
ambitools Documentation

Pierre Lecomte
pierre.lecomte@gadz.org

August 22, 2016

Contents

1 Introduction 2
1.1 Goals of ambitools . 2
1.2 Ambisonics overview . 2

1.2.1 Principles . 2
1.2.2 Spherical coordinate system . 2
1.2.3 Spherical harmonics . 3

2 Installing ambitools 5
2.1 Retrieve ambitools repository . 5
2.2 Dependencies . 5
2.3 Compile the Faust plug-ins . 5
2.4 Local Faust installation . 6
2.5 FaustLive . 6
2.6 Compile the Processing VU-Meter . 6

3 The different tools 6
3.1 Faust . 6

3.1.1 hoa N sources encoder . 7
3.1.2 hoa mic encoder* . 8
3.1.3 hoa decoder * . 10
3.1.4 hoa decoder lebedev50 binaural . 11
3.1.5 hoa panning * . 12
3.1.6 Note about sound field transformation tools in Ambisonic domain 13
3.1.7 hoa mirroring . 14
3.1.8 hoa azimuth rotator . 15
3.1.9 hoa beamforming hypercardioid to mono . 16
3.1.10 hoa beamforming hypercardioid to hoa . 17
3.1.11 hoa beamforming dirac to hoa . 19

3.2 Processing . 21
3.2.1 Spherical VU Meter . 21

3.3 Jconvolver . 22
3.3.1 jconvolver mic* . 22
3.3.2 hrir* . 22

3.4 Pure Data . 23
3.4.1 andOSC.pd for Head Tracking . 23

4 Examples of use 25
4.0.2 Listening to a 3D HOA recording through binaural rendering 25
4.0.3 Spatialize and control the trajectories of flies . 25

1 Introduction

1.1 Goals of ambitools

ambitools is a collection of tools for sound field synthesis using Near-Field Compensated Higher Orders Am-
bisonics (NFC-HOA). For the rest of this document, the denomination Ambisonics will be used for convenience.

1

mailto:pierre.lecomte@gadz.org

ambitools is developped in the context of my PhD on 3D sound field synthesis. The audio processing is coded
in Faust1 (Functional AUdio Stream) which allows to produce efficent C++ code and exports in various DSP
tools format: VST, standalone applications, LV2, etc. Thus, ambitools is multi-platform (although conceived
under Linux/Jack).

The goal of ambitools is mainly to produces several modules to encode, decode and transform 3D synthesized
sound field or 3D recordings in a context of physical sound field synthesis.

The project is open-source under GPL licence. ambitools is thought to be flexible to adapt to your con-
figuration. The Faust code for each tool has an header with several variable that you can change, such as
Ambisonic order M , number of sources N , etc. Thus, if you need an encoder up to order M = 4, for N = 5
sources, you just has to change this two parameters in hoa_encoder_N_sources.dsp and produce de required
plug-in using FaustLive1 for example.

So far, these tools are used to drive the several spherical loudspeakers arrays at Université de Sherbrooke,
Québec, Canada and Conservatoire National des Arts et Métiers, Paris, France.

Hopefully, since Ambisonics are flexible, you can use ambitools with binaural rendering and listen to 3D
sound without the need of a spherical loudspeaker array!

Don’t hesitate to contact me for any suggestions, requirements, critics or even just to tell me you’re using
ambitools !

Pierre Lecomte

1.2 Ambisonics overview

This section presents the basis of Ambisonics for 3D sound field synthesis. It is written with relatively few maths
to focus on the concepts instead of the mathematical rigor, which would be out of scope of this document. If
you want more insights to Ambisonics refer for example to [Daniel, 2000, Poletti, 2005, Ahrens, 2012].

1.2.1 Principles

Ambisonics are some mathematical approaches to represent a sound field in two or three dimensions over a basis
of spherical harmonics. Without giving more mathematical details, Ambisonic main possibilities are displayed
on Fig. 1.

Thus, in accordance to this Fig. 1, ambitools provides tools to:

• Encode a sound field captured by a spherical microphone.

• Encode a sound field from monophonic signals and explicit position in space.

• Transform and manipulate the encoded sound field in Ambisonic domain.

• Decode the sound field over spherical loudspeaker grids or over headphones with binaural convolution.

1.2.2 Spherical coordinate system

Ambisonics are usually described in spherical coordinate systems. In ambitools, the following spherical coordi-
nate system is used and shown in Fig. 2:

x = r cos(θ) cos(δ), y = r sin(θ) cos(δ), z = r sin(δ). (1)

The azimuth angle θ ∈ [0 360◦]. The elevation angle δ ∈ [−90◦ 90◦]. The convention for rotation is
counterclockwise direction (i.e. trigonometric direction).

1.2.3 Spherical harmonics

As mentionned before, Ambisonics describes a sound field over a spherical harmonics basis. Those functions are
directional functions of the variable θ, δ. They are denoted Ymn(θ, δ) where subscript m represent the order of
the spherical harmonic and n its degree. There is several definition for these functions. In ambitools, the N3D
real spherical harmonic definition is used [Daniel, 2000]:

Ymn(θ, δ) =

√
(2m+ 1)εn

(m− |n|)!
(m+ |n|)!

Pm|n|(sin(δ))×

{
cos(|n|θ) if n ≥ 0

sin(|n|θ) if n < 0
, (2)

where Pm|n| are the associated Legendre polynomials of order m and degree |n|, (m,n) ∈ (N,Z) with |n| ≤ m,
and εn = 1 if n = 0, εn = 2 if |n| > 0.

1http://faust.grame.fr

2

http://faust.grame.fr

Natural sound field

Spherical microphone

Virtual sound field

Encoding Decoding

”Sweet Spot”

Restitution

Encoding

Transformations

Monophonic signals

Spatialization

R, θ, δ

Figure 1: Ambisonic principles: A sound field can be captured in three dimensions using spherical microphone
or it can be synthesized with monophonic signals and explicit positions in space. These two approaches result
in an encoded sound field in Ambisonic domain up to order M . In this domain, transformations can be done
such as: sound field mirroring, rotation, warping, directional filtering, etc. Finally, the decoding step computes
the driving signals of the playback loudspeakers to recreate the encoded sound field in a sweet spot region of
space. The decoding can be done over various configurations of speakers and even over headphones!

x

y

z

θ

δ
r

P

O

Figure 2: Spherical coordinate system in use. A point P (x, y, z) is described by radius r, azimuth θ and elevation
δ.

For each order m, there are (2m + 1) spherical harmonics. Thus a basis truncated at order M contains
(M + 1)2 functions. For example, on Fig. 3 are displayed the spherical harmonics up to order M = 5 as balloon
plots.

Thus, a sound field can be described as a linear combination of spherical harmonics. The weights of this
linear combination are called the Ambisonics components or B-Format components. As an example, a sound
field described up to order M = 1 is described with (M + 1)2 = 4 Ambisonics components. At order M = 5
there will be 36 components, etc.

Without giving more details, the concept to retain is that the more components are available to describe
the sound field (i.e. the higher the order), the larger the sweet-spot will be on Fig. 1.

At the moment, ambitools offers the possibility of 3D Ambisonics up to order M = 5. Thus for all the tools
you need to compile, M should be chosen such as M ≤ 5.

3

Figure 3: Balloon-plot of the spherical harmonics up to order M = 5.

2 Installing ambitools

2.1 Retrieve ambitools repository

To install ambitools, simply go on the github repository2 and clone it. To do so, open a terminal in the directory
you’d like to clone the repository and type the following command:

$ git clone https :// github.com/sekisushai/ambitools

To keep the repository up to date, type the following command at the root of the directory ambitools/:

$ git pull

You can also download a .zip file from github3

The resulting ambitools/ folder should have the following structure:

• Documentation/ Everything concerning the documentation (pdfs, including some scientific papers).

• Faust/ Everything written in Faust language (all the ambitools plug-ins + some utilities).

bin/ Compiled plug-ins in various formats.

src/ Source code of the plug-ins.

src/lib/ Shared libraries (spherical harmonics, gui, etc.).

• FIR/ Finite Impulse Response (FIR) filters banks for binaural rendering and spherical microphone equal-
ization filters, to use with Jconvoler4, fast convolution software.

spherical_microphones/ Equalization filters for rigid spherical microphone, such as mh acoustics
EigenMike R©5.

2https://github.com/sekisushai/ambitools
3https://github.com/sekisushai/ambitools/archive/master.zip
4http://kokkinizita.linuxaudio.org/linuxaudio/
5http://www.mhacoustics.com

4

https://github.com/sekisushai/ambitools
https://github.com/sekisushai/ambitools/archive/master.zip
http://kokkinizita.linuxaudio.org/linuxaudio/
http://www.mhacoustics.com

hrir/ Head Related Impulses Responses (HRIR) of several people to use with binaural rendering
over headphones.

• Processing/ Everything written in Processing language, namely the spherical VU-Meter ((see Sec. 3.2.1).

bin/ Compiled spherical VU-Meter in Java for various architectures.

src/ Processing source code.

• PureData/ Everything written in Pure Data (a few sounds generator patches, head-tracking patch and
PlayStation-like remote patch to drive Faust plug-ins with Open Sound Control protocol, OSC).

2.2 Dependencies

Depending on what you’re looking for with the code, the following dependencies should be provided:

Dependency Usage
Osc support Drive the tools standalone tools with OSC.

Java Run the Spherical VU-Meter (see Sec. 3.2.1).
Jconvolver Real-time convolution for binaural rendering or spherical microphone signals filtering.
Processing Edit and compile the Processing code.

Faust, FaustLive Edit and compile the Faust code.

Table 1: Dependencies of ambitools

2.3 Compile the Faust plug-ins

The Faust plug-ins source codes are in the sub-folder Faust/src/.

2.4 Local Faust installation

If you have Faust installed on your machine with the required dependencies, you can run the scripts collection
faust2* to produce the plug-in of your choice in the desired format.

For example, to compile hoa_encoder_N_sources.dsp into a standalone Linux jack-qt application with
OSC support, type the following command in a terminal in the folder \Faust/src

$ faust2jaqt hoa_encoder_N_sources.dsp -osc

2.5 FaustLive

To compile the plug-ins to your requirements, load the chosen plug-in in FaustLive1 and choose Window/

Export As... (see Fig. 4).

Figure 4: FaustLive Export Manager

2.6 Compile the Processing VU-Meter

The Processing source code is in the folder Processing/scr. You should open the file Spherical_VU_Meter

.pde in the Processing editor and select ”File/Export...” to produce a binary application.

5

3 The different tools

This section gives a quick presentation of each tool contained in ambitools.

3.1 Faust

The core of the sound processing is written in Faust language. Note that the majority of the figures presented
in the following section will be screen-shots of the tools compiled as standalone Jack applications for Linux,
using faust2jaqt script. However, thanks to the versatility of Faust language, note that each of these tools
can be compiled for various architecture, using FaustLive1 for example.

6

3.1.1 hoa N sources encoder

• Inputs: N

• Outputs: (M + 1)2

This first tool allows to encode N signal inputs to an 3D Ambisonics scene described with Ambisonics
components signals up to order M (the B-Format). You can choose N and M at the compilation time in file
hoa_encoder_N_sources.dsp. The resulting graphical user interface when using faust2jaqt script is shown
in Fig. 5 for N = 3,M = 5. Each input signal can be encoded in B-Format as a plane wave or a spherical wave.

For the plane wave case, the check-box Spherical Wave should be unchecked. Consequently, the knob
Radius and input entry Speakers Radius are without effect in this case (a plane wave has no distance infor-
mation).

For the spherical wave case, the knob Radius allows to choose the source radius to origin. Note that to repre-
sent a spherical wave in Ambisonic domain, near-field filters are activated [Daniel, 2003, Lecomte and Gauthier, 2015].
Those filters, unstable by nature, are stabilized using the near-field compensation filters from decoding step.
Thus in this case, the radius of the spherical loudspeakers grid should be known prior to decoding and given in
Speakers Radius input entry.

Finally, the outputs of this tool are B-Format signals up to order M . Each order can be muted or each
individual Ambisonic components individually.

Figure 5: hoa_encoder_N_sources plug-in compiled using faust2jaqt script with N = 2 and M = 5. The Gain
knob allows to adjust the input level of the input. Radius knob allows to choose the source distance to origin
in case of spherical wave encoding. Azimuth and Elevation knobs allow to choose the source direction. The
Spherical Wave check-box enables the encoding of spherical wave, using near-field filters. Speakers Radius

sets the radius for the spherical arrays of loudspeakers at decoding stage in case of spherical wave encoding.
Finally, the VU-Meters shows the level of 3D B-Format signals in dBFS up to order M . Each meter as a Mute

check-box and each order as well.

7

3.1.2 hoa mic encoder*

• Inputs: 06, 26, 32, or 50 depending on the configuration.

• Outputs: (M + 1)2

It is possible to encode a natural sound field captured by a rigid spherical microphone, according to Fig. 1.
To do so, the signals from each capsule on the spherical microphone are mixed to operate the Discrete
Spherical Fourier Transform (DSFT) [Lecomte et al., 2015]. Then, the resulting (M + 1)2 components are
filtered to obtain the Ambisonics components. In ambitools, the DSFT projection is done for several spher-
ical rigid spherical microphone configurations using hoa_mic_encoder* tools. The filtering of the resulting
components is done using Jconvolver, a real-time fast convolution software. See Sec. 3.3 for further details.
Note that the filtering of the outputs signals of hoa_mic_encoder* tools is mandatory in order to obtain
the Ambisonics components. The different microphone configuration available in ambitools are 06, 26 or 50
capsules spherical microphone arranged on a Lebedev grid [Lecomte et al., 2015] and a 32 capsules spheri-
cal microphone arranged on a pentakis-dodecahedron grid, i.e. the mh acoustics Eigenmike R© microphone
[Elko et al., 2009]. Those configuration can operate the Spherical Fourier Transform up to order M = 1,
M = 3, M = 5 and M = 4 respectively [Lecomte et al., 2015, Moreau et al., 2006]. The corresponding tools
are named hoa_mic_encoder_lebedev06, hoa_mic_encoder_lebedev26, hoa_mic_encoder_lebedev50 and
hoa_mic_encoder_eigenmike32 respectively. The graphical user interface when using faust2jaqt script is
shown in Fig. 6 for the hoa_mic_encoder_lebedev26 tool compiled with M = 3.

Figure 6: hoa_mic_encoder_lebedev26 compiled using faust2jaqt script with M = 3. The VU-Meters at the
top show the signal level in dBFS of each capsule on the spherical microphone. The VU-Meters at the bottom
show the signal level of each components after the DSFT operation. The check-boxes Mute allow to mute some
components or all components of an order. The knob Gain applies a global gain on the output signals.

Fig. 7 shows the connection in order to obtain the Ambisonics components from the signals of a rigid
spherical microphone. The raw signals issued from the spherical microphone are played using a Digital Audio
Workstation, Ardour 4 in this case. Those signals feed the tool hoa_mic_encoder_lebedev50 in the middle of
Fig. 7. This tool mix the signals to operate the DSFT. The resulting outputs signals are finally filtered using
Jconvolver, on the right of Fig. 7. The outputs of Jconvolver are the Ambisonics components, here up to order
M = 5.

8

Figure 7: Connections in order to obtain the Ambisonics components from the signals of a rigid spherical
microphone. On the left, the 50 outputs of Ardour 4: the 50 signals of the rigid spherical microphone with
a 50-node Lebedev configuration. On the middle, the tool hoa_mic_encoder_lebedev50 which operates the
DSFT. On the right, the filtering of the signals with Jconvolver, the outputs of this box are the Ambisonics
components up to order M = 5. Sceen-shot taken from Claudia under KXStudio Linux distribution.

9

3.1.3 hoa decoder *

• Inputs: (M + 1)2

• Outputs: 06, 26 or 50 depending on the decoder.

Three basic decoders by mode-matching [Daniel, 2000, Poletti, 2005] are available at the moment in am-
bitools: hoa_decoder_lebedev06, hoa_decoder_lebedev26 and hoa_decoder_lebedev50. Those decoders
allow to decode (M + 1)2 Ambisonics signals on Lebedev grids with respectively 6, 26 and 50 loudspeak-
ers [Lebedev, 1975, Lecomte et al., 2015]. Those grids are able to reconstruct the sound field up to order
M = 1, M = 3 and M = 5 respectively. If other decoders are required, you should have a look at the
ambisonic decoder toolbox from Aaron Heller [Heller et al., 2012], or contact me. The graphical user in-
terface when using faust2jaqt script is shown in Fig. 8 for the hoa_decoder_lebedev50 decoder compiled
with M = 5. The decoder can be with or without near-field compensation (NFC) filters [Daniel et al., 2003,
Lecomte and Gauthier, 2015]. Those filters allow to take into account the finite distance of the loudspeakers:
In other terms, if they are disabled, the loudspeakers are modeled as plane-wave generators. In case of spher-
ical wave encoding using the hoa_N_sources_encoder plug-in, the NFC check-box should be unchecked as the
near-field compensation filters are already used at encoding step (see Sec. 3.1.1).

Figure 8: hoa_decoder_lebedev50 compiled using faust2jaqt script with M = 5. The slider Outputs Gain

applies a global gain on all outputs (loudspeaker signals). The slider Inputs Gain applies a global gain on all
inputs (B-Format signals). The VU-Meters Inputs and Outputs give the signals level in dBFS. The check-box
NFC activate or deactivate the near-field compensation filters. The input entry Speakers Radius allows to set
the spherical grid radius. Finally, the check-boxes Mute above all inputs VU-meters allow to mute some specific
B-Format signals. Or, all the signal from an order with Mute check-boxes on side of a VU-Meter group.

Usage with the Spherical VU-Meter Note that when using these tools to drive the Spherical VU-Meter
(Sec. 3.2.1) with OSC, you need to activate OSC transmission mode 2. This is done by launching the tool with
the argument -xmit 2. For example, with the decoder hoa_decoder_lebedev50, the command should be:

$./ hoa_decoder_lebedev50 -xmit 2

10

3.1.4 hoa decoder lebedev50 binaural

• Inputs: (M + 1)2

• Outputs: 2

hoa_decoder_lebedev50_binaural is a decoder which computes directly the binaural signals for left and
right hear from the Ambisonics components. It is construct using a basic decoder for 50-node Lebedev grid
[Lecomte et al., 2015], and Head Related Impulse Response (HRIR) of a dummy head Neumann KU-100 from
[Bernschütz, 2013]. There are (M + 1)2 × 2 Finite Impulse Responses (FIR) filters involved in the process,
with 256-taps each. Thus, this tool can be quite CPU consuming as it applies (M + 1)2 × 2 linear con-
volution operations. The graphical user interface when using faust2jaqt script is shown in Fig. 9 for the
hoa_decoder_lebedev50_binaural binaural compiled with M = 2.

Figure 9: hoa_decoder_lebedev50_binaural compiled using faust2jaqt script with M = 2. The VU-Meters
on top show the signal level of inputs Ambisonics components in dBFS. The check-boxes Mute allow to mute
certain component or all components of an order. The slider Inputs Gain applies a global gain on all inputs.
The slider Outputs Gain applies a global gain on all outputs. Finally, the horizontal VU-Meters at the bottom
show the signal level in dBFS of Left and Right channels for headphone signal.

11

3.1.5 hoa panning *

• Inputs: N

• Outputs: 06, 26 or 50 depending on the configuration.

It is possible to compute directly the signals of the loudspeakers without passing by an encoding and decod-
ing process [Lecomte et al., 2015]. This equivalent 3D-panning is implemented in the tools
hoa_panning_N_sources_lebedev06, hoa_panning_N_sources_lebedev26 and
hoa_panning_N_sources_lebedev50 for Lebedev grids with 6, 26 and 50 loudspeakers respectively [Lebedev, 1975,
Lecomte et al., 2015]. Those grids allow to control the sound field up to order M = 1, M = 3 and M = 5 re-
spectively [Lecomte et al., 2015]. The graphical user interface when using faust2jaqt script is shown in Fig. 10
for the hoa_panning_N_sources_lebedev50 panning tool compiled with M = 5 and N = 2.

Figure 10: hoa_panning_N_sources_lebedev50 compiled using faust2jaqt script with M = 5 and N = 2.
The slider Outputs Gain applies a global gain on all outputs (loudspeakers signals). The check-boxes Mute

Order allow to mute some Ambisonic order in the computation of the driving signals. The sliders Gain Radius

Azimuth Elevation control the position and gain of the sources. The check-box Spherical Wave allows to
switch between the synthesis of a spherical wave or a plane wave. In the case of spherical wave synthesis, the
input entry Speakers Radius sets the spherical loudspeakers system radius.

Usage with the Spherical VU-Meter When using these tools to drive the Spherical VU-Meter (Sec. 3.2.1)
with OSC, you need to activate OSC transmission mode 2. This is done by launching the tool with the argument
-xmit 2. For example, with the panning tool hoa_panning_N_sources_lebedev50, the command should be:

$./ hoa_panning_N_sources_lebedev50 -xmit 2

12

3.1.6 Note about sound field transformation tools in Ambisonic domain

The tools presented in the next sections perform sound field transformations in Ambisonic domain. Thus, they
should be used on Ambisonic signals and inserted after encoding step and before decoding step. For instance,
on Fig. 11 is shown the connections for the tool hoa_mirroring: It is inserted after hoa_encoder_N_sources

and before hoa_decoder_lebedev50, acting on Ambisonic signals.

Figure 11: Connections between plug-ins hoa_encoder_N_sources, hoa_mirroring and
hoa_decoder_lebedev50 compiled with faust2jaqt script with M = 5. hoa_mirroring acts on Am-
bisonics signals. Screen-shot taken from Claudia under KXStudio Linux distribution.

13

3.1.7 hoa mirroring

• Inputs: (M + 1)2

• Outputs: (M + 1)2

hoa_mirroring performs mirroring operations on the sound field. The directions front and back can be inverted,
as well as left and right, up and down, or any combination of the above. In fact, the transformation changes the
sign of particular Ambisonic components [Kronlachner and Zotter, 2014]. The graphical user interface when
using faust2jaqt script is shown in Fig. 12. To ”visualize” the transformation, Fig. 13 shows the Spherical
VU-Meter (see Sec. 3.2.1) for a 50-node Lebedev grid on which a sound field is decoded. The sound field is
composed of one source positioned at (1.07 m, 0◦, 90◦), i.e, above the head of the listener. One can observe
the signal level of each loudspeaker after decoding step. Thus, on Fig. 13(a), when the hoa_mirroring tool is
not active, the maximum sound energy is above. When the check-box up-down is checked, on Fig. 13(b) one
observes that the sound field has been mirrored according to the up-down inversion. Thus, the sound energy is
coming from under the listener at present.

Figure 12: hoa_mirroring compiled using faust2jaqt script. The check-boxes allows to select the mirror
transformations among: left-right, front-back or up-down.

(a) (b)

Figure 13: hoa_mirroring effects on a sound field. (a): original sound field decoded on a 50 loudspeaker
Lebedev grid. (b) the sound field has been transformed according to a mirroring up-down with hoa_mirroring

tool.

14

3.1.8 hoa azimuth rotator

• Inputs: (M + 1)2

• Outputs: (M + 1)2

hoa_azimuth_rotator performs a rotation of the sound field around z−axis (yaw angle). One recalls that
the trigonometric sens is chosen for rotation convention (i.e. anti-clockwise, see Sec. 1.2.2). The transfor-
mation is done by a rotation matrix operation on the Ambisonic components [Daniel, 2000, Moreau, 2006,
Kronlachner and Zotter, 2014]. The graphical user interface when using faust2jaqt script is shown in Fig. 14.
It’s basically just a slider to choose the azimuth angle of rotation. To ”visualize” the transformation, Fig. 15
shows the Spherical VU-Meter (see Sec. 3.2.1) for a 50-node Lebedev grid on which a sound field is decoded. The
sound field is composed of one source positioned at (1.07 m, 0◦, 0◦), i.e, in front of the listener. One can observe
the signal level of each loudspeaker after decoding step. Thus, on Fig. 13(a), when the hoa_azimuth_rotator

slider Azimuth is set to 0◦, i.e. no rotation, the maximum sound energy is in front of the listener. When the slider
Azimuth is set to 90◦, on Fig. 13(b) one observes that the sound field has been rotated 90◦ counter-clockwise
around the z−axis. Thus, the sound energy is coming from the left of the listener at present.

Figure 14: hoa_azimuth_rotator compiled using faust2jaqt script. The slider Azimuth allows to choose the
azimuth angle of rotation, around the z−axis.

(a) (b)

Figure 15: hoa_azimuth_rotator effects on a sound field. (a): original sound field decoded on a 50 loudspeaker
Lebedev grid. (b) the sound field has been rotated according to a rotation around z−axis of +90◦ using
hoa_azimuth_rotator tool.

Head Tracking One possible use of the tool hoa_azimuth_rotator is to compensate the rotation of the
head of the listener around z−axis when driven by a head-tracking system [Noisternig et al., 2003]. Thus, when
using binaural rendering over headphone, the sound field is rotated of minus the angle of rotation of the head,
to compensate the head rotation and leave the source at the same position is space for the listener. ambitools
provides a Pure Data patch to drive hoa_azimuth_rotator with OSC and perform a head-tracking system with
a smart-phone. See Sec. 3.4.1 for further informations.

15

3.1.9 hoa beamforming hypercardioid to mono

• Inputs: (M + 1)2

• Output: 1

hoa_beamforming_hypercardioid_to_mono is a tool to perform modal beamforming and extract a monophonic
signal as if it was recorded by a directional microphone in the sound field. In fact, the Ambisonic signals
are weighted and summed to give the monophonic output signal. The weights of the combination traduce
the beampattern of the directional microphone which is used [Meyer and Elko, 2002]. Thus, this tool allows
to listen to a chosen direction in the 3D sound field as if you were recording in the middle of the sound
field with a directional microphone with a specific beampattern. hoa_beamforming_hypercardioid_to_mono

provides the weights corresponding to regular hyper-cardioid microphone up to order 3 [Meyer and Elko, 2002,
Lecomte et al., 2016]. On Fig. 17, the beampatterns available are shown: the higher the order of the hyper-
cardioid is, the more directional the corresponding virtual microphone becomes. The graphical user interface
when using faust2jaqt script is shown in Fig. 16 for M = 3.

Figure 16: hoa_beamforming_hypercardioid_to_mono compiled using faust2jaqt script. The VU-Meters
on the left give the signal level of each Ambisonic component. The check-boxes Mute allow to mute some
components of all the components of an order. On the right, the slider Order allows to select the regular
hyper-cardioid order. The slider Output Gain applies a gain on the output signal. The sliders Azimuth and
Elevation allow to set the steering angles (θ0, δ0) of the hyper-cardioid beampattern. Finally, the horizontal
VU-Meter on bottom shows the output signal level.

(a) Order 1 (b) Order 2 (c) Order 3

Figure 17: Regular hyper-cardioid beampattern up to order 3. The steering angles are (θ0 = 45◦, δ0 = 10◦).

16

3.1.10 hoa beamforming hypercardioid to hoa

• Inputs: (M + 1)2

• Outputs: (M1 +M + 1)2

hoa_beamforming_hypercardioid_to_hoa performs a directional filtering with directional pattern described
by regular hyper-cardioid beampatterns of order M1, as shown on Fig. 17. Thus, unlike the tool
hoa_beamforming_hypercardiod_to_mono where the output is a monophonic signal, the outputs here are
Ambisonic signals [Lecomte et al., 2016]. The transformation applies a beampattern on the sound field to
enhance some directions and reject other. The output HOA scene should be of higher order than the input
HOA scene to avoid losing spatial information after the filtering [Lecomte et al., 2016]. In fact, the input scene
has (M + 1)2 components, and the output scene should have (M +M1 + 1)2 components with a beampattern
of order M1. The graphical user interface when using faust2jaqt script is shown in Fig. 18 for M = 3 and
M1 = 2. In this figure, one observes that the input scene is of order M = 3 (16 Ambisonic signals), and the
output scene is of order M1 + M = 4 (25 Ambisonic components active). In fact, the slider Order is set to
1, thus M1 = 1 and M1 + M = 4. Note that when the slider Order is set to 0, the effect is bypassed as a
beampattern of order M1 = 0 is omnidirectional.

Figure 18: hoa_beamforming_hypercardioid_to_hoa compiled using faust2jaqt script with M = 3 and
M1 = 2. The VU-Meters at the top show the inputs signal level in dBFS. The VU-Meters at the bottom show
the outputs signal level in dBFS. The knob Azimuth and Elevation allow to choose the steering angles of the
beampattern. Finally, the slider Order allows to choose the hyper-cardioid order, from M1 = 0 to M1 = 2 in
this case.

To ”visualize” the transformation, Fig. 19 shows the Spherical VU-Meter (see Sec. 3.2.1) for a 50-nodes
Lebdev grid on which a sound field is decoded. The sound field is composed of two plane waves coming from
direction (0◦, 0◦) and (90◦, 0◦) and was produced using tool hoa_encoder_N_sources (see Sec. 3.1.1). The
Fig. 19(a) shows the meter when the knob Order in Fig. 18 is set to 0, i.e, the effect is by-passed. Fig. 19(b)
shows the same meter when knob Order is set to 1 and knobs Azimuth and Elevation are set to 0◦ and 0◦

respectively, i.e. using a hypercardiod of order M1 = 1 (Fig. 17(a)) with steering angles in front of the listener.
One can observes that the sound energy comes now more from the front direction. This is confirmed when the
slider Order is set to 2 (with same steering angle) on Fig. 19(c), i.e, with a hypercardioid of order M1 = 2.
In conclusion, t he tool hoa_beamforming_hypercardiod_to_hoa allows to explore the sound scene with more
and more directional precision [Lecomte et al., 2016].

17

(a) Order = 0 (b) Order = 1 (c) Order = 2

Figure 19: hoa_beamforming_hypercardioid_to_hoa effects on a sound field. (a) original sound field decoded
on a 50-loudspeaker Lebedev grid. (b) the sound field when the knob Order is set to 1. (c) the sound field when
the knob Order is set to 2.

18

3.1.11 hoa beamforming dirac to hoa

• Inputs: (M + 1)2

• Outputs: (M + 1)2

hoa_beamforming_dirac_to_hoa performs a directional filtering on the sound field to listen to only one di-
rection in space. The transformation is like in hoa_beamrforming_hypercardioid_to_hoa but this time, the
beampattern is a truncated directional Dirac [Lecomte et al., 2016]. That is to say a function which is null
everywhere except in the steering angles direction (θ0, δ0). Thus, this tool allows to listen to just one direction
in the sound field. The graphical user interface when using faust2jaqt script is shown in Fig. 20 for M = 3.
Note that this tool provides a crossfade between the situation without filtering and the situation with filtering
on. This means that you can smoothly change between a sound field without any directional filtering and a
sound field where just one direction is still on.

Figure 20: hoa_beamforming_dirac_to_hoa compiled using faust2jaqt script with M = 3. The VU-Meters
at the top show the inputs signal level in dBFS. The VU-Meters at the bottom show the outputs signal level in
dBFS. The check-box On/Off allows to bypass the effect with a crossfade. The input entry Crossfade allows
to set the duration of the crossfade. The slider Gain applies a global gain on the output signals. The slider
Azimuth and Elevation set the steering angles of the directional Dirac, i.e, the direction to listen to.

To ”visualise” the transformation, Fig. 21 shows the Sperical VU-Meter (see Sec. 3.2.1) for a 50-loudspeaker
Lebedev grid on which a sound field is decoded. The sound field is issued from a capture by a rigid spherical
microphone using 50-nodes Lebedev grid. It is encoded using the tools hoa_mic_encoder_lebedev50 (see
Sec.3.1.2) and Jconvolver filters (see Sec. 3.3). Fig. 21(a) shows the original sound field. No particular direction
seem to predominant here. However, on Fig. 21(b), the filtering is activated (check-box On/Off checked in
Fig. 20). The steering angles are set to (θ0 = 0◦, δ0 = −45◦) and one observes that this is the main sound
energy direction in the resulting decoded sound field.

19

(a) Effect Off (b) Effect On

Figure 21: hoa_beamforming_dirac_to_hoa effects on a sound field. (a) original sound field. (a) the sound
field after activation of the directional filtering.

20

3.2 Processing

3.2.1 Spherical VU Meter

ambitools provides a Spherical VU-Meter developped with Processing language. A screen-shot is shown on
Fig. 22 for a 50-nodes Lebedev grid [Lecomte et al., 2015]. This tool allows to ”see” where the sound energy is
in space, instead of using classical in-line VU-Meter. You can zoom, pan and rotate with the mouse the meter
while running. The Faust tools hoa_panning* and hoa_decoder* emit OSC messages on port UDP 5511.
Those messages drive the spherical VU-Meter rendering in real-time: loudspeakers size and color for the meter.
On the left of the meter is a color scale in dBFS to have an idea of the value of each loudspeaker signal level.
Moreover, this tool allows to see the position of virtual sound sources in space: They are represented as small

Figure 22: Spherical_VU_Meter for a 50 loudspeaker Lebedev array and two virtual sources. Each loudspeaker
is represented as a color ball with size and color proportional to RMS Level in dBFS. A scale in dBFS is
displayed on the left of the screen. The virtual sources are represented as red an yellow dots with fading color
as they are moving. Their coordinates are displayed in Cartesian and spherical coordinates on the left. A grey
manikin is standing in the middle of the array to indicates the front direction.

color balls with fading trajectories when moving. The coordinates of the sources are displayed on the left in
Cartesian ans spherical. The tools hoa_encoder* and hoa_panning* emit OSC messages on port UDP 5511
with the values of source position to drive the spherical VU-Meter rendering.

Note that the meter is here presented for a 50-node Lebedev grid and 2 virtual sources. However, the
code is flexible and a meter can be compiled for other loudspeaker configurations and number of virtual
sources. Indeed, the loudspeaker Cartesian coordinates are provided as a .cvs file in folder /Processing

/src/Spherical_VU_Meter/data/. Thus, to change the meter to an other loudspeaker configuration, just
provide the Cartesian coordinates as a .cvs file and refer to this file in the code.

21

3.3 Jconvolver

Jconvolver4 is a real-time fast convolution software written by Fons Adriaensen. It allows to do convolution
operation with FIR filters. ambitools uses FIR filters for two main tasks:

• The binaural rendering with Head Related Impulse Responses (HRIRs).

• The radial equalization filters for rigid spherical microphone.

The filters are provided as .wav files containing the impulse responses. They are located in folder /FIR as well
as the Jconvolver configuration files. Those files are text file containing defining the vector or matrix of filters.

3.3.1 jconvolver mic*

The folders FIR/spherical_microphones/jconvolver_mic*/ contain the configuration files and impulse re-
sponses of radial equalization filters for several rigid microphone. Those filters are unstable by nature and are sta-
bilized by regularization, as in [Moreau et al., 2006]. They are applied after the Discrete Spherical Fourier Trans-
form performed by hoa_mic_encoder* tools (see Sec. 3.1.2) and are mandatory to obtain the Ambisonic compo-
nents in the context of sound field capture by rigid spherical microphone. Thus, the connections should be as in
Fig. 7. Without giving more mathematical details (see [Daniel, 2000, Moreau et al., 2006, Lecomte et al., 2015]
for instance), there is one filter by order. The filter at order m is replicated (2m+1) times, for each component at
order m issued from the DSFT. For example, as the rigid microphone mh acoustics EigenMike R© works up to or-
der M = 4 [Elko et al., 2009], there are 4 filters (i.e. 4 .wav files) in folder /FIR/jconvolver_mic_eigenmike32.

To start the convolution under JACK, the first thing to do is to edit the configuration file, for example
mic_eigenmike32.conf. Edit and uncomment the line

#/cd /put/here/your/local/directory/adress/

with the current absolute path address on your local installation. Then, open a terminal in this folder and type
the following command:

$jconvolver mic_eigenmike.conf

You should now have a JACK client named Jconvolver with (M + 1)2 inputs and (M + 1)2 outputs, as in
Fig. 7.

3.3.2 hrir*

The folder FIR/hrir/ contains several set of Head Related Impulses Responses (HRIRs) computed on various
grids. Those HRIRs allow to do the binaural Ambisonics rendering [Noisternig et al., 2003]. In fact, the signals
are decoded on a virtual grid of L loudspeakers, and each virtual loudspeaker signal is convolved with the
corresponding HRIR on left and right ear. The summation of all speakers signals on left and right ears gives
the binaural signals. Thus, this operation is a matrix of filters with L inputs and 2 outputs. The Jconvolver
JACK client should be inserted after the decoder as in Fig. 23 for example. To start the convolution under
JACK, the first thing to do is to edit the configuration file, for example hrir_ku100_lebedev50.conf. Edit
and uncomment the line

#/cd /put/here/your/local/directory/adress/

with the current absolute path address on your local installation. Then, open a terminal in this folder and type
the following command:

$jconvolver hrir_lebedev50.conf

You should now have a JACK client named Jconvolver with L inputs and 2 outputs, as in Fig. 23.

22

Figure 23: Connection between hoa_decoder_lebedev50 tool and Jconvolver for binaural rendering. Screen-
shot taken from Claudia under KXStudio Linux distribution.

3.4 Pure Data

ambitools uses Pure Data to generate some sound but also to emit or convert OSC messages. Particulary the
libraries mrpeach6 and hid7 are used to manipulate OSC instructions signals of a USB joystick respectively.

3.4.1 andOSC.pd for Head Tracking

The patch andOSC.pd is used to convert the OSC instruction send from the free Android application andOSC

running on a smartphone. This application transmit on your local network OSC message with the values of
accelerometer and gyroscope of your smartphone. On Fig. 24 is shown the graphical user interface of application
andOSC on an Android smartphone. The value of interest on this figure is the first value of Orientation, which
correspond to the yaw angle. Basically, the Pure Data patch andOSC.pd listen to all the information sent by
application andOSC and extract the yaw angle value to drive the tool hoa_azimuth_rotator (see Sec.3.1.8).
On Fig. 25 is shown the graphical user interface of the patch andOSC.pd. The yaw angle value is extracted
and lowpass filtered to avoid brutal change of rotation value for hoa_azimuth_rotator tool and limits audible

6https://puredata.info/downloads/mrpeach
7https://puredata.info/downloads/hid

23

https://puredata.info/downloads/mrpeach
https://puredata.info/downloads/hid

Figure 24: Sceen-shot of application andOSC on Android. The value of accelerometer an gyroscope are send by
OSC on the local network.

click when brutal rotation of the sound-field is asked. The positive sens of rotation for andOSC is clockwise,
and it is anti-clockwise for ambitools. Thus, the value of yaw angle transmitted by andOSC is directly the head
rotation compensation angle needed for head-tracking with hoa_azimuth_rotator. To run the transmission of
OSC message, DSP button should be on in PureData and tool hoa_azimuth_rotator, should listen to OSC
message on port 6000. To do so, launch hoa_azimuth_rotator with the following command:

$./ hoa_azimuth_rotator -port 6000

24

Figure 25: Graphical user interface of patch andOSC.pd. By default, the listening port on is UDP 8000 and
transmission port is UDP 6000.

4 Examples of use

4.0.2 Listening to a 3D HOA recording through binaural rendering

Ardour − > hoa_mic_encoder_lebedev50 − > jconvolver_mic_lebedev50 − > hoa_azimuth_rotator − >
hoa_decoder_lebedev50 − > jconvolver_hrir_ku100_lebedev50 − > outputs

4.0.3 Spatialize and control the trajectories of flies

hoa_encoder_N_sources − > hoa_decoder* − > outputs, or
hoa_panning_N_sources_* − > outputs

References

[Ahrens, 2012] Ahrens, J. (2012). Analytic Methods of Sound Field Synthesis. Springer.

[Bernschütz, 2013] Bernschütz, B. (2013). A spherical far field hrir/hrtf compilation of the neumann ku 100.
In Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual
Conference on Acoustics (DAGA) Conference on Acoustics, page 29.

[Daniel, 2000] Daniel, J. (2000). Représentation de champs acoustiques, application à la transmission et à la
reproduction de scènes sonores complexes dans un contexte multimédia. PhD thesis, Université Paris 6, Paris.

[Daniel, 2003] Daniel, J. (2003). Spatial sound encoding including near field effect: Introducing distance coding
filters and a viable, new ambisonic format. In Audio Engineering Society Conference: 23rd International Con-
ference: Signal Processing in Audio Recording and Reproduction, pages 1–15, Helsingør. Audio Engineering
Society.

[Daniel et al., 2003] Daniel, J., Moreau, S., and Nicol, R. (2003). Further investigations of high-order ambisonics
and wavefield synthesis for holophonic sound imaging. In Audio Engineering Society Convention 114, pages
1–18, Amsterdam. AES.

[Elko et al., 2009] Elko, G., Kubli, R. A., and Meyer, J. (2009). Audio system based on at least second-order
eigenbeams.

[Heller et al., 2012] Heller, A. J., Benjamin, E. M., and Lee, R. (2012). A toolkit for the design of ambisonic
decoders. Linux Audio Conference.

[Kronlachner and Zotter, 2014] Kronlachner, M. and Zotter, F. (2014). Spatial transformations for the en-
hancement of Ambisonic recordings. In 2nd International Conference on Spatial Audio, Erlangen.

[Lebedev, 1975] Lebedev, V. (1975). Values of the nodes and weights of quadrature formulas of Gauss-Markov
type for a sphere from the ninth to seventeenth order of accuracy that are invariant with respect to an
octahedron. USSR Computational Mathematics and Mathematical Physics, 15(1):44–51.

25

[Lecomte and Gauthier, 2015] Lecomte, P. and Gauthier, P.-A. (2015). Real-Time 3D Ambisonics using Faust,
Processing, Pure Data, And OSC. In 15th International Conference on Digital Audio Effects (DAFx-15),
Trondheim.

[Lecomte et al., 2016] Lecomte, P., Gauthier, P.-A., Langrenne, C., Berry, A., and Garcia, A. (2016). Filtrage
directionnel dans un scène sonore 3D par une utilisation conjointe de Beamforming et d’Ambisonie d’ordre
elevés. In CFA / VISHNO 2016, pages 169–175, Le Mans.

[Lecomte et al., 2015] Lecomte, P., Gauthier, P.-A., Langrenne, C., Garcia, A., and Berry, A. (2015). On the
use of a Lebedev grid for Ambisonics. In Audio Engineering Society Convention 139, New York.

[Meyer and Elko, 2002] Meyer, J. and Elko, G. (2002). A highly scalable spherical microphone array based on
an orthonormal decomposition of the soundfield. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 2, pages 1781–1784.

[Moreau, 2006] Moreau, S. (2006). Étude et réalisation d’outils avancés d’encodage spatial pour la technique de
spatialisation sonore Higher Order Ambisonics: microphone 3D et contrôle de distance. PhD thesis, Université
du Maine, Le Mans.

[Moreau et al., 2006] Moreau, S., Daniel, J., and Bertet, S. (2006). 3d sound field recording with higher order
ambisonics-objective measurements and validation of spherical microphone. In Audio Engineering Society
Convention 120, pages 1–24, Paris. Audio Engineering Society.

[Noisternig et al., 2003] Noisternig, M., Sontacchi, A., Musil, T., and Holdrich, R. (2003). A 3d ambisonic
based binaural sound reproduction system. In Audio Engineering Society Conference: 24th International
Conference: Multichannel Audio, The New Reality. AES.

[Poletti, 2005] Poletti, M. A. (2005). Three-dimensional surround sound systems based on spherical harmonics.
Journal of the Audio Engineering Society, 53(11):1004–1025.

26

	Introduction
	Goals of ambitools
	Ambisonics overview
	Principles
	Spherical coordinate system
	Spherical harmonics

	Installing ambitools
	Retrieve ambitools repository
	Dependencies
	Compile the Faust plug-ins
	Local Faust installation
	FaustLive
	Compile the Processing VU-Meter

	The different tools
	Faust
	hoa_N_sources_encoder
	hoa_mic_encoder*
	hoa_decoder_*
	hoa_decoder_lebedev50_binaural
	hoa_panning_*
	Note about sound field transformation tools in Ambisonic domain
	hoa_mirroring
	hoa_azimuth_rotator
	hoa_beamforming_hypercardioid_to_mono
	hoa_beamforming_hypercardioid_to_hoa
	hoa_beamforming_dirac_to_hoa

	Processing
	Spherical_VU_Meter

	Jconvolver
	jconvolver_mic*
	hrir*

	Pure Data
	andOSC.pd for Head Tracking

	Examples of use
	Listening to a 3D HOA recording through binaural rendering
	Spatialize and control the trajectories of flies

