.79 9.79 78.12 

1440000 30996.4 63529.3 7194.86 6608.75 -104.96 8.15 78.68 

1690000 36231.7 73113.5 8199.62 7592.85 -101.79 7.40 79.04 

1960000 41360.5 82375.1 8881.61 8916.5 -99.16 -0.39 78.44 

2250000 48012.8 94038.5 10604.3 9802.38 -95.86 7.56 79.58 

2560000 52820.2 106346 11413.7 11188.4 -101.34 1.97 78.82 

2890000 61450.6 119909 13031.4 12339 -95.13 5.31 79.92 

3240000 67637.9 136987 15020.3 13860.1 -102.53 7.72 79.51 

3610000 72701.2 156648 17435.6 16404.1 -115.47 5.92 77.44 

4000000 83412.1 172124 16916.5 16661.4 -106.35 1.51 80.03 

 

  



TOSA OJIRU 0960921 

3 
 

3.2 Running wave2d simulation on the CPU and GPU using 100 iterations 

 

 

  



TOSA OJIRU 0960921 

4 
 

3.3 Running wave2d simulation on the CPU and GPU using 1000 iterations 

 



TOSA OJIRU 0960921 

5 
 

 

4 Performance evaluation 
From the results in the previous section, it can be seen that there is up to an 80% performance increase 

when comparing the execution of Wave2d (MASS-C++ version) to Wave2d (MASS-CUDA version). 

This represents the raw performance of running 1000 iterations of the wave simulation program and 

running 10 instances of each, discarding the highest and lowest execution time and getting the average 

of 8 values. 

Running the Wave2d simulation on the CPU by using the MASS-C++ version of the MASS library 

resulted performance hits because of the overhead of using this parallel library. The Wave2d 

simulation program written in C++ is also parallelized so the performance that is seen here is a 

comparison of parallelized Wave2d in C++ versus parallelized Wave2d in MASS-C++. Here the calls to 

the MASS library all take place on the CPU. 

Comparing Wave2d (MASS-CUDA) with Wave2d (CUDA), there is no performance hit of using the 

MASS library functions as can be observed in the MASS-C++ versus C++ version of the wave 

simulation. This is good news because it shows in this instance that MASS causes no overhead when 



TOSA OJIRU 0960921 

6 
 

the MASS library functions are strategically placed in a client code that runs a scientific application like 

this. 

5 Conclusions 
Implementing MASS on the GPU has proven to have some positive results just as was expected with 

up to 80% improvement of running the simulation program on MASS-CUDA (GPU) versus MASS-C++ 

(CPU only). Another outcome of the experiments performed is the overhead that MASS-C++ causes. It 

is tempting to add a comparison for a single threaded run of the wave simulation program 

implemented in C++, and compare directly with the inherently multithreaded version implemented in 

MASS-C++. However, the need for parallelism is not the subject of this research; instead this work 

focuses on how to improve the implementation of a parallel application in order to benefit from 

performance gains by running on the GPU. 

6 Future work 
This research effort focused on showing the performance benefit of implementing the MASS library by 

complementing the CPU with the GPU. In future, this work would be extended to implementation on 

multiple GPUs and other parallel algorithms that might improve the performance of the MASS library 

as a whole. Another future work item would be to implement a source to source translator (Cooper & 

Torczon, 2012) that would completely eliminate the need for the user of the MASS library to implement 

any GPU functions. For example, the user would implement the compute intensive functions (e.g. 

compute_zt()), while the library would take care of generating the appropriate GPU-specific source 

code that would perform its execution on the GPU. 

 

References  

Cooper, K. D., & Torczon, L. (2012). Engineering a compiler (2nd ed.). Amsterdam ; London: 

Elsevier/Morgan Kaufmann.  

Emau, J., Chuang, T., & Fukuda, M. (2011). A multi-process library for multi-agent and spatial 

simulation. Paper presented at the Communications, Computers and Signal Processing (PacRim), 2011 

IEEE Pacific Rim Conference on, 369-375.  

Sanders, J., & Kandrot, E. (2011). CUDA by example: An introduction to general-purpose GPU programming. 

Upper Saddle River ; London: Addison-Wesley.  



TOSA OJIRU 0960921 

7 
 

Starr, D. W. (1940). The schrödinger wave equation from the point of view of singular integral equations. 

Urbana, Ill.:  

 


