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Abstract 
 
(Photo)electrochemical conversion can be used to transform putative wastes into valuable 
products, using light and potential bias as driving forces. Unlike traditional thermochemical 
processes, electrochemical conversion can occur in a wide 
range of temperatures and pressures (including ambient), 
can use solely renewable electricity, and can be performed 
in modular reactors that permit small- through large-scale 
operation. The potential impact is great: we can address 
climate change by treating CO2 as a feedstock rather than a 
waste, and improve our energy independence by offsetting 
the use of fossil fuels for thermochemical processes and 
creating renewable fuels (Fig. 1). To make this vision a 
reality we must address the key challenges of 
electrochemical conversion: a) low selectivity, which 
requires costly separation; and b) low efficiency, which 
increases the operating costs from electricity. 
 
I address these challenges through the use of nanostructured plasmonic electrodes. Nanofeatures can 
influence the catalytic properties of electrodes for both electrochemical and photoelectrochemical 
systems. In dark electrochemistry, nanostructures increase the catalytic surface area and can expose more 
edge and low-coordination sites which have different catalytic behavior than those found on planar 
electrodes. In photoelectrochemistry, plasmon decay generates hot electrons that can be transferred 
selectively to an unoccupied electronic state of a surface molecule. Simultaneously, the enhanced electric 
fields can alter the electronic coupling with surface-adsorbed molecules. These catalytic and plasmonic 
effects can be tuned by changing the size, shape, and proximity of nanofeatures on the electrode surface, 
while applying a bias allows us to adjust the energy level of the charge carriers. 
 
To study plasmon-enhanced CO2 reduction, I developed a front-illuminated, temperature-controlled 
electrochemical cell that enabled precise gas and liquid product analysis.2 Using this cell, I reported the 
first instance of plasmonic promotion of CO2 reduction at a voltage-biased cathode: illumination of the 
silver cathode selectively enhanced CO2 reduction products while simultaneously suppressing undesired 
H2 evolution.3 
 
To understand the plasmonic mechanisms driving this selectivity change, I conducted an in situ ATR–
SEIRAS (attenuated total reflectance–surface-enhanced infrared absorption spectroscopy) study under 
dark and illuminated conditions.4 I concluded that the light was enhancing the desorption of CO from the 
surface through the temporary transfer of a plasmonically excited hot electron. I also measured an 
increase in the strength of the symmetric CO2 stretch of bicarbonate in the light, likely caused by the 
plasmonically enhanced local electric field, increasing the local pH and suppressing H2 formation. To 
build on this work, I combined the plasmonic properties of silver with the catalytic properties of copper. 
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At low overpotentials, CO was promoted in the light while H2 was suppressed, and at high overpotentials 
ethylene, methane, formate, and allyl alcohol were enhanced upon illumination.5 
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