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Objective  
The goal of this project is to advance our understanding of 3D fuel characterization and provide 
evaluation datasets to advance physics-based fire behavior, smoke and other fire effects models for 
operational use at scales relevant to Department of Defense (DoD) land managers. Our study is guided 
by the following research questions: 
1) What are the appropriate sampling resolutions of wildland fuels to model fire behavior and 

consumption, ranging from full physics-based modeling applications to operational models of fire 
behavior and consumption?  

2) What are the critical fuelbeds and physical fuel properties required to advance physics-based fire 
behavior, smoke, and fire effects models for operational use on DoD installations? Specifically, is 
fine-scale heterogeneity in surface fuels critical to mapping and quantifying fuel consumption in sites 
commonly burned on DoD lands? 

3) How can we most efficiently and accurately create gridded, 3D maps of surface fuel properties based 
on the integration of remotely sensed imagery and fuel properties informed from field-based and 
laboratory measurements?  

4) What are the tradeoffs between input precision, model fidelity, and time to collect and integrate 3D 
datasets? 

 
Our overall objective is to characterize the 3D structure and composition of wildland surface that are 
commonly burned in DoD/DOE prescribed burning programs of the southeastern and western US. Next-
generation modeling of fire and vegetation dynamics, fuel treatment decision support, wildland fire 
behavior and smoke dispersion will rely on computational fluid dynamics models of fire behavior and 
atmosphere interactions. Gridded, 3D inputs of fuels are required, but to date, effective ways to 
integrate remote sensing datasets and field data have not been established. We will sample the 
structural variability of surface fuels at fine spatial scales to inform mapping at larger spatial scales and 
associated estimates of uncertainty. Sensitivity analysis of physics-based models of fire behavior will be 
used to evaluate the consequences of coarser grid resolutions on model predictions. 
 

Technical Approach  
Based on first-year sampling and work plan development, we have established a hierarchical sampling 
design and field-tested sampling methods to consistently use across all sites and datasets. From our 
progress to date, the only uncertainty involves when we can resume fieldwork under COVID-19 
restrictions. We will keep in close communication with the SERDP program as the situation unfolds. At 
present, we are able to dedicate field and laboratory staff to accommodate stay-at-home orders. 

Our primary approach of the 3D fuels project is to sample the spatial variation of fuel loading and 
composition of forests and grasslands using novel destructive harvesting and remote sensing 
technologies. Specifically, we are employing a hierarchical sampling design for mapping 3D surface and 
canopy fuels that relies on a combination of airborne and high-resolution terrestrial light detection and 
ranging (lidar), structure-from-motion photogrammetry (SfM), and ground-based measures of physical 
fuel properties, including destructive sampling within a 3D grid (termed voxel plot).  

We will use these data to produce 3D maps of surface and canopy fuels across a range of spatial 
scales and vegetation types that function as inputs for physics-based, coupled fire-atmosphere models 
and other next-generation models reliant on spatially explicit fuels. Additionally, we will use advanced 
mathematical modeling techniques to develop quantitative models that assign measured properties of 
fuels, and in the case of highly intermixed fuels (e.g., complex arrangements of surface fuels including 
shrubs, herbaceous fuels and intermixed live and dead fuel), develop 3D models of functional plant 
groups to inform mapping assignments. 
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Application of Research Results 
This study contributes to wildland fuels research by integrating state-of-the-art fuel sampling techniques 
and quantitative fuels modeling with model sensitivity analyses to provide foundational methods and 
tools for both scientists and managers. At present, methods are still under development to map spatial 
fuels data at scales pertinent to operational wildland fires and for the application of the latest physics-
based fire-atmosphere models (Keane 2015). We are developing new methods and metrics for 3D fuels 
that will provide useful interpretation of remotely sensed datasets and insights to fire and fuels 
managers, for fuels, fire, smoke and atmospheric modeling applications. Specifically, our project will 
produce a 3D library of voxel fuels, intrinsic fuel properties and quantitative modeling scripts that 
partition point cloud data into voxels and create 3D input for existing and custom applications. This 
project will evaluate and develop methods that will eventually lead to development of an actual 
software application that can be used to parse imagery to create 3D gridded inputs to next-generation 
operational models of fire behavior and effects. 

Study Areas  
We will characterize 3D fuelbeds for regional fuel types in the southeastern (SE) and western US that are 
most commonly burned within DoD prescribed burning programs (Table 1). These include: 
1) SE longleaf pine (mesic flatwood) understories (4 sites) 
2) SE loblolly pine-sweetgum forest understories (4 sites) 
3) Western grasslands and grass-dominated pine savannas (4 sites) 
4) Western ponderosa pine forest understories (4 sites) 
 

Although geographically distinct and with markedly different climates, the structure of southeastern 
pine forests and western ponderosa pine forests are often quite similar (e.g., single-story, open forests 
with grass/shrub/litter understories). Methods that we develop to characterize canopy and understory 
fuels in these contrasting ecosystems are likely to produce standards that can be broadly applied for 
mapping applications and to generate 3D fuels inputs for model applications. Specifically, we anticipate 
that because pine forests have similar structural characteristics, similar scripting algorithms can be used 
to interpret point-cloud imagery into gridded, 3D representations. Intrinsic fuel properties and fuel 
moistures can then be tailored to be specific to southeastern and western fuel types. 

Within each site, we will identify relatively small blocks (< 2 ha) in fuels that range in biomass and 
complexity. More specifically, we will select sites to represent a range in understory biomass from low 
biomass (e.g., a 1-year rough) to high biomass (e.g., 4-5 year rough).  

Selection criteria for all sites include available recent airborne lidar scans (ALS), relatively uniform 
ground surface on gradual slopes (< 30% gradient). Because UAS is necessary for structure-from-motion 
photogrammetry, we will attempt to use UAS on most sites. UAS restrictions are most likely on 
DOD/DOE lands. In these instances we will locate sites in vegetation and fuels that are representative of 
DoD lands but allow the use of UAS. Table 2 summarizes the wildland vegetation and fuels that will be 
measured by this study and the relevant sampling methods by fuel type. 
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Table 1: Candidate study sites. Sites that were completed in year 1 of this project are listed in grey, and 
planned or potential sites are in white. Sites that allow UAS flights and have recent ALS are listed as yes. 
Planned coordination with other projects or lead scientists are listed under coordination. 

SOUTHEASTERN US SITES 

Site Vegetation type (s) UAS? ALS? Sampling date Coordination 

Blackwater SF (FL) Mesic flatwood 
wiregrass understory 

Yes Yes August 2019 
 

FIREX-AQ 

Osceola NF (FL) Mesic flatwood #1  
(1 to 2-yr rough) 

Yes Yes Jan 2020 Rx burn 
Hoffman project 

Tate’s Hell SF (FL) Mesic flatwood / 
palmetto-gallberry 
understory 
1 yr rough #2 

Yes Yes Jan 2020 None 

Tate’s Hell SF (FL) 2-3 yr rough #3 Yes Yes Jan 2020 None 

Fort Stewart (GA) Mesic flatwood 
 

Maybe Yes 
 

Jan 2021 FASMEE 
Hoffman 

Tall Timbers (FL) Loblolly #1 Yes Yes Potential Hoffman 

TBD Loblolly #2     

TBD Loblolly #3     

TBD Loblolly #4     

WESTERN US SITES 

Lubrecht Exp. 
forest 
(MT) 

Ponderosa #1 Yes Yes July 2019 No 

Sycan Marsh 
(south central OR) 

Ponderosa #2 Yes Yes Sept 2019 Parsons Rx burn 

Sycan Marsh Grassland #1 Yes Yes Sept 2019 Parsons Rx burn 

Los Alamos 
National Lab 
(LANL, NM) 

Ponderosa #3 Maybe Yes Summer 2020 DOE  

LANL Grassland #2 Maybe Yes Summer 2020 DOE  

Joint Base Lewis 
McChord (WA)  

Grassland #3 No Yes Summer 2020  

Center for Natural 
Lands Mgmt 
(western WA) 

Grassland #3 
(potential proxy for 
JBLM) 

Yes Yes Summer 2020 Mell 

Spokane Indian 
Reservation 

Ponderosa #4 
Grassland #4 

Yes Maybe Summer 2021 Parsons 
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Table 2: Descriptions of common canopy, surface fuel and ground fuel categories used for fire and 
smoke modeling. Fine woody debris (FWD) is a term often used for wood fuel particles < 7.6 cm in 
diameter, and coarse woody debris (CWD) refers to woody fuel particles > 7.6 cm in diameter. Synoptic 
TLS and SfM are merged images representing the full 200x200 m site. 

 
  

Fuel Stratum Fuel Category Description Sampling methods 

Canopy fuels 

Canopy Tree crowns Fine branches (<6 mm 
diameter) and dead and 
live aerial foliage 

ALS 
Synoptic TLS 
Synoptic SfM 

 Snag wood All burnable portions of 
dead trees including 
branches and stem wood 

ALS 
Synoptic TLS 
Synoptic SfM 

 Ladder fuels 
including vines, 
branches, tree 
regeneration 

Any fuel that serves as a 
ladder between surface 
and canopy fuels 

Synoptic TLS 
Synoptic SfM 
 

Surface fuels 

Shrub Shrub crowns and 
stems 

All burnable shrubby 
biomass with branch 
diameters less than 5 cm 

TLS 
SfM 
Close-range SfM 
Voxel plot sampling 

Herb Grasses and forbs 
(non-woody 
vegetation) 

All live and dead grass, 
forb, and fern biomass 

TLS, SfM, close-range SfM 
Voxel plots 

Downed wood  1-hr wood  
(FWD, twigs) 

< 0.6 cm (0.25 inch) 
diameter 

TLS, SfM, close-range SfM 
Voxel plots 

10-hr wood  
(FWD, branches) 

0.6-2.5 cm (0.25-1.0 inch) 
diameter 

TLS, SfM, close-range SfM 
Voxel plots 

100-hr wood  
(FWD, branches) 

2.5-7.6 cm (1-3 inch) 
diameter 

TLS, SfM, close-range SfM 
Voxel plots 

1000-hr wood  
(CWD) 

7.6+ cm (3+ inch) diameter TLS, SfM, close-range SfM  

Litter-lichen-moss Litter Freshly fallen non-woody 
material including leaves, 
cones, pollen cones 

TLS, SfM, close-range SfM 
Voxel plots 
Forest floor sampling 

Ground fuels 

Organic soil 
horizons 

Oe horizon  
(upper duff) 
Lower horizon 
(lower duff) 

Partially decomposed and 
fully decomposed biomass, 
including decomposed 
litter and peat 

Voxel plots 
Forest floor sampling 

Basal 
accumulations 

 Accumulated organic soil 
and litter around older 
trees 

Voxel plots 
Forest floor sampling 
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Hierarchical Sampling Design 
Our hierarchical sampling design incorporates lidar, photogrammetry and field-based measurements to 
characterize canopy and surface fuels at each study site (Figure 1). Recent ALS data are a selection 
requirement for each site and will be interpreted for canopy and surface fuel characterization (stem 
map, canopy and surface height models). Paired TLS scans and SfM imagery (where UAS is permitted) 
are used to cover a 200 x 200 m area. TLS data increases the resolution and accuracy of the stem map 
and characterize the surface fuels (porosity, surface indices, surface height models). Multispectral SfM 
imagery, sampled with a UAS, is used to classify and map live and dead vegetation.  

For each study site, TLS is sampled along a grid with 50-m spacing to create a synoptic scan (n = 25 
points for a 200 x 200m grid). Each scan is collocated with an integrated GPS on the unit. High accuracy 
GPS locations are collected using RS + GNSS receiver for control points used to geo-locate the UAS 
imagery. At 18 random locations within the TLS sampling grid, 5x5-m plots are established to capture 
higher resolution TLS and SfM scans (Figure 2). Plots are delineated at each corner with metal conduit 
stakes with reflective tape that can be detectable in all remotely sensed imagery and used to integrate 
imagery. TLS scans are taken from the 4 edges of each 5x5 m plot. Low-altitude (< 50m) UAS 
photogrammetry is taken for each plot as well. Of the 18 scan plots, half (n = 9) are randomly selected 
for post-scan destructive sampling with voxel plots (see 3D Voxel Sampling). Prior to sampling, close-
range photogrammetry is captured across the entire 5x5 m plot with a Go Pro video camera on a long 
selfie stick with care to minimize trampling of understory vegetation.  

Within each 5x5 m plot designated for destructive sampling, five 0.5x0.5 m frames are placed within 
1 m of a plot corner and at plot center (Figure 3). Destructive plots are labeled as NW, NE, CENTER, SW 
and SE and are used to develop predictive models of bulk density and biomass. Because most biomass is 
located in the 0-10cm of fuelbed stratum, and much of that is generally within litter and duff layers, we 
created an additional forest floor sampling protocol to augment our litter and duff sampling (see 
Additional Forest Floor Sampling).  

Coarse woody debris (CWD) including logs >7.6 cm in diameter and stumps are not adequately 
sampled by either 5x5 m plot scans or destructive plots. We plan to use synoptic TLS and SfM scans to 
survey coarse wood and will use a combination of measured and published bulk density values to 
estimate the biomass of these fuels.  

 
Figure 1: Conceptual diagram of the multi-scaled estimates of 3D fuels characterized using our 
hierarchical sampling method. 
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Experimental Burns  
Experimental burns will be conducted at a minimum of three sites to collect evaluation datasets of 
energy release, spatial and temporal patterns of consumption, and assess improvements in 
consumption estimates from higher-resolution 3D fuels. Spatial heterogeneity in fuel consumption will 
be estimated by comparing pre- and post-burn fuel loads (e.g. Mueller et al. 2016, Rowell et al. 2016) 
modeled and mapped at nested scales. Spatially-explicit characterization of consumption, including fuel 
types that burn mostly in the flaming vs. smoldering phases of combustion, will provide the functional 
link between fire behavior and fire effects and provide a physical basis from which to measure fire 
effects and vegetation recovery if burns are coordinated with related studies (Hudak et al. 2020). 
Consumption mapping will also allow for a greater understanding of the contribution of fuels to wildland 
fire emissions models. 

Our team is actively pursuing opportunities to collaborate with additional research burns. Each site 
with highly resolved fuels mapping represents an opportunity to conduct prescribed fire research with 
source characterization of understory fuels and spatial context for fire behavior and effects. Although 
pre- and post-burn voxel sampling is not possible at each site, we will look for opportunities to have the 
pre-burn characterization used as context for experimental burns and at least be coupled with post-burn 
imagery. To date, we have conducted pre- and post-burn sampling at two sites on the Sycan Marsh 
Preserve (south-central OR) and one site on the Osceola National Forest (northern Florida). 

 

 
Figure 2: Example TLS scan grid for the Sycan Marsh Preserve pine forest site. Yellow dots represent 
scan-only plots; red dots represent the nine scan and voxel-sampling plots. 
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Figure 3: Voxel sampling plot layout within a 5x5 m plot at the Sycan grassland site. 

 

Methods 
TLS Point Cloud Acquisition 
Terrestrial laser scanning is considered the most stable and consistent platform for localized estimates 
of fuelbed characterization from fine grain (0.1-0.25 m2) estimates to larger unit scale characterization 
(> 400 m2). The TLS is able to robustly characterize multiple types of fuelbed objects, producing point 
clouds that represent both the outer hull and a substantial proportion of the internal organization of 
fuels (Loudermilk et al. 2009). Use of voxel analysis has allowed for estimates of fuel mass in mixed 
surface fuels of the southeastern US by correlating TLS volume estimates and metrics (e.g., porosity) to 
field estimates of mass. Preliminary linear models between TLS-based metrics and mass of fine surface 
fuels including pine needles, fine wood and grass have very high coefficients of determination and are 
promising for mapping applications in southeastern US forests (Rowell et al. 2020).  

We are using both a RIEGL -VZ2000 and RIEGL-VZ400i TLS systems to collect 3D point cloud data at 
~5 mm point spacing at 15 m range. The RIEGL is a near-infrared (1050 nm) laser system with a 
maximum range of 2000 m, which can collect data at rates from 50 kHz to 1 MHz. TLS settings are set to 
750 kHz for the laser sampling rate and vertical sampling density of 0.21 degrees. The expected time for 
the scan is 3m 15s.  If the time is significantly greater or less, we adjust the sampling to fall as close to 
3m 15s for sampling time. The system is mounted on a tripod at a minimum height of 1.5 m. The REIGL 
has an integrated L1 GPS receiver, compass and inclination sensors that aid in geo-referencing point 
clouds.  

We organize TLS data acqusition into four types: (1) large scale synoptic coverage that includes a 
360 degree scan every 50 m over each site for a total of 25 scan points, (2) a minimum of nine high 
resolution 5x5m (25m2) plots with coincident clip plots, (3) a minimum of nine 5x5 m (25 m2) scan-only 
plots, and (4) individual shrub scanning. The synoptic TLS data (type 1) provides a frame to apply fuel 
metrics over a larger unit and to provide improved characterization of the overstory composition and 
canopy heterogeneity. The first priority of the synoptic scans is to capture the overall site. In instances 
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where a tree would occlude the majority of the site from the flagged scan position, we move the 
scanner to the closest location to the flagged scan position that will also remove the majority of the 
occlusion from the tree. 

For the 5mx5m subplots (types 2 and 3), TLS data are collected at the four corners of each plot. The 
laser position is at least 1.5 m from plot corners. The coincident scan and clip plot sites are used to 
parameterize and validate the models used to estimate fuel metrics. Scan-only sites combined with the 
coincident scan and clip sites are used to parameterize fuel metric estimates and increase the sample 
size as we scale to larger domains. 

In addition to unit and 5x5 m plot scanning, we are also using TLS scanning of individual shrubs (type 
4) to contribute to object-based fuel characterization. For major southeastern shrub species (i.e., 
palmetto, gallberry), Michelle Bester is coordinating individual TLS scans with destructive sampling to 
build quantitative structural models (QSMs) of shrubs by species and status. Prior to TLS and SfM 
scanning, individual shrubs are tagged with reflective tape and labelled. Following scanning, these 
individual shrubs are destructively sampled for subsequent scanning of leaf on and leaf off plant 
architecture. 

For western shrubs, major shrub species (e.g., bitterbrush, manzanita, Gambel oak) will be sampled 
as entire plants, scanned individually, and then segmented and weighed by major fractions (stem, fine 
branch, foliage). Coordinated mass, volume, and TLS sampling of shrubs will facilitate the construction of 
QSMs of shrubs and synthetic 3D representations of shrub fuels.  
 

Task leads: 
Eric Rowell – image acquisition and analysis lead 
Michelle Bester – TLS shrub scanning and analysis (PhD student, West Virginia University) 
Jonathan Batchelor, University of Washington (PhD student) 
Daniel Rosales – TLS image analysis 
 

UAS and Close-range Photogrammetry 
Where UAS is permitted, we are conducting high (> 60 m) and low-altitude (< 3 m) scans to generate 
high-resolution point clouds for detailed and general characterization of fuels within 5m x 5m plots. We 
are using a UAS-mounted Zenmuse X3 optimal camera and a Micasense Red Edge 3 multispectral sensor 
to collect photogrammetry scans. The Zenmuse X5 camera captures images using a complementary 
metal–oxide–semi-conductor sensor with 16M effective pixels and a 4:3 aspect ratio. The shutter speeds 
range from 8 -1/8000 seconds, the f-stops range from F/1.7 to F/16 and the ISO ranges from 100 – 
25600. This allows for high quality imagery collection under varying light conditions and at a reasonably 
fast flight speed. The camera collects images simultaneously in JPG (compressed) and DNG (raw) format. 
This camera, coupled with a SD card with a high write speed, allows images to be collected in rapid 
succession, with large end-lap and side-lap, while covering a relatively large area on a single battery 
cycle. A large number of images covering an area is necessary when our SfM algorithm creates a 3D 
model from the 2D images. The Zenmuse X5 enables us to collect high quality, sharp, smear-free images 
in a timely manner, enabling us to gain the largest benefit from currently available UAS technology. Low 
and high-resolution UAS data will be collected using this system.  

Coarse Resolution UAS Data 
High-altitude UAS missions are used to generate unit-wide photo mosaics of the fuelbed at fine grain 
sizes (>10 cm) to generate fuel classifications of the visible understory and SfM for dominant tree 
overstory (Figure 4). Ground control points are collected as part of the field data collection and are 
marked with plastic CD’s (diameter = 120 mm) covered in bright orange and pink tape. Coordinates are 
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recorded using an RTK/Differential GPS receiver/base combination1. Most ground control points (pink 
CDs) are put precisely at the NW corners of the smaller field plots in order to tie the later close-range 
drone acquisitions to the 200x200m acquisition. 

Flight parameters include an altitude of 100m AGL; with 24 flight lines North-South (NS) and 26 
EW to ensure there is ~80% end lap and ~75% side lap for the Micasense, the smaller of the two 
camera’s footprints. Total image count for the X3 is around 1295 files and 2749 for the Micasense. The 
large disparity can be accounted for due to the footprint of the Micasense being smaller than the X3; 
several more images are taken due to the Micasense requiring more images to attain 80% end lap. 
While this accounts for some of the extra images, the vast amount are due to the X3 only taking images 
with the defined acquisition boundary while the Micasense, due to triggering limitations, takes an image 
every time the aircraft covers the minimum distance needed to attain the overlap requirements. This 
also includes vertical movement, as five images are taken during the climb to altitude alone. Travel to 
starting and ending points all have a breadcrumb trail of images. These images have to be removed or 
they adversely affect the final output. This is done during the first stages of image processing. 

 

 
Figure 4: Coarse-resolution UAS photogrammetry scan of Lubrecht Experimental Forest. 
 
High Resolution UAS Photogrammetry 
Using methods developed at experiments in Florida and Montana to attain high resolution SfM 3D point 
clouds, we are employing low altitude 8-10 m aboveground) bi-directional UAS data acquisitions that 
enhance image overlap to produce high-resolution SfM point clouds over each of the nine 5m x5m plots 
where voxel sampling is planned. Each corner of plot is marked with glyphs, and the pink-tape-covered 
CD is at the NW corner from the previous synoptic acquisition. For the high-resolution photogrammetry, 
                                                           
1 Emlid Reach RS X 2; https://emlid.com/reachrs/  

https://emlid.com/reachrs/
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we use a Phantom 4 UAS, which collects true-color high-resolution video of each plot. We fly a slow grid 
(3 flight lines) in each direction (north south; east west) with camera at nadir. The first flight line is on or 
near the plot boundary, the second in the center, the third on the other boundary (shaped like an S). 
Then we fly a circular pattern around the plot, keeping the drone about 10 meters from plot center, with 
the camera 10-20 degrees oblique.  The objective is to capture some of the voxel frames (Figure 3) with 
at least 3 corner targets in some of the frames. 

UAS-based SfM point clouds generally characterize the outer hull of the fuelbed. Supplemental 
occupied volume from TLS and 3D sampling methods will be used to relate hull estimates of surface area 
with volume and mass to add additional comparative data sets for larger landscape scale estimates of 
fuel properties. High-resolution imagery will be ~3 mm in resolution to optimize the ability to generate a 
3D point cloud.  
 

Task leads: 

 Eric Rowell – image acquisition and analysis lead 

 Carl Seielstad, University of Montana 

 Jonathan Batchelor, University of Washington (PhD student) 
 

Close-Range Photogrammetry 
Using an adaptation of methods described in Wallace et al. (2019), we employ a form of 
photogrammetry that bridges the earlier methods of Bright et al (2016) with the desired outputs 
commonly expected using UAS-based SfM. Using a common GoPro Hero platform, a 1-2 minute video is 
filmed from a constant elevation and consistent pattern above small plots that are used in 3D voxel 
sampling at 1080 or 4K resolution(next section). Using bi-directional and highly overlapped image 
capture from the GoPro video, high-resolution point clouds representing individual plots and the 
surrounding area (5m x 5m) are generated to assess three-dimensional distributions of fuel metrics that 
can be related to the robust estimates of fuel metrics from the TLS data (Figure 5). This method also can 
be used to delineate distinct fuel types from the RGB values collected in the imagery, with green 
wavelengths of passive remotely sensed data representing a variety of live fuels and combinations with 
low to no green dead fuel properties. This affordable method of fuels collection has the potential to 
produce large numbers of samples over increasingly larger areas that can be used to train coarser 
grainsize TLS, UAS, ALS, or NAIP imagery for unit and landscape scale estimates of critical fuel properties.  
 

Task leads: 

 Eric Rowell – image acquisition and analysis lead 

 Gina Cova – UW Master’s student 

 Susan Prichard and Van Kane (UW) – project advisors 
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Figure 5: Close-range photogrammetry scan with a voxel plot frame, Lubrecht Experimental Forest. 

Image processing 
We are using Agisoft Photoscan image processing software configured and tested for multi-
thread/processor computing to generate ortho-photomosaics and SfM-based 3D point clouds. We also 
leverage the RGB imagery to segment live and dead fractions of the fuelbed to inform separation by 
voxel. Based on synoptic SfM and TLS imagery, we will classify understory fuels into major 
vegetation/fuel types to inform unit-level mapping. Raw and integrated imagery will be stored and 
served to the public at the USDA Research Data Archive. Final image datasets (synoptic TLS, 
photogrammetry, and close-range photogrammetry) will be housed in a central repository managed by 
Ben Bright (3D Fuels Data Manager).  
 

Task leads: 

 Eric Rowell – image acquisition and analysis lead 

 Carl Seiestadt – SfM photogrammetry 

 Brian Drye – UW software engineer, image processing for close-range photogrammetry 

 Gina Cova – close-range SfM analysis 
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3D Voxel Sampling 
Samples from all consumable fractions of live and dead 
fuels are collected in 3D sample plots and analyzed in 
the laboratory to build a library of surface fuel 
properties including bulk density by vegetation and fuel 
type. For shrub and tree species with complex 
architecture, foliage and branch samples are collected 
and individually scanned with TLS, facilitating 3D 
modelling of shrubs, trees and other plants as coherent 
geometric structures (Parsons et al. 2011). The 3D 
sample plot dimensions are 0.5 m on each side in x and 
y, and 1-2 m in z., segmented into 10-cm vertical strata 
(Hawley et al. 2018).  

Although thermally thin (≤ 10 mm) fuels are the 
primary driver of physics-based fire behavior models, 
we also sample thermally thick (> 10 mm) fuels as 
downed wood, litter and duff. Fine wood biomass, litter 
and duff are collected as part of the 3D fuels sampling 
framework. Litter and duff are separated in the field and 
bagged. Samples by fuel type and size fraction are oven 
dried at 70°C for 48 hours and then weighed for dry 
weight biomass. 

Coarse wood is included in voxel plots, but the 
sample area and frequency are insufficient to 
adequately characterize logs and stumps. These fuel 
types will be mapped and quantified using a 
combination of synoptic TLS and high-altitude SfM scans. 
 
Sampling Methods  
The 3D field fuels sampling follows the methodology initiated by Hawley et al. (2018). With sliding 
square set at the 90-100 cm height, the 3-D frame (Figure 6) is centered and orientated so the first voxel 
of each stratum is located in the northwest corner of the plot. Metal wires are inserted to establish a 
10x10x10-cm grid for each 10x50x50-cm stratum. Sampling proceeds from top to bottom within each 
plot (Figure 7). Voxels are read north to south and west to east with the lowest voxel number located in 
the northwest corner. The metal rods outline the voxels and are the floor of the stratum. The voxels are 
also viewed from the side, as it was easier to note fallen litter such as pine needles. If vegetation 
measured in the voxel plots extends above 1 m in height, biomass of the fraction above 1 meter is noted 
on a data sheet, clipped, and bagged, but the voxel sampling methodology is not applied above 1 m. 
From 100 cm, the larger square is lowered to the highest stratum that contains biomass. If a stratum 
does not contain biomass, it is noted on the data sheet. While lowering the larger square, the metal 
wires are removed as needed to preserve the location of the vegetation at the stratum. After lowering is 
complete, the metal wires are threaded through the drill holes and vegetation to again outline the 
location of the voxels.  

On the data sheet, the present or absent (binary data) of the different fuel class types is noted for 
each voxels (Figure 8). A voxel can have multiple fuel types. If only trace amounts of fuels exist within a 
voxel, the voxel cube is marked as empty. For each stratum above 0-10 cm, the entire stratum is clipped 
and bagged. Following destructive sampling, the larger square is lowered 10 cm to the next height 

Figure 6: 3D voxel sampling grid. Fuels are sampled in 
10 cm layers, starting at the top of the fuelbed and 
working down to the last 10 cm (Hawley et al. 2018). 
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stratum; again removing and threading metal rods as needed to work around vegetation. The voxel 
sampling and biomass collection is repeated (Figure 9). 

For the 0-10 cm stratum, a total of five 10x10x10-cm (1000 cm3) voxels are sampled based on 
predetermined random sampling using a random number generator. Biomass is clipped and bagged 
from randomly selected voxels. Biomass samples are sorted into separate bags for duff, standing dead 
stems, and litter/understory vegetation. After biomass is removed from the random voxels, the 
remaining biomass of the 0-10 cm stratum is clipped and bagged.  

At the 0-10 cm height stratum, biomass is harvested to the top of the soil profile. Stems are 
harvested as close to the soil as possible. Where voxel plots contain CWD (i.e. large logs or stumps), the 
material that falls within the plot is collected with a hand saw or chainsaw. Where duff is present, the 
total depth of the lowest stratum is > 10 cm. In these instances, depth is taken at the 5 randomly 
sampled voxels and averaged for a stratum depth.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Voxel sampling of a forest understory plot at the Sycan Forest site. 
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Figure 8: Sample 3D voxel form for the 0-10 cm stratum.  

 
Figure 9: Voxel plot sampling in a forest understory plot at Tate’s Hell SF (Site A). 
 
Dry-weight biomass 
The collected aboveground biomass samples are dried and weighed at the Pacific Wildland Fire Sciences 
Laboratory in Seattle, WA as well as the USDA Forest Service, Southern Research Station, Athens Fire 
Lab in Athens, GA. Samples are dried in ovens at 70°C until a stable weight is achieved. Most biomass 
samples require 48 hours of drying time, but coarser fuels such as wood particles >7.6 cm generally 
require 72 to 96 hours. Once dry, the weight (g) is recorded.  
 

Sorting by fuel element 
Samples are sorted into categories based on fuel element (foliage, woody stems, pinecones, etc.), 
diameter class, and live dead status. Litter and live plant samples are sorted into fuel element types and 
live and dead components for live plants. Subsamples of fine time lag (1-hr) live woody fuels will be 
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further divided into 5 size classes of fuel elements: foliage, very fine twigs (diameter < 3 mm), fine twigs 
(3-6 mm), medium twigs (6-10 mm), large twigs (> 10 mm).  
 

Task leads: 

 Jim Cronan and Deborah Nemens – FERA crew and laboratory analysis leads 

 Susan Prichard and Eric Rowell – data analysis  

 Maureen Kennedy – power analysis and study design 
 

 
Figure 10: Photo of 0-10 cm stratum at the Sycan Forest site following sampling of the five randomly- 
sampled 10x10x10-cm voxels. 
 

Additional Forest Floor Sampling 
For forest sites with accumulated litter and duff (termed the forest floor), we are conducting additional 
sampling to increase our sample size of these fuel types. Using bulk density sampling squares (0.25 x 
0.25 m), we will augment the 3D voxel plots with additional plots that sample litter and duff layers 
where present on SE and western pine forests. To evaluate if forest floor distributions can be modeled 
relative to tree crowns, we are establishing a minimum of 18 transects radiating from the edge of 
randomly selected trees to outside the projected crown to facilitate development of models that 
predict forest floor biomass using tree stem and crown mapping. A minimum of 9 trees for forest sites 
will be randomly selected for a given number of trees around each terrestrial lidar scan plot.  

To select a tree, we randomly set an azimuth and then locate the first tree that meets criteria 
moving in a clockwise direction from the azimuth. Trees must be at least 15 cm DBH, distance to the 
tree drip line must be at least 15 m from the lidar plot center (to avoid disturbance to forest floor from 
foot traffic during lidar plot data collection), and no more than 30 m from the lidar plot center (Figure 
11). Once a tree is located it is tagged, photographed, and GPS coordinates should be collected.  
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Bulk density samples are collected along two transects originating from the bole of the tree and 
extending north and south with three sample locations per transect. Samples locations are 10 cm from 
base of the bole, half the distance between the bole and drip line of the crown, and 2 m from the edge 
of the nearest drip line (Figure 12). If the forest has a closed canopy, the third sample is collected 2 m 
from the drip line of the tree being sampled. In all cases, we note if the canopy is open or closed above 
each sample. 

Prior to destructive sampling of forest floor layers, the square is cleared of live and dead shrubs 
and grasses, tree cones and downed wood, leaving litter and duff layers remaining. Downed wood, 
pine cones, etc. are considered part of the forest floor when the central axis of the material lays below 
the litter/duff boundary. Litter that is suspended in grass or other surface materials is not considered 
part of the forest floor and is excluded from the bulk density sample. A bulk density sampling square is 
placed on the top of the forest floor, and material along the edges of the frame is carefully clipped to 
allow the frame to be inserted to the base of the organic soil layer (duff). Once the frame is in place, six 
pins (nails or welding rods) are equally spaced on a systematic grid such that the top of the pin is flush 
with the litter. If an obstruction such as a rock or root prevents this, we note the distance between the 
top of the pin and the surface of the litter layer.  

For each pin, we record the depth of the litter layer to the nearest mm. Once depths have been 
recorded, the litter layer is carefully collected and stored in a paper bag. Pins are then pushed further 
into the soil so that the top of each pin is flush with the duff layer. We then record the depth of the 
duff layer at each pin location and collect the sample into a paper bag. 
 

Task leads: 

 Jim Cronan – FERA crew lead 

 Susan Prichard & Maureen Kennedy – power analysis and study design 

 

 
Figure 11: Tree selection for forest bulk density sampling. Trees are selected at each site by randomly 
selecting an azimuth at each 5x5 m scan plot and selecting the first tree that meets our criteria (> 15 cm 
dbh with a distance from plot center to drip line between 15 and 30 m). 
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Figure 12: Plot layout for forest floor bulk density sampling. Samples are collected from 3 locations along 
two transects running to the N and S of sample trees.  
 

Intrinsic Fuel Properties 
A fuel properties database and online library is being developed to house published and measured 
values for fuels at the object (e.g., shrub or litter layers) and element (e.g., grass blades or pine needles) 
scales. Values will be used to parameterize fields in 3D fuel models with computational inputs to 
computational fluid dynamics (CFD) models that cannot be measured remotely. We also will develop 
quantitative models (See Object-based Fuel Characterization section) that relate remotely sensed 
attributes with fuel properties. These relationships can then be used to impute these values to 3D 
fuelbeds at the relevant scale of the model. Physical fuel properties required as inputs for CFD fire 
behavior models (Linn et al. 2002, Mell et al. 2007) will be compiled (Table 3). 

The intrinsic fuel properties library will include published values and field samples from our 3D fuels 
sites. We will first conduct a literature review on relevant fuel data for each variable. We will then 
supplement the database with measurements taken from collected field samples in representative SE 
and western sites as part of the 3D fuels field campaigns. Fuel property samples will be collected from a 
subset of randomly selected 1000 cm3 voxels in 3D voxel plots. This subset will be part of the same 
subset of voxels destructively sampled to determine bulk density and fuel load. Embedding the fuel 
property sampling protocol with the 3D sample plots will reduce redundancy of the sampling effort and 
provide a dataset of fuel properties with high model sensitivity at a comparable resolution to fine-scale 
TLS fuel characterization. Sample size will be calculated based on prospective power analysis (beta = 0.1) 
of data from previous published values or pilot studies.  

Variables with high model sensitivity include bulk density, surface area to volume ratio, fuel 
moisture, and particle density. Variables with low model sensitivity that will mostly be derived from 
published values include specific heat, heat of combustion, char fraction, and ash fraction. Fuel moisture 
will be measured for experimental burns, but we will not develop a library for this variable. Fuel 
moisture, especially for thermally thin fuels, is consistently in flux due to changing environmental 
conditions and must be modeled at fine temporal scales for fire models. 



  

20 
 

The FERA team visited the Missoula Fire Sciences laboratory in November 2019 and worked with 
Matt Jolly’s team on intrinsic fuel property measurements, including heat of combustion and surface 
area to volume ratio. When our field and laboratory technicians are allowed to travel and visit other 
labs, we plan to schedule additional visits to the Missoula Fire Sciences laboratory and conduct 
measurements on 3D fuels samples. 
 
Table 3: Intrinsic fuel property library field definitions. 

Fuel property Unit Definition 

Ash fraction Proportion Fraction of completely consumed fuel that is ash, 
reflecting mineral content 

Bulk density g/cm3 Mass per volume of vegetation or fuel, including 
interstitial air space (e.g., bulk density of in-situ litter or 
duff) (g/cm3) 

Char fraction Proportion Remaining mass of a fuel particle after incomplete 
combustion (black ash) 

Fuel moisture content Percent Fuel moisture content (%) expressed as the percentage of 
fuel that is water, measured by taking the gross weight 
minus the dry weight of fuel 

Heat of combustion MJ/kg The amount of heat released from a known mass of a 
substance during combustion 

Packing ratio Proportion The fraction of a known volume occupied by fuel particles 
-- calculated as the bulk density divided by the particle 
density 

Particle density Mg/mm3 Mass per volume of fuel element (leaf, fine branch, stem) 
(mg/mm3) 

Specific heat kJ/g The amount of heat (kJ) required to raise the temperature 
of the mass of a given substance by unit temperature (C) 

Surface Area to  
Volume Ratio (S:V) 

cm2/cm3 Ratio of surface area to volume (cm2/cm3) 

 
Sampling methods: 
Bulk density 
Bulk density will be determined for live fuels by determining the dry weight of fuel elements in randomly 
selected subset of voxels within 3D fuel plots. Live samples will be sorted according to fuel element 
categories, dried, and stored according the same requirements for SA:V samples. Litter and duff bulk 
density will be sampled from the base of 3D fuel sampling plots and additional forest floor bulk density 
plots. All bulk density samples will be weighed with a 0.001 accuracy digital balance.  

Combustion properties 
Heat of combustion, specific heat, char fraction, and ash fraction are each combustion properties that 
describe the extent of energy decomposition during different phases of combustion relative to a given 
mass of a fuel particle. For biomass components where published values for similar fuels are not 
available, a minimum of 20 samples will be collected from objects or sub-plots. Staff will process 
samples and measure combustion properties by bomb calorimetry (Susott et al. 1975). 

Surface area to volume ratio 
Surface area to volume ratio (SA:V) measures the ratio of the surface area of a fuel particle to its 
volume. Thermally thin fuels such as tree needles or grasses have SA:V and can respond to ambient 
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temperatures and relative humidity. In contrast, fuel elements such as large logs have low SA:V. We are 
working with Matt Jolly and Elliott Conrad at the Missoula Fire Sciences Laboratory to develop 
measurements for SA:V for common live and dead surface fuels for 3D fuel characterization. 

Fuel moisture content 
For experimental prescribed burns, day-of-burn fuel moisture samples will be collected for each 
thermally thin fuel element defined for the study site. A minimum of twenty 10 g samples will be 
collected systematically along the periphery of each 3D fuel-sampling plot. Sample weight will be kept 
low to reduce water loss during collection. Samples will be stored at 10 °C in puncture-resistant hard 
containers with screw-on lids and transported to facility where wet weight will be recorded with 0.001 g 
accuracy calibrated scales mounted to a permanent surface. Wet weights will be recorded within 6 
hours of sample collection. Onsite mobile weather stations will provide relevant weather data 
(temperature, relative humidity, and 2-m wind speed and direction) for at least one month prior to the 
day-of-burn that can be correlated with fuel moisture samples. Recording resolution will be hourly for 
the month preceding the burn and every minute for the day of burn. 

Particle density 
Particle density is the mass of material for a given volume and is expressed as mg mm-3. This variable is 
an input for biometric equations to calculate weight because density varies across species and 
vegetative structures. Particle density is also necessary to calculate the packing ratio, a critical input 
variable for fire behavior models. For biomass components where particle density is unknown, a 
minimum of 20 samples will be collected from the 3D fuel plots. Particle density samples will represent a 
single object or sub-plot depending on the fuel object. Collection and storage techniques will follow 
procedures described in Cornelissen et al. (2003). Mass measurement procedures will follow oven-dry 
methods described in the fuel moisture content section except a 0.0001 g accuracy analytical balance 
will be used to weigh samples. 
 

Task leads: 

 Jim Cronan and Deborah Nemens – laboratory analysis leads (FERA) 

 Susan Prichard – lead for database development (FERA - UW) 

 Paige Eagle – database development (FERA - UW) 

 Matt Jolly and Elliot Conrad – collaborators (Missoula Fire Lab) 

 Anne Andreu – literature review (FERA - UW) 

 
Object-Based Fuel Characterization 
Fuel can be distilled down to individual objects that comprise elements within a fuelbed (Hiers et al. 
2009, Keane 2015). Individually, these objects each occupy a specific volume and often have different 
fuel properties, such as bulk density, varying with fuel type. In CFD models such as FIRETEC and WFDS, 
objects are often aggregated to represent total fuels and bulk density for a discrete volume (e.g. voxel 
grid cell). However, representing these objects as discrete entities can be accomplished by maintaining 
the spatial details of their 3D structure as a virtual wire frame or mesh and allows more in-depth 
consideration of the role of these fuels within a CFD model. For example, drag forces, radiative and 
convective heat transfer and convective cooling can be explored, often with smaller simulation domains 
and more detailed simulations. In general, computational constraints prohibit model simulations that 
account for the individual architecture of each leaf on a branch, but the capacity to represent finer detail 
is important for robust examination of how to best aggregate fuels and still maintain model 
performance. We will use multiple approaches for object-based fuels characterization: 
 

1) High-resolution simulations, in which individual fuel vegetation types (e.g. grasses, leaf litter, coarse 
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woody debris) or objects will be described as three dimensional meshes that have a specific surface 
area and fuel mass that can be predicted as a function of unit mass per unit of surface area (g cm-2). 
These simulations can be assembled into mixed representative fuelbeds and distilled to estimate 
bulk density and mass per unit volume (g cm-3).  

2) Quantitative structural modeling (QSM) is an analytical technique that distills point clouds with 
mathematical models that systematically and iteratively filter and fit various shapes to the objects 
present in a point cloud, thereby accounting for the incomplete nature of LiDAR scans due to 
occlusion and point densities. There is a developing body of literature exploring QSM in several 
realms of inquiry with the study of trees and biomass being most relevant to this work. For example, 
Calders et al. (2015) compared QSM-derived models of biomass from numerous large trees with 
destructively harvested measurements and found their models to be highly accurate. Much of the 
current work on QSM model development is provided as open-source, presenting us with a well-
developed starting point. Michelle Bester and Nick Skowronski are leading a QSM modeling task for 
southeastern US shrubs for this project.  

3) The third method is segmentation and classification of surface and canopy fuel strata using 
combinations of point cloud metrics and UAS digital imagery. Point cloud objects and fuels 
characterization uses a new prototype algorithm to separate points into four fundamental 
categories and assignment of mass and volume (Cabo et al. 2018). Discrete surface fuel objects are 
detected using object-based image analysis for digital imagery that when tied with 3D object 
volumes provides detailed information regarding distributions of fuel type, dead\live ratio, and 
course woody distributions. Embedding the physical fuel property variables measured in the 
collocated 3D sample plots will preclude the need for additional sampling effort to characterize 
larger 3D objects; it is also impractical to destructively sample entire trees or shrub clumps.  

 
The physical fuels properties for the respective fuel components (tree stems, branches, needles, 

shrubs, herbaceous) will be assigned to the 3D objects for those corresponding fuel components. For 
example, the estimated volume of a given object (e.g., shrub clump) can be multiplied by a known bulk 
density to calculate biomass. The type of fuel object (i.e., tree stems, branches, needles, shrubs, 
herbaceous) will be classified from the point cloud after Cabo et al. (2018), and the fuel properties 
imputed from the 3D reference library (FCCS) to populate the objects in the scene with physical fuel 
properties needed to estimate fire behavior and emissions. This approach will be further expanded on in 
the object-based aggregation of fuel structures in another SERDP project (RC20-C3-1346, Hudak PI). 

 
Task leads: 

 Silva: ALS interpretation 

 Bester and Skowronski: QSM shrub/small tree models 

 Rowell and Loudermilk: TLS-derived indices 

 Cova (UW Masters Student): close-range photogrammetry  

 Rowell - synthetic fuelbed elements  
 
Canopy characterization 
Computational fluid dynamics models are sensitive to distribution and density of individual tree 
placement on the landscape. To detect individual trees, we will apply tree-detection algorithms for stem 
mapping and crown characterization to available ALS imagery (Silva et al. 2016, Roussel et al, 2020). Two 
software programs, TREES and STANDFIRE, can be used to ingest stem map data into CFD models. TREES 
uses a tree list with attributes of DBH, tree height, crown width, and height to crown base that are then 
converted to irregular mesh parabolic shapes (Parsons et al. 2011). STANDFIRE integrates the Forest 
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Vegetation Simulator and assumes probabilistic distributions of trees by species. The same canopy 
metrics are used to attribute the tree objects, though STANDFIRE uses the logic and allometric equations 
that allow for distribution of fuel mass in the canopy proportioned by fuel class (needle, branch, and 
stem). These proportions can be informed by the fuel type classification of Cabo et al. (2018). 

Several stem detection algorithms exist based on the lidar derived canopy height model (Silva et al. 
2016) and 3-D point cloud (Li et al. 2012) and allow for segmentation of the tree crown into distinct 
objects (Roussel, 2020). Using these remotely sensed stems, we can use existing methods to develop 
canopy inputs for CFD modeling (e.g., Silva et al. 2018). However, these generalized trees are a 
functional impediment to detailed or realistic fluid flow through canopies that affect fire propagation 
through surface fuels or transition into canopy driven fire (Figure 13). Therefore, we will leverage the 
substantial amount of data derived from the TLS that can produce thousands of detailed models of bulk 
density distributions for numerous species. To scale TLS-based metrics to larger units, we will use object-
based canopy characterization to map canopy biomass and other properties by estimating parameters 
from an ALS stem detection map. 
 

Task leads: 

 Andy Hudak and Carlos Silva – canopy and crown characterization 

 Eric Rowell and Tall Timbers – image analysis 
 

 
 
Figure 13: Comparison of airborne lidar (ALS) based crown mapping (a-d) and generic tree 
representations (e) to a) ALS-derived canopy height model and field (black) and trees detected (white); 
b) ALS-point cloud and field trees; and ALS-derived single tree representation in 3D as solid (c) or 
conifers (d) shapes. 
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Shrub characterization 
Shrub fuels are often an important component of wildland fuel biomass, contributing to fire intensity 
and spread depending on their fuel moisture and intrinsic fuel properties. Seasonal dynamics in fuel 
moisture influence if and when shrubs are readily consumed in a wildland fire event. Functional traits 
such as shape, branching pattern and vertical and horizontal distribution of fuels affect permeability and 
influence the flammability of shrubs. Much like trees, individual shrubs or clusters of shrubs are distinct 
objects that influence wind flow, fire intensity and fire spread. We will use a hierarchical sampling 
approach to characterize shrub objects including synoptic TLS and SfM scans to define shrub objects, 
close-range photogrammetry and individual TLS scans to characterize shrub architecture and destructive 
sampling of shrubs to determine fuel properties including bulk density and surface area to volume 
ratios. 

Many of the advancements in canopy characterization can be used to define shrub objects, including 
stem-detection algorithms that can be adapted to detect tall shrubs within TLS imagery. Michelle Bester, 
PhD student at West Virginia University is working with co-I Nick Skowronski to develop quantitative 
structural models (QSM) of shrub architecture and physical properties for major shrubs within our 
southeastern forest sites. Her initial fieldwork included integrated sampling with the 3D fuels project at 
Tate’s Hell State Forest in which she tagged replicated gallberry, saw palmetto and other common 
shrubs within 3D fuels scan plots. Field measurements were conducted in which she measured shrub 
properties such as height to live crown, diameter at breast height and approximate height and widths. 
Additionally, whole plants were harvested and additional TLS-scanning of plant and branch architecture 
both leaf-on and leaf-off was coordinated with volume and dry weight mass measurements. These 
measurements will be used to create, optimize and verify the QSM (Figure 14). A similar sampling 
approach of major western shrub species will also be conducted in order to inform object-based fuel 
characterization of shrub objects at all 3D fuel sites. Validation will be conducted both qualitatively 
through visual inspection as well as quantitatively through regression analysis. 
 
Task leads: 

 Michelle Bester - southeastern shrub TLS image analysis and QSM modeling (dissertation work) 

 Nick Skowronski – project advisor for southeastern shrub modeling 

 Tall Timbers TLS Crew – individual scanning of major western shrub species  
 
Other fuels 
Coarse wood, including logs, stumps and piles, are readily detected from TLS and SfM photogrammetry 
and can be characterized as distinct objects through a combination of geometric pattern recognition, 
color and TLS texture indices. Through coordinated field observation, decay class and species 
assignments may be possible to refine estimated wood density and mass calculations.  
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Figure 14: Overview of quantitative structural modeling approach to shrub characterization. 
 

New Metrics 
Effective fuels management requires metrics that describe fuels in terms useful to managers. Before CFD 
models become operational, fire and fuels managers require interim metrics that translate lidar and 
other remotely sensed datasets to practical fuels management questions. At present, managers often 
use torching and crowning indices to evaluate crown fire potential and to assess fuel treatment 
effectiveness. However, these indices often underestimate crown fire potential. Our system of 
hierarchical fuels characterization and mapping provide opportunities to develop new metrics for 3D 
fuels useful interpretation and insights to managers, particularly with respect to fuel reduction 
treatments and prescribed burning programs. Leveraging the STANDFIRE prototype 3D fuel modeling 
platforms, we will develop metrics quantifying fuel properties and spatial characteristics. In many cases, 
gaps between fuels may play as important a role in fire spread.  

We will develop fuel metrics that statistically characterize not only the distributions of surface and 
canopy fuels, including horizontal and vertical fuel continuity, but also gap structures in 3D fuelbeds. Our 
approach will use fractal theory and modeling that treats plant architectures as hierarchically structured, 
fractal-like, space-filling branching networks (Parsons et al. 2011), and calculate lacunarity, a measure of 
the distribution of gap sizes across a range of spatial scales (Plotnick et al. 1993). Drawing upon our 
measurement and modeling of fuel properties, we will also characterize the potential energy within 
each voxel, and the fire radiative energy density, calculated from empirical relationships with fuel 
consumption and moisture content (Smith et al. 2013, Klauberg et al. 2018). 
 

Task leads: 

 This will be an integrated task involving all co-Is on the 3D fuels project. 
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Landscape Mapping 
Comparison of fuel mass, bulk density, and SA:V from previous sections will be related to multi-scale ALS 
metrics to estimate unit-level fuels and consumption. Using the continuous voxel estimates of fuel 
characteristics derived from TLS data, we will estimate landscape estimates of fuelbed properties using 
relationships with a compendium of ALS-derived height metrics, such as maximum height, mean height, 
height percentiles and canopy densities (Figure 15). Examples of the use of ALS metrics in for fuel 
mapping can be found in Hudak et al (2016) and Garcia et al (2017). In a related study, Rowell (2017) 
describes improved estimates of landscape scale fuel mass using this method over individual clip plots 
alone. This method is expected to readily extrapolate to other independent metrics of fuelbed 
properties (e.g. SA:V, bulk density). For this task, we will be in close collaboration with Andy Hudak on 
his recently funded SERDP project, “RC20-C3-1346: Object-based aggregation of fuel structures, physics-
based fire behavior and self-organizing smoke plumes for improved fuel, fire, and smoke management 
on military lands.” 
 

Task leads: 

 Hudak – lead 

 Silva – ALS-derived canopy metrics, modeling and mapping 
 

 
Figure 15. Fuel modeling and mapping from ALS-derived canopy metrics; a) lidar and field data; b) fuel 
modeling and c) fuel mapping. 

 

  



  

27 
 

Model Sensitivity Analysis 
Wildland fuels are complex and highly variable, typically 
unevenly distributed in space and characterized by clumps 
and gaps within canopy and surface fuels (Figure 16). 
Heterogeneity in fuel characteristics evolves from the 
myriad processes in growth of live plants over time (with 
respect to live fuels) as well as their deposition and 
decomposition (in the case of dead fuels). The goal of this 
task is to improve our understanding of how fuel 
heterogeneity impacts fire behavior, and the implications of 
scaling to CFD models of fire behavior. Our model 
sensitivity analysis will address one of the main research 
questions of the 3D fuels project: What are the appropriate 
sampling resolutions of wildland fuels to model fire 
behavior and consumption, ranging from full physics-based 
modeling applications to operational models of fire 
behavior and consumption?  

For this task will use the WFDS physics-based fire 
model, focusing on assessing modeled fire behavior 
sensitivity to spatial resolution of, and heterogeneity within, 
surface fuel components across a range of spatial scales and 
fire conditions. While there are an increasing number of 
detailed mapping approaches available including UAS-based 
high-resolution imagery and Terrestrial 
Lidar Scans (TLS) point clouds, it is still 
undetermined how much fine-scale 
detail is needed to refine model 
estimates. Fuel mapping efforts should 
ideally be directed at the aspects of 
wildland fuels that are most critical to 
fire modeling, but we currently have 
little guidance on appropriate scales of 
measurement. 

Fundamentally, sensitivity to fuel 
heterogeneity and modeled resolution 
depends on the nature and distribution 
of that heterogeneity and on the burning 
conditions under which the assessment 
is made. Simulation-based sensitivity 
analyses at forest patch scales suggest 
that spatial heterogeneity in fuels has a 
greater impact on fire behavior under more 
moderate fire weather conditions (i.e., 
higher fuel moistures and lower wind 
speeds) than under more severe conditions 
(i.e. lower fuel moistures and higher wind 
speeds) (Parsons et al 2017). This suggests 

Figure 16: Spatial distribution of canopy fuels 
within individual tree crowns as shown in profile 
view (A), TLS-based point clouds (B) and 
overhead view of voxelized fuels at two 
resolutions (C).  

Figure 17: Three hypothetical scales of fire: A) high resolution 
fuels with a small fire burning into them. Here, we would likely 
expect higher fire behavior sensitivity to fuel heterogeneity. B) 
a larger fire in which finer scale heterogeneity of individual 
shrubs is likely less important than between-shrub 
heterogeneity, and C) a larger fire in which fuels become more 
homogenous within the larger fire event. 
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that sensitivity to fuel heterogeneity is scale dependent. Figure 17 illustrates three spatial scales of fire 
from very fine-grained fuel heterogeneity in which within-shrub heterogeneity influences fire behavior; 
to mid-scale fires in which gaps between shrubs influence fire behavior and a large fire event at which 
finer scale fuel heterogeneity likely has little effect on fire behavior. 

The sensitivity analysis will explore both spatial and compositional heterogeneity within surface 
fuels, and how those affect outcomes in fire behavior under different fire conditions. Specifically, we are 
interested in learning how the grid size of surface fuels influences fire behavior predictions (i.e., spread 
rate and heat release) over a range of fire conditions (i.e., fuel moistures, wind speeds). This task will 
focus on surface fuels, starting with detailed simulation over small areas examining, for example, single 
shrubs or grass clumps, and extending out over a range of spatial scales to more operationally tractable 
resolutions across prescribed burn units. High resolution TLS scans will be statistically summarized, 
capturing distribution in horizontal and vertical space and different aspects of heterogeneity partitioned. 
A stochastic 3D fuel distribution model will then be parameterized from this data and used to represent 
surface fuels within each classified fuel complex (e.g., pine needles, grasses, shrubs and mixed 
complexes of surface fuels). The sensitivity analysis itself will be carried out using WFDS, simulating each 
scenario and quantitatively comparing changes in fire behavior associated with each aspect of 
heterogeneity represented. However, our datasets will be available for other model evaluation, and we 
anticipate that lessons learned from this analysis will be applicable to FIRETEC/QUICFire and other CFD 
models. 

 

Task leads: 

 Co-I Parsons and Jesse Johnson (U Montana Computer Science) 

 Ruddy Mell – WFDS advisor 

 Eric Rowell – advisor based on recent SERDP-funded limited scope using QUICFIRE/FIRETEC (Rowell 
2019)  

 

Prototype 3D Fuels Applications 
Our 3D fuels datasets and modeling steps will be used to generate inputs to CFD models and 3D fuel 
characterization. These will be used to develop new operational models of fire behavior, smoke and 
other fire effects. A key advantage of our 3D fuel modeling approach is that voxel fuels are treated as 
scalable building blocks and the process of partitioning point cloud data into voxel fuel inputs can be 
widely applied to other fuel types and complexes. In this project, we are focused on some of the most 
commonly burned fuel types on DoD lands. We intentionally selected geographically distinct vegetation 
that has similar structures (e.g., southern pine and ponderosa pine forest understories). Through 
sampling of parallel fuel structures, we will evaluate how the process of 3D fuel characterization at the 
voxel level can be applied to structurally similar vegetation and fuels and customized to the fuel 
properties that may vary by species (e.g., S:V, bulk density) and fuel conditions that vary by geographic 
region and day-of-burn conditions (e.g., fuel moisture). 

As a precursor to comprehensive 3D modeling framework, our project will produce a 3D library of 
voxel fuels, intrinsic fuel properties and quantitative modeling scripts that partition point cloud data into 
voxels and create 3D input for existing and custom applications. The intrinsic fuel properties library is an 
integral component of the project, as it will allow us to summarize measured fuel properties (e.g., bulk 
density, SA:V) and assign them to gridded 3D representations of fuels. Based on our work on 
quantitative modeling, intrinsic fuel properties and model sensitivity analysis, we plan for the 3D fuels 
project to lay the groundwork for an eventual application that integrates and parses hierarchically 
sampled 3D fuels data for next-generation fire behavior and effects modeling. 

As a co-I, Parsons is using our methods and datasets to expand two current 3D fuel prototype 
modeling systems, FUEL3D and STANDFIRE, which model fuels and produce inputs to WFDS and FIRETEC 
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at plant and stand scales, respectively. New metrics of 3D fuel continuity, gap structure, and potential 
energy release will provide innovative interpretations for fire and fuel managers that will be 
implemented within STANDFIRE. Our coPI, Eric Rowell, recently completed a SERDP limited scope 
project that evaluated the sensitivity of QUICFire to fuel inputs. Building on that work, coPI Parsons and 
colleagues will focus on the sensitivity of WFDS to 3D fuel inputs, including a range of grid resolutions. 
The synergies between the data collection and mapping and these modeling efforts will help to advance 
wildland fuels science to improved spatial characterization of surface and canopy fuels. 

 
Task leads: 

 Hudak, Parsons, Prichard, Rowell, Hudak, Silva, Skowronski: coordinate and document scripting tools 

 Brian Drye – software engineer 

 Ben Bright – central script repository along with image datasets 

 

Project Deliverables 
 3D fuel voxel library of commonly burned surface fuels on DoD lands 
 Physical fuel property library – web tool repository of published and measured values  
 Prototype 3D rendering and QSM scripts – precursor to an integrated system to interpret point 

cloud datasets into classified maps of 3D fuels and inputs into CFD and next-generation 
operational models 

 Interim methods for quantifying spatial and temporal fuel consumption in 3D 
 Improvements to STANDFIRE and informing input resolution requirements to WFDS, FIRETEC 

and operational models such as WFDS-levelset and QUIC-FIRE 
 Manager trainings including Rx410 smoke management and DOD presentations 
 Minimum of 8 peer-reviewed papers 
 One Master’s thesis and two PhD dissertations 

 
The main project deliverable is a prototype method to characterize 3D fuels for use in existing CFD 

models and next-generation fire, smoke and fire effects modeling to support prescribed burning on DoD 
installations. We will create a hierarchical fuel sampling and modeling strategy that is both scalable 
(from local projects to landscapes) and broadly applicable to a wide range of systems (grasslands, 
shrublands, savannas and closed forests) and management applications (e.g., representations of 
thinning, prescribed burning and other fuel reduction treatments). As a team, we are referring to this as 
a necessary step toward producing a next-generation fuel characterization system that houses a library 
of fuel properties and scripts to convert point cloud imagery to voxelized 3D fuel inputs to existing and 
future models and modeling frameworks. We will build an online reference library of fuel properties and 
scripts that can be used to convert point-cloud data to 3D inputs for commonly burned fuels on DoD 
lands. We will deliver a prototype method rather than a comprehensive system because future 
development and testing would be needed to create an actual software application that could be used 
by managers and other fire and fuels specialists, which is more appropriate for an ESTCP project.  

As an intermediate step towards a fully integrated 3D fuels modeling framework, we anticipate that 
results from this project will contribute to the development of 3D fuels modeling that can augment 
current functionality in FUELS3D and STANDFIRE and increase their applicability for operational use.  A 
promising development in operational fire behavior modeling is the transition from full computational 
fluid dynamics modeling of fire behavior and combustion to more operational applications such as 
QUICFIRE, which implements FIRETEC on a coarser grid with rapid computations and WFDS-levelset, 
which spreads fire based on gridded terrain, fuels and wind inputs. Both implementations can use the 
full physics-based modes to produce calibrated fire spread and intensity and then model fire progression 
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on coarser fuel meshes and over large landscapes. Our hierarchical approach to 3D fuel characterization, 
with particular focus on surface fuels, will facilitate the production of both fine-scale fuel meshes for 
physics-based models and the coarser meshes to be used in current and future operational models for 
prescribed burning.  

Another key deliverable will be a data archive of 3D fuels and consumption that can be used as 
evaluation datasets to inform operational prescribed burn programs on DoD installations. Sites will be 
geospatially rectified to allow for coordinated fire behavior, fire effects and plume dynamics studies. 
Because geospatial data management is an essential component of this project, our geospatial data 
manager Ben Bright is involved in all aspects of this study and will work to ensure that site data 
collection, analysis and archiving are standardized across sites. 3D fuels maps will be archived and 
available for download on our project website and the US Forest Service Research Data Archive.  

 

Data Management Plan 
We anticipate the need for coordination and sharing of raw, intermediate, and final data products 
derived from large datasets for this project. Ben Bright is our project geospatial data manager and is 
coordinating file storage, sharing, metadata and archiving. Because of the large file size of 
photogrammetry and TLS scans (2GB or greater per scan with an estimated total of 800 to 1000 files per 
site), we will need unlimited cloud-based storage and are in conversations with USGS about an eventual 
3D fuels online repository.  
 
Raw data (stored with data collector): 

1) Field photos and data sheets 

 Field photos and site locations (ArcGIS online) 

 Raw data from ground-based field sampling (3D fuels drive) 
 

2) Imagery and point cloud data: 

 Synoptic ALS, TLS and SfM photogrammetry scans (clean and analysis ready) will be stored in a 
native ASCII file or converted to las/laz formats 

 5x5m plot-level TLS and SfM photogrammetry point clouds 
 

3) Intrinsic fuel properties: 

 Laboratory measurements of sampled fuel particles will be stored with FERA 

 A web-based data repository will be created for project data sharing 
 

Intermediate data: 

 3D fuels sampling and traditional sampling data will be entered into the FERA field database. 
Intermediate files will be stored at the PWFSL with online backups 

 Intrinsic fuel properties library (maintained by FERA with online backups 

 Intermediate scanned imagery and point cloud products 
 

Final products: 

 3D fuel properties library (online, searchable repository) 

 3D voxels and point clouds  

 3D merged point clouds representing each site 

 3D fuels landscape mapping products including mapped metrics and biomass 
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Planned Publications 
This project will produce a minimum of 8 peer-reviewed research papers and support three Ms students 
and one PhD student. 
 
List of completed and planned publications  
1) Relationships between lidar-derived metrics and biomass mapping (Hudak et al. 2020, Rowell et al. 

2020) 
2) Interpreting point cloud datasets of understory plant communities: Quantitative models of tall 

shrubs and understory plants from terrestrial lidar (Bester, Skowronski) 
3) Validation of lidar- and phodar-derived bulk density, biomass and other fuel properties (UW Masters 

Student, Rowell, Loudermilk, Cronan and Prichard) 
4) Implications of mapping resolution for CFD modeling (Rowell, Parsons) 
5) Hierarchical sampling for 3D fuels mapping applications (Hudak, Prichard, Rowell, Parsons, 

Skowronski) 
6) New metrics from 3D fuels mapping (Rowell, Prichard, Hudak, Parsons) 
7) Mapping applications for next-generation fire and smoke modeling 
8) Characterization of understory fuels for large-scale fuel and biomass mapping 
 

Safety and Health 
Experimental work will be conducted in a variety of Forest Service and university laboratories as well as 
in the field at various locations (Table 1). Safety and health protocols at laboratories other than PNW 
Research Station will be covered by local documentation. Safety and health hazards associated with field 
work - in particular prescribed burns - are described in approved JHAs on file. The FERA field crew has, as 
a minimum, National Wildfire Coordinating Group Fire Fighter Type 2 qualifications in order to 
participate in the prescribed burns and other personnel will meet requirements specified by each burn 
plan. As part of COVID safety and health planning, the FERA field crew is following University of 
Washington and US Forest Service requirements to maintain and follow approved safety plans for both 
laboratory and field work. 
 

NEPA Compliance 
Fuel sampling will consist of harvesting the above-ground portion of live plants and the dead litter 
material in contact with the soil surface within areas planned for prescribed burns. The impact will be 
minimal as the material would be removed by fire otherwise. Prescribed burns will be performed by 
local managers, and impacts associated with site preparation, the prescribed burns, and smoke will be 
described in burn plan documents and approved by the appropriate officials. The record of decision by 
the program manager for this study is based on this analysis. 
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Table 4: 3D fuels team.  
Team member Organization Task Office phone Cell phone Email 

Anne Andreu University of Washington Data analyst, field assistant  863-286-9751 agandreu@uw.edu 

Jonathan Batchelor University of Washington PhD Student, lidar and SfM 
scanning 

 206-965-5329 jonbatch@uw.edu 

Michelle Bester, PhC West Virginia University QSM 
 

304 413 5449  msb0039@mix.wvu.edu 

Ben Bright USFS Moscow Geospatial data manager 208-883-2311 208-907-0971 benjamin.c.bright@usda.gov 

Gina Cova University of Washington Master’s study: close-range 
photogrammetry comparison 
with voxel biomass and bd 

  grosacova@gmail.com 

Jim Cronan USFS FERA Co-PI: Field and lab supervisor 206-732-7823 206-462-8240 james.cronan@usda.gov 

Stefan Doerr Swansea University, UK Advisor - fuel consumption 
  

S.Doerr@swansea.ac.uk  

Brian Drye University of Washington Software engineer, data 
analysis 

 509-429-2157 bdrye@uw.edu 

Paige Eagle University of Washington Database manager (3D voxel 
sampling, fuel properties) 

206-732-7853 206-290-9932 pceagle@uw.edu 

J. Kevin Hiers Tall Timbers Research Station Project advisor, Tall Timbers 850-893-4153 x255 229-560-8861 jkhiers@talltimbers.org  

Andrew Hudak USFS Moscow Co-PI: ALS, landscape 
mapping, consumption 

208-883-2327 208-215-5887 andrew.hudak@usda.gov 

Matt Jolly USFS Missoula  Fuel properties library 406-329-4848 406-360-7356 matt.jolly@usda.gov 

Van Kane University of Washington Master’s advisor for Gina 
Cova 

 425-890-7826 vkane@uw.edu 

Maureen Kennedy University of Washington 
Tacoma 

QSM 
 

206-795-1857 mkenn@uw.edu 

Jesse Johnson University of Montana, 
computer science 

WFDS sensitivity analysis, UM 
Ms student advisor 

406-243-2356 
 

jesse.johnson@umontana.edu 

E. Louise Loudermilk USFS Southern Research Station Advisor - 3D fuel sampling, 
modeling 

706-559-4309 352-328-8811 eva.l.loudermilk@usda.gov  
elloudermilk.cfds@gmail.com  

W. Ruddy Mell  USFS FERA Advisor – WFDS 206-732-7868 206-430-2072 william.mell@usda.gov 
ruddymell@gmail.com  

Deborah Nemens University of Washington Field and lab supervisor 
 

503-734-9659 dnemens@uw.edu  

Roger Ottmar USFS FERA PI: Budget, agreements, host 
contacts, project coordination 

206-732-7826 206-849-3172 roger.ottmar@usda.gov 

mailto:dnemens@uw.edu
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Russ Parsons USFS Missoula  Co-PI: QSM, model sensitivity 
analysis 

406-329-4800 406-546-1350 russell.a.parsons@usda.gov 

Susan Prichard University of Washington Project technical lead, all 
tasks 

509-341-4493 509-341-4493 sprich@uw.edu 

David Robinson, PhD 
student 

Florida State University Object-based fuel char and 
sensitivity analysis 

  
djr16@my.fsu.edu 

Daniel Rosales, PhD 
student 

Tall Timbers Research Station Object-based fuel char and 
sensitivity analysis 

 
931-636-5989 rosald0@sewanee.edu 

Eric Rowell  Tall Timbers Research Station Co-PI: 3D Fuels image 
acquisition and analysis, 
landscape mapping 

850-893-4153 x342 406-396-6736 erowell@talltimbers.org 
eric.rowell@gmail.com  

Cristina Santin Swansea University, UK Advisor - fuel consumption 
  

c.santin@swansea.ac.uk  

Carl Seielstad University of Montana UAS image acquisition and 
analysis 

406-243-6200 406-274-0914 carl@firecenter.umt.edu 

Carlos Silva University of Idaho ALS image analysis, landscape 
mapping 

 
+55 (31) 
99663-0407 

carlos_engflorestal@outlook.com 

Nick Skowronski USFS Northern Research Station Co-PI: QSM, mapping 304-285-1507    nskowronski@usda.gov 

J. Morgan Varner Tall Timbers Research Station Advisor - Hoffman liaison 
 

707-845-1659 mvarner@talltimbers.org 
jmorganvarner@gmail.com 
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Table 5: Project time table. 
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List of Abbreviations 
 

2D: two dimensional 
3D: three dimensional 
CFD: computational fluid dynamics model 
CWD: Coarse woody debris, defined as 7.6 cm diameter logs or wood particles 
DoD: Department of Defense 
DOE: Department of Energy 
FCCS: Fuel Characteristics Classification System  
FWD: Fine woody debris, defined as < 7.5cm diameter logs or wood particles 
Lidar: Light Detection and Ranging laser scanning 
NAIP: National Agriculture Information Program 
NEPA: National Environmental Policy Act 
RGB: red, green, blue band assignments in true-color imagery. 
SE: Southeastern 
SfM: Structure-from-motion photogrammetry 
ALS: Airborne lidar scanning 
TLS: Terrestrial lidar scanning (ground based) 
UAS/UAV: Unmanned aerial system or unmanned aerial vehicle 

 


