Fuel Characterization and Fire and Smoke Modeling for Understanding Fire Behavior on Military Lands

March 10, 2022

SERDP & ESTCP Webinar Series

Welcome and Introductions

Rula A. Deeb, Ph.D.

Jennifer Nyman, Ph.D., P.E.

Webinar Agenda

- Webinar Logistics (5 minutes)
 Dr. Rula Deeb and Dr. Jennifer Nyman, Geosyntec
 Consultants
- Overview of SERDP and ESTCP (
 Dr. Kurt Preston, SERDP and ESTCP

(5 minutes)

- Physics-Based Modeling of Fire Behavior and Smoke Plume Development: How Much is Enough? (25 minutes + Q&A) Dr. William (Ruddy) Mell, USDA Forest Service
- Wildland Fuel Characterization for Next-Generation Fire Behavior Modeling (25 minutes + Q&A) Dr. Susan Prichard, University of Washington
- Final Q&A Session

SERDP & ESTCP Webinar Series

Wildland Fuel Characterization for Next-Generation Fire Behavior Modeling

Susan Prichard, Ph.D. University of Washington

Presentation Outline

Background

- Fuel characterization for prescribed burn planning
- 3D fuels project overview
- Preliminary findings
- Relevance to DoD land managers

Overview

Western pine (MT)

Fire-Adapted Pine Forests

Landscape 3D Fuels Datasets

FASTFUELS

- 6 x 6 km tiles
- Provides input data for physics-based fire and smoke models
- 1 m³ voxels with attributes
- Allows multiple data sources

Surface Fuels and Fire Behavior Modeling

Sample Fire Behavior Simulations

QUIC-Fire Simulations

3D Fuels Project – Overview

- Evaluate hierarchical sampling methods for 3D fuel characterization
 - Required for next-generation physics-based models of fire behavior and smoke production
- Research objectives
 - Develop building blocks for next-generation fuels mapping of SE pine and western pine/grasslands
 - Create a prototype for understory fuel characterization and mapping applications (FastFuels, FuelsCraft)

Sampling Design

SERDP & ESTCP Webinar Series (#149)

Field Sampling

- Hierarchically-sampled imagery datasets
 - Terrestrial lidar scanning (synoptic, 5m x 5m plots)
 - UAS-based structure-from-motion photogrammetry
 - Close-range photogrammetry (hand-held video)
 - Destructive 3D volumetric biomass plots

Note: UAS = Unmanned Aerial System SERDP & ESTCP Webinar Series (#149)

Terrestrial Lidar Scanning Models

Quantitative Structural Models (QSM)

QSM Models

- Based on 10 architecturally different shrubs
- Evaluated heights, branch detection, branching orders, diameters, and lengths

Close-Range Photogrammetry

- GoPro-derived photogrammetry
 - Alternative to terrestrial lidar scanning for characterizing understory fuels?

Sampling plot

Photogrammetry

Photogrammetry Models

- Lubrecht
- Sycan Marsh F
- Tates Hell A
- Tates Hell B

Object-Based Fuel Characterization

Fuel Metrics

Canopy gaps - lacunarity

Surface fuel porosity

Synthetic Fuelbeds

- Basis
 - Measured probability distributions (cover, height)
 - Representative fuel types

Fuel Mapping Prescribed Burning Support

Fuel Mapping Prescribed Burning Support

Test Datasets Mapping and Machine Learning

SE Forest					
Aucilla	Blackwater	Osceola	Tate's Hell A	Tate's Hell B	
Suwannee River Water Mgmt District, FL	Blackwater State Forest, FL	Osceola National Forest, FL	Tate's Hell State Forest, FL	Tate's Hell State Forest, FL	
>5 year rough	2 year rough	1-2 year rough	1-2 year rough	2-3 year rough	
Mesic flatwood - developed flatwood	Mesic flatwood - open w/ wiregrass/flatwood	LLP flatwood	Slash pine plantation - flatwood understory	Slash pine plantation - flatwood understory	

Western Forest					
LANL Forest	Lubrecht	Methow	Sycan Forest		
Los Alamos National Laboratory, NM	Lubrecht Experimental Forest, MT	Methow Wildlife Area, WA	Sycan Marsh Preserve, OR		
Moderate shrub	Low shrub / high duff	Moderate shrub	Low shrub / sparse		
Ponderosa pine - gambel oak	Ponderosa pine - Douglas-fir - low shrub	Ponderosa pine - bitterbrush	Ponderosa pine bitter brush		

Conclusions

- Fire and smoke modeling are quickly advancing
- Next-generation models require 3D inputs
- Although airborne lidar is making canopy fuel characterization easier, surface fuels are challenging
- Critical advancements to prescribed fire science and management

Benefits to DoD

- Prescribed burning is a common management tool on DoD lands in the southeastern U.S.
- This project advances prescribed fire science and contributes to improved fuel mapping and fire behavior modeling for decision support
- Improved fuel characterization and fire modeling can inform safer and more effective windows for prescribed burning
- Next-generation fuel maps also improve smoke prediction capabilities

Acknowledgements

- Dr. Eric Rowell
 - Tall Timbers Research Station
 - Specialist in 3D fuel characterization and modeling
- Jim Cronan
 - USFS PNW Research Station
 - Fire and fuels specialist, field supervisor
- Dr. Andrew Hudak
 - USFS Rocky Mountain Research Station
 - Object-based fuel characterization
- Mr. Ben Bright
 - USFS Rocky Mountain Research Station
 - Geospatial data manager

- Dr. Adam Watts
 - USFS PNW Research Station
 - Fire and fuels specialist, Federal PI
- Dr. Nick Skowronski
 - USFS Northern Research Station
 - Specialist in 3D fuel characterization and experimental burns
- Dr. Russ Parsons
 - USFS Rocky Mountain Research Station
 - Specialist in 3D fuel modeling
- Dr. Maureen Kennedy
 - University of Washington, Tacoma
 - Quantitative Structural Modeling
- Dr. E. Louise Loudermilk
 - Southern Research Station
 - 3D fuel characterization, fire behavior

Acknowledgements

- Graduate students
 - Jonathan Batchelor

 University of Washington
 Ph.D. student TLS and photogrammetry
 - Michelle Bester
 - West Virginia University
 - Ph.D. student QSM
 - Gina Cova
 - University of Washington
 - Ph.D. student close-range photogrammetry

Project Website

https://depts.washington.edu/fera/3dfuels

OVERVIEW

The **3D fuels project** is funded by the US Department of Defense Strategic and Environmental Research and Development Program to develop 3D fuels inputs for next-generation fire and smoke modeling. Our research team is collaborating with multiple organizations, including the US Department of Defense, Florida State Forest Service, University of Montana, The Center for Lands Management, and Washington State Department of Fish and Wildlife, to establish demonstration sites and collect integrated datasets of 3D fuels clip plots, terrestrial laser scanning (TLS), and airborne laser scanning (ALS). Plans

SERDP & ESTCP Webinar Series

For additional information, please visit

<u>https://www.serdp-estcp.org/Program-</u> <u>Areas/Resource-Conservation-and-Resiliency/Air-</u> <u>Quality/Fire-Emissions/RC19-1064</u>

Speaker Contact Information sprich@uw.edu | 509-341-4493

