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Abstract

A method for finding the minimum energy path for complex surfaces with many po-
tential paths is presented. In systems with a complex potential energy surface, many
minimum energy paths can exist, adding difficulty in locating the true minimum energy
path of the reaction. Implementing the nudged elastic band method on such a surface
leads to erroneous computations of the activation energy as the minimum energy paths
found can exhibit a proximity bias towards path initialization. Here the procedure for
an algorithm is derived that, when combined with the nudged elastic band method,
is able to locate the true minimum energy path for reactions over complex potential
energy surfaces.
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1 Introduction

Identifying the activation energy and thus reaction rates for processes such as catalysis, dif-
fusion in solids or the dissociation of molecules on a surface is an active area of research for
condensed matter physicists, chemists, materials science and is also increasingly important
in biological systems such as enzyme catalysis [1]. Using molecular dynamics simulations
to find the rare reaction event is impractical; for instance if the rare event happens 1000’s
of times per second, running an MD would take thousands of years of computational time
to cover the average time between the rare events. Instead, a statistical approach known
as transition state theory (TST) is used . Basic TST works through defining a transition
state that separates the reactant and product sites. The transition state is a 3N-1 dimen-
sional hyperplane that is normal to the unstable direction of a saddle point that divides the
reactants and products. The reaction rate is then calculated as the probability of finding
the reactant at that transition state. TST makes the following four assumptions. The first
is the motions of the nucleus and electrons are decoupled through the Born-Oppenheimer
approximation. The second is that classical dynamics can be used to describe the dynamics
of the nuclei, ignoring quantum effects such as tunneling through the energy barrier. Third,
the system is in a canonical ensemble, meaning that there is a Boltzmann distribution in
the reactants. And last, it is assumed that the reactants do not recross the energy barrier
[10]. A further, harmonic approximation can be made around the reactant site and saddle
point, this is known as (WTST). This local harmonic approximation is a second order Taylor
expansion of the potential around these sites and allows the configurational integrals of TST
to be closed-form expressions. [10]. hT'ST is particularly useful in solid-state systems as the
energy barriers are large compared to the kinetic energy of the system, allowing the system
to reach thermal equilibrium after a reactive event. The rate equation derived through hTST
is interpreted as

KnrsT = [Attempt Frequency] x [Probability of Success per Attempt]

The most probable reaction coordinate is one that is a minimum in energy. That is, the
reactants are most likely to follow a path through a potential energy surface (PES) where
the potential energy is at a minimum perpendicular to the path. This is known as the
minimum energy path (MEP) for the system. Since this path is a minimum in energy, it can
be assumed that where the path traverses the transition state (hyperplane) of the system is
the point of maximum energy of the path and is the bottle neck for the reaction. The issue of
finding the MEP has been approached through several chain-of-state methods including the
string method [2], the simplified string method [3], the nudged elastic band (NEB) [4][5][6],
and the double nudged elastic band (DNEB) [7]. The method used to find the MEP in this
paper is the NEB, as this has been found to be the most efficient and reliable method of the
ones listed [8].

The NEB method, developed under h'TST [9], finds the MEP of the system through
minimizing a reaction path through the PES. The path is discretized into N+1 images. N
is always even as the number of images must be odd in order to find the correct estimate
for the saddle point energy. These images are connected through fictitious springs, which
ensures their equal spacing throughout the minimization dynamics. The points are then



simultaneously relaxed under dampened conditions, allowing them to ‘find’ their minimum
energy configuration. This minimum energy configuration traverses the hyperplane through
some saddle point, which is the maximum energy of the path and thus the rate limiting
activation energy.

It is fairly straight forward to implement the NEB on a simple PES, however on complex
PES’s with many possible MEP’s initialized paths exhibit a proximity bias by converging
to the nearest MEP. [4] In order to find the global minimum barrier energy, there must
be sufficient sampling of the paths passing through the transition state barrier. One such
sampling technique is the Monte Carlo simulated annealing process. The discussion of this
paper will thus be centered around the implementation of the NEB to calculate MEP’s,
followed by a discussion of the theory of simulated annealing and finally a brief description
of how Monte Carlo methods can be applied with simulated annealing to treat complex

PES’s.

2 Implementation of the NEB

The NEB is agnostic as to the definition for the PES. For example, NEB has been successfully
used with PES’s such as many-body potentials for silicon [12], point charge models for water
molecules [13] and with plane wave based DFT calculations [12]. In this paper, the NEB
was implemented on a LEPS potential with added harmonic potential energy (to simulate
coupling to a surface) and an added gaussian potential to create two separate potential
paths. The recipe to implement the NEB is the following. First the PES is defined so that
the energy and gradient can be evaluated for each image. Next, the images are defined and
given coordinates. Last, the dynamics of the system are defined and the potential energy of
each image is minimized simultaneously according to the dynamics. How this is implemented
is explained through the following procedure. Two images, Ry and Ry are established at
known boundary conditions of the system. That is, Ry, is in an initial potential energy well
and Ry a final potential energy well. A linear interpolation is then projected between the
two images and the line is populated with N+1 equally spaced images. This can be seen in
Figl.

The end images Ry and Ry are fixed and the minimization dynamics of the curve takes
place on the N-1 intermediate images. The force acting on each intermediate image, i, is

defined as

Fi==VV(R)|y+ F -7 -7 (1)

Where, VV(R;) = VV(R;) = VV(R;) - 7 - 7). is the true force minus the parallel component
of the true force, 7 is the bisected tangent between R; and its two adjacent neighbors R;
and R;, and F} is the spring force defined through the following relation

F{ =kixi(Rijqn — Ri) — ki(Ri — Ri1) (2)
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Figure 1: Linear interpolation between initial and final configurations over a simple LEPs
potential, N=8. The reaction is a simple supported proton exchange)

Where k; is the spring constant to the right and k;,; to the left. The second term of equation
(1) is the parallel component of the spring force only. By constraining the spring force to
only its parallel component, the images are kept equally spaced throughout the minimization
dynamics of the MEP. The minimization can be seen in Fig2.

Additionally, through constraining the true force from the PES to its perpendicular
component, each image is constrained to finding its local minimum energy without reacting
through the MEP. This ‘reaction’ can be seen through the limiting case of zeroing out
the spring force. When this is done, the images tend to drag along the reaction path,
conglomerating in the final potential well, as seen in Fig3. The process of projecting out the
parallel component of the true force and the perpendicular component of the spring force in
equation (1) is referred to as “nudging” and is where the NEB method acquires its name.

2.1 Tangent Definition

Central to the behavior of the NEB is how the tangent, in equation (1), is defined. The
tangent controls the handling of kinks and extreme curvature in the MEP [9]. There are a
few definitions of the tangent that can be used to varying success. A simple, normalized line
segment between the two adjacent points,

~ Ri+1 - Ri—l
T| = 3
I = TR = R )
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Figure 2: An optimized MEP (with N=8) through a LEPS potential with an added Gaussian

saddle point. The Gaussian is added for extra disorder. The initial state is on the right and
the final state on the left.

A slightly better definition of bisecting the vectors between the central image R — i and its
two adjacent neighbors R;;; and R;_;. This looks like the following

N R’L - Rifl RiJrl - Rz
=15 % —— (4)
”Rl RZ—IH ”Rz-i-l Rz”

However, these definitions for the tangent tend to develop kinks along the path that do not
dissipate with more time steps. The kinks prevent the MEP from converging to the true
path as seen in Fig4 below.

A more sophisticated definition for the tangent incorporates a switching function that uses

the potential energy of the image and its adjacent neighbors to pick a tangent definition.
The definition for the tangent is picked using the following function

P AT it Vi >V > Vi
T AT i Vi <Vi<Vig

Where, ﬂﬁ =Riy1 — R; ,and 7" = R; — R;_; And Vj is the potential energy of image . If
the potential energy of image 7 is a minimum or maximum relative to its adjacent neighbors,
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Figure 3: An MEP traversing a LEPS potential with added disorder. Here the spring con-
stant is zeroed and the MEP is minimized using a Verlet algorithm. The images tend to
conglomerate in the potential wells and significant kinks develop along the path

then a weighted average of the two vectors ﬂﬁ and 7 is used.

A= ATAVMT Af Vi > Vi
P ATAY A Vi < Vi

Where AV, = max(|Vig, —Vil, Vi1 — Vi]) and AV™" = min(|Vie, — V|, |Viei — V4|). This
definition of the tangent handles areas of extreme curvature and avoids the development of
kinks in the chain as seen in Figh below.

The NEB chain is minimized using modified molecular dynamics techniques. There are var-
ious methods that can be used for the minimization process; this paper used an efficient and
simple technique called the velocity Verlet algorithm to integrate the equations of motion.
At each time step, however, the velocities were updated with an added condition that either
preserved or zeroed the updated velocity of each image. That is, if the velocity is perpen-
dicular to the force it is zeroed, else the new velocity is updated with the projection of the

velocity onto the force vector. This method works to dampen the velocity of each image as
it overshoots its minimum.
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Figure 4: Dotted line is the MEP as calculated using the tangent definition from equation
(3). The solid line is the true MEP. (Image taken from [9])
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Figure 5: Dotted line is the MEP as calculated using the tangent definition from equation
(5) and (6). The solid line is the true MEP. (Image taken from [9])

3 Simulated Annealing

The simulated annealing method is an optimization problem that takes its inspiration from
the annealing of metals. A good analogy is the traveling salesman problem where the sales-



man is visiting many different cities and wants to find the shortest (minimized) route between
them. Simulated annealing works through finding an initial path, finding an alternative path
and then accepting either path with some probability, then finding new alternative paths and
accepting them based on a probability function that is weighted against a randomly gener-
ated number. By weighting the probability function against a randomly generated number,
the algorithm can accept paths that are not “as good”, which keeps the optimization process
from getting stuck in a local extreme.

The connection with annealing is that, a metal with many lattice site vacancies will seek
equilibrium (minimization of the internal stress of the metal) through diffusion processes.
The rate of equilibrium (recrystallization) is given by the Arrhenius rate equation which
gives the rate of seeking equilibrium. Simulated annealing uses the annealing Arrhenius rate
equation to sample many configurations at a temperature, picking out the best path, then
lowering the ‘temperature’ and repeating the process. Through this random sampling of
many different configurations as the temperature is cooled down, the global extreme config-
uration of the system is found and local extremes are avoided. The following is the procedure
of how to implement simulated annealing (adapted from reference [14]).

Step 1: Choose the temperature of the system, 7" < 1 | a reducing constant ¢ , 0 < ¢ < 1; and
the number of iterations N to be carried out.

Step 2: Define some generating function and generate a starting configuration, denoted E

Step 3: Generate a permutated configuration, denoted E’

/

Step 4: If E' < E move to step 5; else generate a random number R € [0, 1], then if R < e T
go to step 5; otherwise go to step 6.

Step 5: Set £ = F’

Step 6: Increase iterator i. If i = N decrease temperature 7" = T x ¢; else repeat Steps3-6; If
T=0 terminate cycle

For the python pseudo code to these steps please see the appendix [16].

3.1 Monte Carlo Simulated Annealing

The NEB method works well on simple PES’s with few paths to choose from. However, when
implementing the NEB on a complex PES with many paths between the initial and final
states (Fig6) care must be taken in initializing the path as the path will exhibit a proximity
bias by converging to the MEP that is closest to the initialized guess. This presents an
added degree of difficulty in finding the MEP for large and complex systems with many
potential paths as an uninformed initialized path could converge to an MEP that does not
pass through the global minimum saddle point energy, giving an erroneous activation energy.
The proposed prescription for handling various MEP’s is to run a Monte Carlo simulated
annealing method.
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Figure 6: [10] A potential enerqy surface with 5 unique product sites. The red line is a
hyperplane dividing the transition states and is centered through the saddle points. The
hyperplane is sampled and randomly generated paths cross from R to P; through the sampled
points.

The Monte Carlo portion is implemented through a random uniform sampling of the
hyperplane separating the reactant and product sites. The initialized interpolated line be-
tween the product and reactant site in this case is not necessarily linear but has some offset
to ensure a smooth path is maintained while passing through the hyperplane at the sampled
location. This is to ensure continuity in the path and to avoid kink formation from path
initialization. The Monte Carlo step is added to Step 3 above. The path is then minimized
and the algorithm continues on to Step 4 above. Thus each new path is compared to the
previous path via the probability function in the simulated annealing cycle. As the algorithm
samples the hyperplane, the true MEP is found.

4 Conclusion

The NEB method works extremely well in locating the MEP of a system and thus the ac-
tivation energy. Other methods do exist, but find difficulty in handling areas of extreme



curvature in the PES and in locating the true activation energy either through over or under
estimation. The NEB finds it’s high resolution through the inclusion of the springs and the
selective projection of the forces acting on each image; although the spring constant is an
arbitrary choice. A further increase in accuracy of the NEB method brings resolution to
the saddle point energy and is known as the Climbing Image NEB method (CI-NEB) [6].
CI-NEB is a further optimization of the image that is directly centered on the saddle point.
When implementing the NEB, care must be taken in how the tangent is defined as this
affects kink development and continuity in the path. Using a switching function to choose
the tangent definition has been found to handle areas of extreme curvature nicely, avoiding
the common problem of kink formation the MEP. Implementing the NEB on a complex PES
with many MEP’s is a fairly complicated process but is possible through using the optimiza-
tion alogrithm defined above. That is, the hyperplane through the transition state of the
system needs to be carefully defined in order to capture all the saddle points of the PES. The
hyperplane then needs to be sufficiently sampled and the paths through it initialized as to
capture the possible MEP’s available. The possible MEP’s then need to be compared while
avoiding getting stuck in local a MEP. Through this process, handling of complex potential
energy surfaces is possible.

Future work could explore extending the Monte Carlo simulated annealing assisted NEB
method to explore time dependent potentials such as those found in nano catalytic systems
with dynamic structural disorder [11]. This would require an investigation into the time
evolution of the PES to ensure it does not violate TST.

10



5 Appendix
Python pseudo code for monte carlo simulated annealing

1 from random import random
2
3 def MC_sim_anneal(path):

4 old_MEP = NEB(path)

5

6 T=1.0

7 T min = 0.9

8 alpha = 0.9

g while T > T_min

19 i=1

11 while i <= 100:

12 new_path = MonteCarlo_path(path)
13

14 new_MEP = NEB(new_path)

s ap = acceptance_probability(old_MEP,new_MEP,T)
16 if ap > random():

17 MEP = new_MEP

18 old_MEP = new_MEP

19 i+=1

20 T = Txalpha

21 return MEP

Figure 7:
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