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Abstract: To investigate neural mechanisms of movement, physiologists have analyzed the activity of task-related neurons in
behaving animals. The relative onset latencies of neural activity have been scrutinized for evidence of a functional hierarchy of
sequentially recruited centers, but experiments reveal that activity changes occur largely in parallel. Neurons whose activity covaries
with movement parameters have been sought for evidence of explicit coding of parameters such as active force, limb displacement,
and behavioral set. Neurons with recognizable relations to the task are typically selected from alarger population, ignoring those cells
with complex relations to the task and unmodulated cells. Selective interpretations are also used to support the notion that different
motor regions perform different motor functions; again, current evidence suggests that units with similar properties are distributed
over widely different regions.

These coding issues are reexamined for premotoneuronal (PreM) cells, whose correlational links with motoneurons are revealed by
spike-triggered averages. PreM cells are recruited over long times relative to their target muscles; they show diverse response
patterns relative to the muscle force they produce; functionally disparate PreM cells such as afferent fibers and descending
corticomotoneuronal and rubromotoneuronal cells can exhibit similar patterns. Neural mechanisms have been further elucidated by
neural network simulations of sensorimotor behavior; the pre-output hidden units typically show diverse response patterns in
relation to their target units. Thus, studies in which both the activity and the connectivity of the same units are known reveal that
units with both simple and complex relations to the task contribute significantly to the output. This suggests that the search for explicit
coding may be diverting us from understanding distributed neural mechanisms that operate without literal representations.

Keywords: chronic recording; motor cortex; movement parameters; neural coding; neural computation; neural networks; paraliel

distributed processing; premotoneuronal cells; representation; spike-triggered averages

1. Introduction

Many systems neurophysiologists record the activity of
single units in behaving animals in the hope of under-
standing the neural mechanisms generating motor be-
havior. Such “chronic unit recording” experiments are
typically designed to test a plausible hypothesis about the
function of neurons at some recording site: The animal is
trained to perform a behavioral task involving that func-
tion and the experimenter searches out relevant task-
related cells. Over the last three decades this formula has
generated numerous papers illustrating neurons whose
activity appears to code (i.e., to covary with) various
movement parameters or representations of higher-order
sensorimotor functions. Initially, such studies seemed to
provide supportive evidence for plausible notions, for
example, that motor cortex cells code muscle force and
that premotor cortex cells are related to programming
movements. With an increasing number of more sophis-
ticated studies it has become clear that the accumula-
ting experimental evidence undermines many of our
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simplistic notions about neural coding. Moreover, the
search for neural correlates of motor parameters may
actually distract us from recognizing the operation of
radically different neural mechanisms of sensorimotor
control.

This article begins with a review of experiments de-
signed to show how various movement parameters may
be represented in neural activity. This includes attempts
to delineate a functional hierarchy of cells on the basis of
their response latencies. We then consider studies of
explicit coding of simple movement parameters such as
active force and limb displacement and preparation to
move. We discuss functional specialization in different
cortical regions as well as the possibility that parameters
are coded in populations of neurons. Since synaptic con-
nections are an important determinant of the functional
consequences of neural activity, we reexamine these
coding questions for premotoneuronal cells, which have
direct links with motoneurons. Finally, we reconsider
these issues in light of results from neural network model-
ing studies.
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2. Representation of movement parameters in
neural activity

2.1. Relative timing of cell activity. To obtain evidence for
a causal hierarchy of cells in different motor centers that

mediate the programming and execution of movement, it -

first seemed reasonable to determine the sequential re-
cruitment order of cells in different areas. A particularly
useful behavioral paradigm for this purpose is the simple
reaction-time response, in which an animal makes a
repeatable movement in response to a stimulus such as
light. The successive activation of neurons in different
regions would then define a causal sequence of neurons
mediating the transform between stimulus and response.
For a visually triggered key release, for example, the
sequence would begin with stimulation of retinal cells
followed by propagation of activity to diverse cortical and
subcortical centers, which might code the sensory aspects
of the stimulus. The conversion of the stimulus-evoked
activity into the preparation for movement might occur at
intermediate times in cortical association areas. Finally,
the neural activity involved in execution would converge
in proper combination to activate agonist motoneurons
that generate the movement. The peripheral links at the
input and output stages of such a sequential scenario have
been elucidated, but the central stages have consistently
eluded temporal resolution.

The timing of motor cortex cells relative to movement
was first studied by Evarts (1968), who showed that
pyramidal tract neurons (PTNs) began to change their
activity up to 100 msec before the onset of activity in
agonist muscles. To determine the relative onset times of
other cells that might precede activation of motor cortex
neurons, Thach (1978) recorded neural activity in
cerebellar nuclei, motor cortex, and muscles during the
same responses. The onset times of activity changes of
units in cerebellar nuclei were found to largely overlap
those of precentral motor cortex cells (Figure 1). The
onset times of different neurons in two cerebellar nuclei
and motor cortex were distributed over hundreds of
milliseconds, with a relatively slight difference in their
mean onset times. Comparable overlap in recruitment
times has been found in many subsequent experiments.
Neurons in the supplementary motor area and primary
motor cortex are recruited almost simultaneously in a
reaction-time task (Chen et al. 1991) and during a step-
tracking task (Alexander & Crutcher 1990c).

The basic problem in attempting to demonstrate serial
activation of cells in different motor centers is that each
region contains neurons that are recruited over diverse
times. The extensive overlap in onset times makes it
difficult to assign a sequential order of activation to
different regions. Moreover, the duration of most move-
ments as well as the duration of task-related activity
greatly exceeds the conduction time between centers, so
that recurrent loops could be “traversed” repeatedly
duringa single response. It is also relevant to note that the
focus on the first change in neuronal activity puts undue
emphasis on a subtle shift in firing rate that requires
statistical determination. Functionally, the initial onset of
a change has less to do with the cell’s contribution to
movement than its maximal activity. In any case, the
appealing notion that initiation of movement involves the
sequential activation of cells in hierarchically related
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Figure 1. Top:Distribution of times of change in neural ac-
tivity relative to light-triggered wrist movements (from Thach
1978; task is illustrated in Figure 2). Bottom. Distribution of
onset times of CM cells relative to onset of activity in their target
muscles (from Cheney & Fetz 1980).

centers is quite difficult to prove experimentally. In fact,
the experimental results suggest that cells in diverse
regions are activated more or less in parallel.

2.2. Coding of movement parameters. Although a cell’s
onset time provides equivocal evidence for its role in a
causal hierarchy, its discharge pattern could provide a
more robust indication of its contribution to movement.
The hypothesis that parameters of movement are recog-
nizably coded in the activity of motor system cells seems
so reasonable that many experiments have been launched
on the basis of this assumption. Neural coding, in the
sense of covariation, has been amply investigated for a
variety of movement parameters (reviewed in Evarts
1981; Fetz 1981; Fuster 1985). Since muscles are ulti-
mately the generators of active force, it seems plausible
that central cells controlling muscles could be coding the
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orce exerted during a movement. On the other hand,
since we normally think in terms of moving a limb to
particular target positions, it also seems reasonable that
cortical cells could code the displacement or position of
the limb. Evarts’s first experiments to determine whether
motor cortex neurons code force or displacement provide
an excellent example of a behavioral paradigm designed
to dissociate these variables. Evarts trained monkeys to
make the same movements against different loads and, in
some cases, to generate isometric activity without any
displacement. In these studies, the activity of selected
PTNs was related more to the active force or to the change
of force than to displacement (Evarts 1968).

Yet a third variable to which cells could be related was
found in monkeys prepared to make a movement: Some
cortical cells changed activity long before an intended
movement, suggesting that these cells may be involved in
the preparation to make a movement, as contrasted with
its execution, that is, with a behavioral set. Experiments
designed to reveal set-related activity typically involve
behavioral trials beginning with a sensory cue that indi-
cates the correct movement, followed by a delay period
and then a go signal to execute the cued motor response.
During the delay between the cue and go signal, the
monkey is prepared to initiate the movement and neu-
rons in many cortical and subcortical regions exhibit
associated changes in discharge.

Numerous other movement parameters have been
suggested to be coded in neural activity, such as limb
velocity (Gibson et al. 1985), direction of movement
(Fortier et al. 1989; Georgopoulos et al. 1984; Schmidt et
al. 1975), and target position (Alexander & Crutcher
1990c; Martin & Ghez 1985). The issue of neural coding
can be discussed in relation to three parameters: active
force, displacement, and behavioral set. Thach (1978) was
the first to investigate-all three variables systematically for
motor cortex and cerebellar cells. He used a task (shown
schematically in Figure 2, top) that involved each of these
three parameters: The monkey moved the wrist througha
sequence of successive hold positions against different
loads. The lower trajectories schematize the expected
activity patterns of cells primarily related to patterns of
muscle force (MPAT), position of the wrist joint (JPOS),
and preparation or set for the next direction of movement
(DSET). Thach calculated the degree of correlation be-
tween these idealized patterns and the recorded activity
of cells in motor cortex, cerebellum, and muscles and
found that the degree of correlation for different cells was
continuously distributed from weak to strong. As ex-
pected, many motor cortex cells showed the best correla-
tion with the MPAT sequence. Many other cells in the
motor cortex correlated more strongly with joint position
and still others correlated with set. Perhaps the most
remarkable finding was the relative numbers of cells in
each category; as described by Thach, “In summary of the
rather astonishing results on neural discharge patterns in
motor cortex during holding, all the types of neuron that
were looked for were found, in nearly equal numbers”
(1978, p. 665). Proponents of coding of movement param-
eters can only interpret this result as indicating that the
motor cortex contains a variety of cells, each coding a
different parameter of the movement.

However, such a conclusion would have to be tem-
pered by another remarkable finding in this study: A
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Figure 2. Top: Representation of a behavioral task used to test
relation of cells to three parameters: pattern of muscle activity
(MPAT), joint position (JPOS), and direction of intended next
movement (DSET). Bottom: Trajectories show discharge fre-
quencies of neurons or muscles having optimal relation to each
parameter, plotted as a function of the hold positions illustrated
at top (from Thach 1978).

slight change in response conditions could change the
parameter that correlated best with a particular neuron.
For example, the motor cortex cell illustrated in Figure
17 of Thach’s paper had a strong relation to muscle
patterns under condition of external load but was better
related to joint position when the load was removed.
Consistent relations between the activity of motor cortex
cells and isometric muscle force have also been dissoci-
ated by changing the rewarded response patterns (Fetz &
Finocchio 1975). Diehard proponents of coding would
have to conclude from such flexible relationships that the
same cells can “code” different parameters under differ-
ent response conditions.

One basic problem with many attempts to relate neural
activity to movement parameters is that the data are
usually skewed by two types of experimental bias. One is
the “task-induced bias” introduced by recording neural
activity under particular behavioral conditions. In these
experiments animals are performing a specific task de-
signed to test the experimenter’s hypothesis, and the
activity of the modulated cells is interpreted in relation to
that task. The data are further skewed by what could be
called a “selection bias.” The analysis of neural activity is
typically confined to the subclass of neurons that show an
interpretable relation to the task. Those cells that best
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support the hypothesis are illustrated in the figures, and
those that are statistically consistent are tabulated. How-
ever, in such studies two other groups of cells are invaria-
bly encountered: Many neurons are modulated with the
task, but in complex ways that seem paradoxical or unin-
terpretable. In addition, many more neurons are simply
unmodulated with the task. Although the latter two
classes outnumber the interpretable task-modulated
group, they are typically ignored. The paradoxical cells
are rarely illustrated in papers, since they would detract
from the main hypothesis, provoking the reviewers and
confusing the readers. Instead, the uninterpretable and
unmodulated cells are usually neglected in the final
account of neural coding. Of course, many cells would in
fact be marginally relevant to the ongoing task; however,
by ignoring all the neurons with complex patterns we risk
misunderstanding the real neural mechanisms in favor of
dealing only with idealized and simplistic correlates.

This strong selection bias clearly undermines the con-
tention that the functionally interpretable group of task-
related cells provides convincing evidence for coding.
Observations consistent with a given hypothesis can al-
ways be selected from a sufficiently large random data set.
A rarely acknowledged fact of life in the neurophysiology
laboratory is that neurons in many regions, including the
motor cortex, exhibit an enormous variety of responses, a
fact that provides an opportunity to find cells related to
any given functional hypothesis. Thach (1978) eliminated
this bias by objectively correlating the activity of the same
population with three different, dissociable parameters.
His finding that cells related to all three functions existed
in nearly equal numbers suggests that something else
may be going on besides preferential coding of particular
movement parameters.

2.3. Localization of function. A common notion that is
closely related to coding and also turns out to be simplistic
in retrospect is the idea that different cortical areas are
devoted to computing different motor functions. For
example, it is commonly thought that the role of the
motor cortex is to execute movement whereas motor
association areas, such as the premotor and supplemen-
tary motor areas, are supposed to be concerned with
motor programming or preparation to move under partic-
ular circumstances. Experiments designed to record neu-
ral activity in these regions under the appropriate behav-
ioral conditions did indeed discover cells with the
appropriate sorts of relationships. However, experiments
in which neural activity in different regions was obtained
under similar behavioral conditions have revealed that
cells of the same type are found widely distributed over
many areas. For example, neurons related to activation of
muscles are found not only in the motor cortex but in the
supplementary motor area (Chen et al. 1991; Crutcher &
Alexander 1990c), premotor cortex (Godschalk et al.
1985; Weinrich & Wise 1982), prefrontal cortex (Fuster
1985; Niki & Watanabe 1976), and posterior parietal
cortex (Mountcastle et al. 1975). Similarly, experiments
involving delayed movements reveal set-related activity
in the motor cortex (Tanji & Evarts 1976), premotor areas
(Godschalk et al. 1985; Weinrich & Wise 1982), and
prefrontal cortex (Fuster 1985; Niki & Watanabe 1976), as
well as in the thalamus (Alexander & Fuster 1973) and
basal ganglia (Alexander & Crutcher 1990c). Taken to-
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gether, these studies suggest a very broadly distributeq
representation of these motor functions.

An extreme example of cortical specialization, which,
still remains almost axiomatic, is the presumed dichot-
omy between the functions of somatosensory and motor
cortex. In this view, all precentral cells are thought to be
involved in the execution of movement, whereas a]]
postcentral cortex cells are assumed to be involved in
somatosensory function. This view was challenged by
Woolsey (1958), who noted that the maps of sensory input
and motor output are similar and overlapping, in both
precentral and postcentral gyri. Chronic unit recordings
under active and passive conditions show that cells with
similar response types can be found in both areas (e.g.,
Fetz et al. 1980; Soso & Fetz 1980). If this functional
dichotomy is considered to be absolute rather than rela-
tive, identical response properties of single units must be
interpreted in totally different functional terms. The
responses of postcentral cells to passive stimulation are
naturally interpreted as subserving somatic sensation,
but the equally clear responses of precentral cells to
passive joint movement and cutaneous stimulation are
thought to subserve unconscious reflex functions. Sim-
ilarly, the early responses of precentral cells preceding
active limb movement are naturally thought to be in-
volved in generating the movement, whereas identical
early responses in postcentral cells are interpreted as
subserving some sensory “corollary discharge.”

The rationale for these diverse interpretations of iden-
tical response properties rests on functional presump-
tions derived in part from the effects of cortical stimula-
tion. Stimulation thresholds for evoking movements are
clearly lower in precentral than postcentral cortex (Wool-
sey 1958). And in conscious humans, cortical stimulation
evokes somatic sensations from a larger number of post-
central than precentral sites (Penfield & Boldrey 1937);
however, these differences are a matter of degree rather
than absolute. In fact, similar effects can be evoked from
both gyri, albeit at different thresholds. Nevertheless,
the conceptual dichotomy between “sensory” and “mo-
tor” cortex is again preserved by applying a double stan-
dard to this experimental evidence. The somatic sensa-
tions evoked by stimulating precentral “motor” cortex in
conscious humans are ascribed to a spread of activity to
postcentral sites. The movements evoked by stimulating
postcentral cortex are similarly ascribed to mediation via
precentral cortex; reports that movements can be evoked
from postcentral sites after ablating precentral cortex
(Woolsey 1958) are even taken as evidence that the

lesions were incomplete.

The assumed functional dichotomy of sensory and mo-
tor cortex is further based on their differing output
projections. In the macaque the corticospinal axons from
postcentral cortex terminate more dorsally in the spinal
cord than axons of the precentral PTNs, although there is
a good deal of overlap (Coulter & Jones 1977). The
postcentral PTNs are undoubtedly more likely than pre-
central PTNs to affect afferently driven spinal cells, but
their target region also contains cells involved in reflex
circuitry, as well as dendrites of motoneurons. Perhaps
more relevant to the function of individual cortical neu-
rons than the output projections of the descending cells
are the strong interconnections between pre- and post-
central cortex. These massive corticocortical connections
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allow the cells in each region to participate in the func-
tions of the other; indeed, these reciprocal connections
would explain the similar response properties of neurons
found in these areas.

Thus, the notion that cortical functions are segregated
into different cortical areas can be preserved only by
imposing different interpretations on similar experimen-
tal evidence. Units with the same response properties are
imagined to code either sensory or motor parameters,
depending on the presumed function of their recording
sites. A plausible alternative is to consider the similar
response properties of cells in different cortical regions as
evidence that they are involved in performing similar
functions; the neural substrate for these functions is then
distributed correspondingly. This means that a given
cortical region would be involved in diverse functions,
consistent with the diverse cell types observed. This view
provides a basis for distributed interactions between the
functionally related sets of cells and helps explain the
recovery of function after lesions. Note that this view does
not claim equal involvement of all regions in all functions,
since cortical areas are undoubtedly specialized. The
point is that a region’s specialized function need not be its
only function, and certainly should not be the only stan-
dard for interpreting what each of the cells in this region is

coding.

2.4. Population coding. Investigators have recently found
that the activities of populations of cells can provide
functions that match movement parameters more closely
than the firing pattern of any single neuron. The fact that
movements are ultimately produced by activity in large
ensembles of neurons provides a clear rationale for popu-
lation coding. Humphrey et al. (1970) first showed that
the activities of multiple motor cortex neurons could be
added together in the right proportion to match different
parameters of wrist movement in an isotonic task.
Weighted sums of the cells” firing rates could match the
force trajectories and the wrist displacements, as well as
their temporal derivatives, if the weighting factors for
each cell could be optimally chosen for each parameter.
Moreover, the match between the cells’ weighted ac-
tivities and the mechanical parameters improved with the
number of cells included. The ability to freely optimize
the weighting coefficients, of course, helped to ensure
convergence on the movement trajectories; closer
matches were obtained with larger populations because
each additional nonredundant cell could serve to further
reduce the remaining difference.

More recently, Georgopoulos et al. (1984) showed that
populations of motor cortex cells could be used to match
the direction of limb movement by invoking the “vector
hypothesis” to sum the activity of directionally tuned
cells. For a given movement direction, each cell was
assumed to make a vector contribution pointing in the
direction of its maximal activity, and by an amount pro-
portional to the change in its overall mean rate during the
given movement. The vector sum of all the unit vectors
then approximated the direction of hand displacement.
Again, the match improved as more cells with diverse
directional preferences were included. This match with
movement direction could be taken to suggest that the
direction of hand displacement by the arm rather than
muscle force is coded in motor cortex populations. The
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direct match between the population function and arm
displacement is appealing because it conveniently avoids
the intervening complexities of synaptic connections and
limb mechanics, which present formidable obstacles to a
causal explanation. Moreover, the vector hypothesis is
virtually guaranteed to work, given a sufficient distribu-
tion of cells. For a particular movement the cells whose
best direction coincides with the movement will make the
largest direct contribution; cells whose vectors point in
the opposite direction will make a negative vector con-
tribution, since average rates are subtracted, and there-
fore also contribute positively to the movement direction.
The other cells have off-axis vector components that
would tend to cancel with a sufficiently large population.
Thus, the vector hypothesis will produce a match with
movement direction whether the directionally “tuned”
cells have any output effects on muscles or not. The same
sorts of matches have been demonstrated for populations
of posterior parietal area 5 neurons (Kalaska et al. 1983) as
well as cerebellar cortical and nuclear cells (Fortier et al.
1989) and globus pallidus (Turner 1991).

Mussa-Ivaldi (1988) showed that the findings of
Georgopoulos et al. (1984) would also result from a popu-
lation of cells that code muscle shortening, and thus
reconciled the apparent coding of limb displacement with
the fact that many precentral cells do have effects on
muscles. Recent studies by Kalaska et al. (1989) have
shown that when the required force is varied indepen-
dently of movement direction, the population vector of
certain motor cortex cells shifts in the direction of active
force. This result is consistent with a role in activating the
agonist muscles. However, there are other motor cortex
neurons whose population vector remains in the direction
of movement, independent of force, much like posterior
parietal cells (Kalaska et al. 1983). In this case, a key
ingredient in making the matches with force or displace-
ment is the ability to select the appropriate cells for each
population.

Although one can find good descriptive matches be-
tween functions derived from the activity of neuronal
populations and particular movement parameters, this
correspondence is no proof of neural coding in the causal
sense. To demonstrate that the candidate cells actually
make a causal contribution requires additional evidence
that they have appropriate output effects. Such a direct
link is obviously difficult, and often impossible, for many
central neurons. Still, a coding theory based merely on a
descriptive match with a parameter provides no further
basis for dealing with the neural interactions that would
mediate the control of that parameter. A useful coding
theory should provide some framework for understanding
how the observed activity could contribute to the move-

ment. For example, it would be helpful to know how the
activity of the population whose “vector” points in the
direction of movement is actually transformed into
the movement. Descriptive correlates alone do not pro-
vide a causal framework for dealing with the underlying
neural computation.

2.5. The coding problem. In retrospect, experiments de-
signed to demonstrate coding of movement parameters
have provided data that can be interpreted in either of
two ways. Proponents of neural coding can point to the
slight differences in mean onset latencies in different
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regions as evidence of a sequential hierarchy of cells; they
can point to examples of covariation of neural discharge
with movement parameters as evidence of coding and
they can ignore the complex and unrelated cells as un-
likely to be involved,; finally, they can consider different
proportions of cell types in different areas as evidence of
functional segregation. Alternatively, one could now ar-
gue that the accumulating experimental results have
largely undermined these simplistic notions. The exten-
sive overlap of activation times in different regions speaks
more for parallel than for serial activation. Neural corre-
lates of movement parameters in a particular task can
always be selected from what is invariably a much larger
variety of response types, but cells with more complex
discharge could be just as involved in generating the
movement, albeit in more complex ways. The distribu-
tion of similar cell types over diverse cortical fields speaks
more for distributed representation than for functional
segregation.

These issues cannot be resolved by more chronic unit
recording data, because observing the activity of single
and even multiple units is inherently insufficient to deter-
mine the mechanisms that generate movements. These
studies usually lack another essential ingredient required
to make causal inferences, namely, the connectivity be-
tween cells. In addition to the activation patterns gener-
ated during task performance, one must also know the
output connections of the recorded cells in order to
determine the consequences of that activity. The possible
output connections are often inferred from independent
anatomical evidence on major projections. However,
such indirect inference is misleading for many neurons,
since the cells encountered at a given recording site
typically have diverse projections. If the cells’ response
properties are correlated with their projections, the func-
tional distinctions described above could have been
blurred by lumping them all together.

3. Response coding in premotoneuronal cells

To determine whether the variety of relationships ob-
served in previous studies could be reduced by dealing
with cells that directly affect motoneurons, some inves-
tigators have focused on those cells that have correlational
linkages to motoneurons, as determined by spike-
triggered averaging. These premotoneuronal (PreM)
cells include the so-called corticomotoneuronal (CM)
cells in precentral motor cortex (Buys et al. 1986; Cheney
& Fetz 1980; Fetz and Cheney 1980; Lemon et al. 1986),
the rubromotoneuronal (RM) cells in red nucleus
(Cheney et al. 1988; Mewes 1988), and peripheral af-
ferent fibers recorded in cervical dorsal root ganglia
(DRG) (Flament et al. 1992). These PreM cells all pro-
duce short-latency postspike facilitation of EMG activity
and have been documented in relation to comparable
ramp-and-hold wrist movements — a response designed
to elucidate the relation of cellular activity to changes in
force and sustained force. It is interesting to consider the
properties of PreM cells in the context of the four issues
discussed above with regard to neural coding.

3.1. Timing. Although previous studies had shown that
unidentified motor cortex cells exhibit a broad range of
onset times relative to movement, it seemed possible that

684 BEHAVIORAL AND BRAIN SCIENCES (1992) 15:4

CM cells would show a more restricted range of recruit.
ment times relative to onset of activity in their target
muscles. This turned out to be only partly true, as shown
in Figure 1. The surprising result was that CM cells began
to fire up to several hundred milliseconds before the
onset of activity in their target muscles. Similar broad
distributions of onset latencies have been observed for
RM cells (Mewes 1988) and for afferent fibers in DRG
(Flament et al. 1992). Since these PreM cells produce
postspike facilitation of their target muscles in about 10
msec, the much earlier onset times are presumably re-
lated to bringing the motoneurons to threshold; those
cells with reciprocal inhibitory linkages to antagonists of
their target muscles would also contribute to turning the
antagonist muscles off.

The inescapable conclusion is that even connected
PreM-motoneuronal pairs are recruited relative to each
other over times that straddle hundreds of milliseconds.
Thus, connectivity is not a critical factor in restricting
relative recruitment times; instead, there may be other
relevant variables (if indeed there are any systematic
explanations). Even within the same motoneuron pool,
motoneurons are recruited in sequential order over ex-
tended periods of time. One variable that may be more
relevant to recruitment order than the spatial location or
the output connections of a neuron is its relative size. An
increasing synaptic drive on motoneurons recruits the
smallest motoneurons first and then successively larger
ones with higher thresholds. Similar size relations may
explain the timing of early and late recruited cells in the
PreM population, a subject for future investigation. In
any case, the distribution of onset times of PreM cells
relative to their target muscles is almost two orders of
magnitude broader than the latency of their postspike
effects.

3.2. Coding of muscle force. The activity of PreM cells
clearly has a direct output effect in facilitating their target
muscles, which in turn generate active force. In this sense
the PreM cells can be said to causally affect force. The
relation of CM and RM cell discharge to active force has
been confirmed by having monkeys generate different
levels of isometric force. The tonic discharge rates of
these cells during the static hold period are indeed
proportional to active force over a range of torques, as
shown in Figure 3 (Cheney & Fetz 1980; Cheney et al.
1985; Mewes 1988). In addition, many of these PreM cells
show a phasic discharge at the onset of movement, which
is preferentially related to change of force.

These observations pertain to the major subsets of the
PreM cells, namely, those that show phasic-tonic or tonic
discharge patterns during the ramp-and-hold movement.
Figure 4 illustrates the basic response patterns of the
three groups of PreM cells and single motor units during
the ramp-and-hold movements. Of these patterns, only
the tonic pattern is strictly proportional to the ramp-and-
hold force trajectory. Other PreM cells show patterns that
differ significantly from the active force and from the
activation patterns of their target muscles. For example,
the phasic-ramp CM cells show a strong burst of discharge
at the onset of movement and a gradually increasing
discharge during the static hold period. This pattern is
totally different from the discharge of its target muscles.

There are also many PreM cells that show more com-
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Thus, PreM cells show three different relationships to
their target muscles (as well as to force): Some PreM cells
are simply coactivated with target muscles, others exhibit
more complex and counterintuitive patterns, and still
others are unmodulated. Despite these various relation-
ships in discharge patterns, the correlational evidence
confirms that they are all causally involved in activating
their target muscles.

Furthermore, just as central cells can change their
discharge patterns in relation to motor parameters under
different conditions, single CM cells also can fire differ-
ently relative to their target muscles and force for differ-
ent types of movements. When a monkey performed a
finely controlled ramp-and-hold tracking task, the CM
cells were strongly modulated with their agonist target
muscles. When the monkey made rapidly alternating
ballistic movements, however, the same cells were rela-
tively inactive, even though their target muscles were
more strongly activated (Cheney & Fetz 1980). Similarly,
Muir and Lemon (1983) found that CM cells were prefer-
entially active during a precision grip of aforce transducer
between thumb and forefinger, but the same CM cells
were paradoxically inactive during a power grip, which
involved even more intense activity in their target mus-
cles. These results indicate an unexpected variability in
the relation between even PreM cells and their target
muscles under different movement conditions.

3.3. Localization of function. To determine whether su-
praspinal cells in motor cortex and red nucleus may have
functional specializations that are different from those of
afferent cells providing feedback from the periphery, one
can compare the CM and RM populations with PreM cells
recorded in the DRG. Surprisingly, the response pat-
terns of the DRG units fell into the same categories as the
most common supraspinal cells (tonic, phasic-tonic, and
phasic; see Figure 4). Moreover, the relative onset times
of many afferent cells also preceded the onset of their
target muscle activity. This suggests that many PreM cells
in radically different locations are recruited in similar
ways. A similar result was obtained by Schieber and
Thach (1985): During a slow ramp-and-hold tracking task
they found similar classes of cells in DRG, motor cortex,
and cerebellum.

In addition to PreM cells with similar response proper-
ties in all three locations, the supraspinal populations
each included some unique types. As indicated in Figure
4, the ramp cells were observed only among cortical cells
and the unmodulated neurons were found only in the
RM group. This suggests that the three groups of PreM
cells are not entirely equivalent but contain subsets of
cells whose unique properties suggest some functional
distinctions.

3.4. Population coding. Although individual PreM cells
exhibited a variety of distinct discharge patterns, the net
contribution of all the PreM cells to a target motoneuron
would be more relevant to assessing their total effect. The
response patterns of the PreM cells can be synthesized
into a population average (Fetz et al. 1989). Since the cells
were recorded under similar behavioral conditions, the
average activity of the population can be obtained by
summing the response histograms of individual cells (as
well as their target muscles) aligned with the onsets of the

BEHAVIORAL AND BRAIN SCIENCES (1992) 15:4 685



Fetz: Single neurons and movement

movements. This was done in stages, by first compiling
subaverages for each response type and then adding these
in proportion to the number of cells of each type. The
resulting net ensemble averages of the discharge patterns
of both the CM and RM population exhibited a phasic-
tonic pattern. However, the motor cortex population
showed a greater difference in the depth of modulation
between opposite directions of active wrist force than the
rubral cells, whose population histogram showed tonic
activity during both directions of movement.

The net synaptic drive of the PreM cells on their target
motoneurons would be proportional to these population
histograms. The population histograms could also be used
to infer the quantitative effect of the cells on their target
muscles; the population activity can be multiplied by the
correlational consequences of the postsynaptic potentials
evoked from cortex and red nucleus (Fetz et al. 1989). The
results provide a causal picture of the population influ-
ence on target motoneurons that is based on physiological
measures of the synaptic linkages.

It is interesting to note that coding of muscle force in
motor units requires a population average. Under normal
conditions, single motor units code net muscle force in a
highly nonlinear manner, since motor unit firing rates are
limited at the lower end by their recruitment threshold
and at the upper end by saturation (Figure 3 and Palmer
& Fetz 1985). Moreover, the net force generated by the
twitch tensions of a motor unit is a nonlinear function of its
firing rate. This nonlinear behavior of the individual
motor units is resolved by the population sum, which
includes the successive recruitment of motor units with
larger twitch tensions.

3.5. Implications of PreM cell properties for neural coding.
The properties of PreM cells have significant implications
for the coding issue, insofar as their activity is causally
related to generating muscle force, but this activity comes
in a remarkable variety of discharge patterns. The con-
nectivity of PreM cells to motoneurons is confirmed by
cross-correlation methods, yet the response patterns of
these PreM cells include all three types of relation ob-
served between central cell activity and movement pa-
rameters. Many PreM cells clearly covary with the mus-
cles that they facilitate, as one would intuitively expect.
Others, such as the phasic-ramp CM cells and the bidirec-
tionally activated RM cells, show counterintuitive dis-
charge patterns that are distinctly different from the
activity of their facilitated target muscles. Moreover,

some cortical cells are paradoxically coactivated with arm
muscles that they inhibit. In addition, a large group of
unmodulated RM cells is tonically active during both
phases of movement. This would indicate that the re-
sponse patterns of neurons alone are not a reliable guide
to their causal role in the task and that neural interactions
between connected cells involve some highly nonlinear
relationships. If the activities of connected PreM neurons

and their target motoneurons can show such diverse
relations, the chance of finding meaningful correlates of
movement parameters would seem even more remote.

The same considerations apply to the relation of PreM

cell discharge and the mechanical parameter of force, on

which they clearly have a causal effect. Only the activity of
the tonic PreM cells is directly proportional to force in

this task. Indeed, the entire population of cortical and
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rubral PreM cells exhibits a net phasic-tonic pattern,
suggesting that force is coded in a nonlinear way even iy
the output cells that generate this force.

4. Computation of movement in neural networks

4.1. Holographic coding mechanisms. The basic reasop
that movement parameters need not be explicitly coded
in the activity of single neurons is that movement is the
consequence of large populations of interacting cells,
which can generate an output without requiring any one
cell to fire in proportion to the resultant movement
parameters. Instead, the activity that is appropriate for a
given cell is determined largely by its connections with
the rest of the network rather than by any need to code an
output parameter explicitly. This point can be illustrated
by an apt analogy: the storage of images by holographic
mechanisms. Holographic storage is based on a dis-
tributed representation of phase relations between wave-
fronts rather than a literal representation of the stored
image. Recall that a holographic plate is constructed by
exposing a photographic plate to the interference patterns
between two coherent light beams — a reference beam
obtained directly from the coherent source and an object
beam reflected from the object whose image is to be
stored. The spots on a holographic plate record the points
of constructive interference, where the two light beams
are in phase. These spots are distributed in a pattern that
has no recognizable relation to the image. However,
when the plate is illuminated with the reference beam,
this distribution of spots forms a diffraction grating that
reconstructs the object wavefront by the interference
patterns in the transmitted beams.

The idea that neural networks may store and process
information through holographic mechanisms is based on
many salient analogies between the two systems. A small
lesion in a holographic plate does not destroy any specific
portion of the image but rather degrades the overall
image quality; similarly, small lesions in the nervous
system typically produce subtle behavioral deficits at
most. The association between images of two spatially
adjacent objects can be readily demonstrated by creating
a hologram from the light reflected from the two objects;
illuminating the developed plate with the light reflected
from only one of the objects will reproduce a ghost image
of the missing one. In this case the light from the remain-
ing object essentially acts as the reference beam for
reconstructing the other. This mechanism provides an
analogue of associative memory and a model of content-
addressable memory (Hinton & Anderson 1981; Pribram
etal. 1974). Such a mechanism is likely to be involved in
perceptual processes such as figure completion. The
ability to execute a skilled movement sequence in a
particular context may well involve similar associations
between changing sensory inputs and central programs.

The basis for these analogous properties is the dis-
tributed representation of the information, using con-
structive interference between activity propagated in
parallel pathways. Activity in a neural network is also
propagated by the coincident arrival of sufficient synaptic
Input to activate the relaying neurons. With regard to
coding mechanisms, the relevant point is that the spots on
the hologram do not form a literal pictorial representation
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of the image; instead, the “meaning” of each spot depends
on its relation to the rest of the hologram — each point
diffracts light in such a way that the net interaction with
adjacent points reconstructs the wavefront of the stored
image. Similarly, in the nervous system, the activity of a
cell need not form a literal representation of a movement
parameter; instead, its contribution to movement de-
pends on its diverse connections and interaction with the
rest of the network.

Optical holograms clearly represent highly simplified
examples of this type of distributed nonliteral coding
mechanism, insofar as they store only static images.
Nevertheless, the same principles apply to storage and
retrieval of dynamic information in neural networks (see
papers in Hinton & Anderson 1981). Such analogies
between neural and holographic mechanisms have been
largely speculative until now. With the advent of neural
aetwork modeling, it has become possible to demon-
strate these same properties in simulated populations of
cells.

4.2. Neural network models. Model networks can be used
to simulate the mechanisms operating in populations of
cells; they also have unique heuristic value in elucidating
the principles of neural computation. The behavior of
ensembles of neurons is difficult if not impossible to
synthesize by “bottom-up” inferences from single-unit
recordings alone, mainly because the relevant connec-
tions between the recorded neurons are typically un-
known. In contrast, model networks that simulate a
particular behavior can be obtained by “top-down” deri-
vations based on examples of the behavior, using training
algorithms such as back-propagated error correction
(Rumelhart et al. 1986b) or trial-and-error learning
(Kuperstein 1988). The resulting dynamic networks can
simulate motor aetivity without explicitly representing
movement parameters in the activity of particular units.
For example, to determine what sort of neural network
might be able to transform the step change in target
position that a monkey sees into the response patterns
generated by his agonist motor units, we used back
propagation to derive the appropriate dynamic recurrent
networks (Fetz & Shupe 1990; Fetz et al. 1990). The input
and output layers were connected to intervening excita-
tory and inhibitory hidden units, as shown by the schema-
tic diagram in Figure 5; an example of a specific weight
matrix is shown in Figure 6. Initially, the synaptic weights
were assigned randomly; presenting the input produced
an initial output that deviated drastically from the desired
target output. The difference between the actual output
and the desired output was used to change the weights
appropriately to reduce the error between actual and
target outputs. Successive training iterations produced a
network that transformed the temporal input patterns
(step and transient inputs for flexion and extension) to the
desired output patterns (eight motor unit patterns: tonic,
phasic-tonic, decrementing, and phasic, for both flexion
and extension). One resulting network is shown in Figure
6, the size of each square represents the strength of
connection from the unit identified at the left to the unitat
the top. The activation patterns for a flexion-extension
eycle are illustrated for each unit. This result represents a
complete neural network solution for this simplified sen-
sorimotor transform in that the activity patterns of the
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Figure 5. Schematic of dynamic recurrent network that simu-
lates the step tracking task. Input functions represent step and
transient signals for flexion and extension; target output patterns
represent the discharge patterns of flexor and extensor motor
units. The types of recurrent connections implemented are
shown schematically. To derive a network that performs the
transform, the output activations of an incompletely trained
network [N(t)] are subtracted from the target outputs [T(t)] and
the weights between units [w;;] are modified to reduce this
error.

sorimotor transform in that the activity patterns of the
intervening hidden cells, as well as their connectivity, are
completely specified.

These network solutions can be analyzed systematically
to determine how the output patterns are derived. Rele-
vant to the issue of “coding” we can examine how the
response patterns of the output units are represented in
the activity of the hidden units. For example, to see how
the network in Figure 6 produced activity of the phasic
flexor output unit (fp), one can examine its synaptic inputs
(represented by the vertical column of weights under fp).
The strongest weights indicate that phasic flexion was
derived by two different means. As proponents of explicit
coding might predict, the phasic output cell had strong
excitatory connections from phasically active hidden units
(e.g., al, a8). A second contribution, however, came from
excitatory units with tonic activity (all), in conjunction
with a delayed tonic input from inhibitory hidden units
(b1). The difference between these two also contributes to
the phasic output. Yet a third mechanism has been
observed in other network simulations, which were al-
lowed to have tonic biases on the cells. In those cases, the
phasic output could also be derived from the sum of
excitatory input from a phasic-tonic hidden unit in com-
bination with a negative bias that essentially subtracted
the tonic component. Thus, a pertinent lesson from these
simulations is that many combinations of hidden unit
activity can and do contribute to the same output re-
sponse pattern.

It is interesting to note that many properties of the
hidden units in these networks are analogous to those
found in cells in the nervous system. For example, a given
hidden unit (e.g., all) may have divergent excitatory
connections to many different types of output cells, just as
CM cells facilitate motor units of different response types.
Conversely, a given output unit typically receives con-
vergent input from many hidden units, with different
activations. Nevertheless, the connections are not
equally distributed; this simulation produced preferen-
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Figure 6. Neural network transforming step and transient inputs to firing patterns of motor units n
at output. Unit activations during a flexion-extension cycle are shown at left and along the top. The E
weight matrix gives the strength of connections from the row to the column units (weight scale at S
top). The rows represent, from top to bottom, the bias (which was eliminated for this simulation), (
the inputs (fs to eb), the excitatory hidden units (a’s), inhibitory hidden units (b’s), and the output ( 1
flexor and extensor motor units (ft to ep). The target output patterns for both flexion and extension
are tonic (ft & et), phasic-tonic (fpt & ept), decrementing (fd & ed), and phasic (fp & ep). To better ; :
visualize the relationships between units, the hidden units were sorted in order of the strength of ‘
their contribution to the phasic-tonic output units (from Fetz & Shupe 1990). '
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tially strong connections within the sets of units with
sustained and transient activity. For example, the first
two flexor hidden units exhibiting tonic activity (all & a2)
are strongly interconnected; they receive potent input
from the flexion step and connect strongly to the tonic
output unit. Similarly, the brief flexion input (fb) is most
strongly connected to the phasic hidden units (al & a8),
which are strongly interconnected and which also have
strong reciprocal connections with the phasic flexion
output unit (fp). Although units with similar response
patterns tend to be more strongly interconnected, there
are also significant connections between units with quite
dissimilar responses; this is even more pronounced in
other simulations.

Relevant to the coding issue, one significant result of
these simulations is the demonstration that a large num-
ber of network solutions can produce the same transform.
Starting a given network architecture with different initial
weights will usually produce solutions with a different set
of final weights and activations. Even within the same
network, one can discern a variety of solutions: In Figure
6, the flexion and extension phases involve essentially
identical inputs and outputs, but the network utilizes
different types of hidden units devoted to each. There is
every reason to suspect that biological nervous systems
can also utilize a variety of stratagems to perform a given
behavior. The variance of experimental data from one
animal to the next may be due to the fact that different
animals could develop different neural computations to
generate the same behavior. In recording data from
multiple animals, experimenters typically assume that
each animal performs the task using the same network
solution; indeed, this assumption is a prerequisite for
pooling data recorded from different animals. Network
simulations suggest that many different neural network
solutions can mediate the same behavior.

In fact, modeling experiments indicate that even in the
same network, several different strategies for generating
a response pattern can be implemented simultaneously,
as discussed above for the phasic output. In this light, the
commonly observed variance in a neuron’s discharge
pattern from trial to trial could well represent a variance
in the degree to which different solutions are imple-
mented in each trial. Thus, pooling data from different
animals, and perhaps even from different trials in the
same animal, would yield some average hybrid of differ-
ent specific solutions. The common criticism that neural
network models do not provide the same solution as
biological networks is predicated on the debatable as-
sumption that there is only one “real” biological solution
(and, moreover, that it can be found by present experi-
mental methods).

The coding issues that have been discussed above in
relation to single-unit recording studies can be reex-
amined in light of the neural network simulations. In
many dynamic network solutions, the relative timing of
onsets of hidden unit activations can be widely dis-
tributed with regard to a given output response (Fetz et
al. 1990). This is true even for hidden units that contact
the output unit directly. This staggered timing is related
to the build-up of recurrent activity in interconnected
units; it does not represent sequential, hierarchical stages
of processing.

Fetz: Single neurons and movement

The response patterns of hidden units that contribute
to the output also show all three types of relation to the
output. Some hidden units simply covary with the output
unit that they excite, as might be expected intuitively
(e.g., al and fp). Many other units show activity patterns
that differ significantly from their target outputs (e.g.,all
& a10 compared with fp). In some simulations of recipro-
cal movement, many hidden units have bidirectional
responses during both flexion and extension; the inap-
propriate portion of their activity is simply eliminated by
inhibitory units. In addition, the inhibitory hidden units
frequently show counterintuitive coactivation with cells
they inhibit (e.g., b10), as has been seen in some cortical
neurons. Finally, the tonic bias units used by many of
these networks are clearly analogous to the unmodulated
activity seen in many RM cells. Thus, the activity of
output units is not necessarily coded recognizably in the
activity of hidden units, even those that provide direct
input. Not only do the network simulations reveal all
three types of relations between hidden units and output
units, but experiments with network lesions (Fetz &
Shupe 1990) confirm that each type makes a significant
contribution to the output.

The issue of localization of function can also be seenina
new light with network simulations. The functional con-
sequence of the activity of any particular hidden unit is
determined by its connectivity in the network; its physi-
cal location would be entirely arbitrary. Thus, if the
hidden units were physically implemented, they could be
reorganized in space without affecting the network com-
putation, so long as their connectivity remained intact.

Relevant to functional localization, a common property
of representation in cortical fields is the tendency to form
topographic maps of the peripheral receptors or muscles.
This feature of cortical organization has been simulated in
neural network models; using local Hebbian rules to
change synaptic strengths will lead to topologically orga-
nized feature maps (Kohonen 1982). This type of topo-
graphical organization within a cortical field should be
distinguished from the segregation of functional computa-
tion among different fields. As demonstrated by network
models, topographic organization can result from local
synaptic interactions; in biological networks this may also
have some wiring convenience. In contrast, functional
segregation in the form of explicit separation of computa-
tional stages does not appear in network simulations.

The issue of population coding is also illuminated by
these network simulations. The response pattern of any
particular output unit is simply derived from the com-
puted sum of all its inputs, weighted by the connection
strengths. There is no need for explicit coding of any other
sort. One could imagine taking the activity ofa population
of hidden units and matching some movement parameter
by an appropriately weighted sum of their activities.
Despite the success of such a mathematical exercise, the
weights that are actually significant for the neural calcula-
tions are the synaptic links between units, not the mathe-
matical coeficients required to calculate an optimal
match. Put another way, the ability to obtaina population
function that matches a parameter is quite irrelevant to
the neural mechanisms that generate the output.

Clearly, these initial network simulations are still too
simplistic in their connectivity and cell properties to be
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taken as realistic models; nevertheless, they serve to
illustrate some of the mechanisms at work in large popula-
tions of units interacting in ways analogous to neuronal
interaction. Thus, network models provide a useful
heuristic tool for investigating network mechanisms and
can help to bridge the impasse between single-unit data
and behavior. In the future, these network simulations
can be improved to provide more realistic models of
biological networks by incorporating the activity of more
cells recorded in behavioral experiments and by making
the connections more appropriate.

5. Concluding comments

We have taken the devil’s advocate position on the notion
that movement parameters are explicitly “coded” in neu-
ral activity. If “coding” is defined simply as covariation
with movement parameters, the nervous system will
provide ample opportunities to search out cells whose
activity correlates with this or that parameter. Given the
variety of neural discharge patterns and the ability to
select the best examples, one can anticipate further exam-
ples of cells that could code some hypothesized variable.
Like reading tea leaves, this approach can be used to
create an impression, by projecting conceptual schemes
onto suggestive patterns. This selective approach ignores
two major groups of neurons: those with a complex or
paradoxical relation to the task and those that are not
modulated. It seems significant that studies in which both
the activity and the connectivity of the same neurons are

known — namely, physiological studies using spike-
triggered averaging and modeling studies with neura]
network simulations — reveal that all three classes of units
can and do contribute significantly to the output. Thus,
the search for explicit coding may actually be misleading,
and may divert our understanding of distributed neu-
ral mechanisms that operate without literal repre-
sentations.

If virtually any neuron can potentially contribute to
generation of movement, how can we ever hope to under-
stand the underlying mechanisms? Ultimately, systems
neurophysiologists can profitably use a combination of
single-unit recording techniques and neural modeling to
investigate the network mechanisms generating motor
behavior. Unit recordings can provide important con-
straints on the activity of related neurons, but the net-
work models can provide working examples of complete
solutions to sensorimotor behavior. To the extent that
models can incorporate anatomical and physiological con-
straints, they can provide plausible explanations of the
mechanisms of neural computation.
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