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Abstract
The lack of efficient discovery tools for advanced functional materials
is a major bottleneck to enabling next-generation energy, health,
space, and sustainability technologies. One main factor contributing to
this in- efficiency is the large combinatorial space of candidate
materials which is very sparsely observed. Moreover, searches of this
large combinato- rial space are often biased by expert knowledge and
clustered close to material configurations that are known to perform
well. Experimental characterization and first principles quantum
mechanical calculations of all possible materials are extremely
expensive leading to small data sets not suitable for a number of
approaches, such as Deep Learning. As a result, there is a need for
computational algorithms that can efficiently search this large space.

In this talk, I will introduce a class of methods that combine
physics-informed belief models with Bayesian optimization (BO). A
material is characterized by physical and chemical properties of
components of the material in a complex manner but a priori knowledge of the identity of the important properties
is often lacking. The first part of my talk will introduce, PAL 2.0 [Romiluyi, Sharma et al, in preparation]. The key
contributing factor of our proposed framework is in the creation of a hypothesis space with all possible Gaussian
process representations of the domain using these different elemental/molecular properties and the ability to
select the hypothesis (belief model) that best represents our material design domain. The best hypothesis is then
used to perform a search of the material space. Our method is unique since it picks out the physical descriptors that
are most representative of the material domain making the search unbiased toward expert knowledge, which in
many cases is unknown. The model also provides valuable chemical insight into the domain that can be used to
develop new materials that were outside the domain that was initially searched. Some applications of PAL 2.0 that I
will discuss during my talk include perovskite solar cell and thermoelectric semiconductor materials, fig. 1. The
second part of my talk will focus on material discovery algorithms for alloys which combine the PAL 2.0
methodology with Gaussian Process-Neural Network (GP-NN) models [Clancy, Nam, Sharma, HEMI Seed Grant,
2023]. The novel combination of GP-NN+BO algorithm makes use of the generalization power of Deep learning
models [Sharma et al, PCCP, 2023] and the exploratory power of the BO algorithm at a minimal computational cost.
Results shown in fig. 2 demonstrate the out-performance of the GP-NN model which on average explores just 15%
of the space to find the optimal solar cell material. Overall, by accelerating discovery for materials like high-entropy
shape memory alloys, space solar cell materials and thermoelectrics, these methods will enable creation of large
data sets for various material classes that can then be leveraged in training deep learning models for property
predictions and multi-scale modeling.
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