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The major recent advances in understanding the role of spinal
neurons in generating movement include new information
about the modulation of classic reflex pathways during fictive
locomotion and in response to pharmacological probes. The
possibility of understanding movements in terms of spinal
representations of a basic set of movement primitives has been
extended by the analysis of normal reflexes. Recordings of the
activity of cervical interneurons in behaving monkeys has
elucidated their contribution to generating voluntary movement
and revealed their involvement in movement preparation.
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Abbreviations
C cervical
CM corticomotoneuronal 
CPG central pattern generator
EMG electromyogram
EPSP excitatory postsynaptic potential
FFP force field primitive
IN interneuron
NMDA N-methyl-D-aspartate
PAD primary afferent depolarization
PN propriospinal neuron 
PreM premotor
STA spike-triggered average

Introduction 
In recent years, our understanding of spinal cord circuits
has advanced significantly on multiple fronts, providing
new information about the functional organization of spinal
interneurons (INs) and their contribution to movement.
These advances involve different but complementary
approaches to defining the basic operational building
blocks of spinal circuitry. Classically, spinal cord INs have
been extensively categorized in relation to reflex responses
evoked by stimulation of receptors, nerves and descending
pathways [1,2]. These reflex pathways can be envisioned to
form a set of basic circuits that are modulated by descend-
ing commands during normal voluntary movements. In this
scenario, the possible functions of different classes of INs
in natural movements have been inferred from their
responses to peripheral and descending inputs documented
in immobile preparations, and from their role in fictive loco-
motion. An extension of this classic reflex approach defines
the basic functional units in terms of central pattern gener-
ators (CPGs), whose operation has been analyzed in
fictively or actually moving animals. This second approach
characterizes INs in terms of their activity during rhythmic

behaviors and their participation in, or connections with,
the CPG; this field has been well summarized in other
reviews [3–5]. Again, other types of voluntary movement
are seen to involve recruitment of these same INs in differ-
ent patterns. A third approach defines the fundamental
spinal modules in terms of the limb movements evoked by
intraspinal stimulation [6–8]. A basic set of stimulus-evoked
‘movement primitives’ has been proposed to generate the
larger range of voluntary movements by appropriate sum-
mation. Finally, a fourth approach analyses INs in terms of
their contribution to activation of muscles during voluntary
movement [9,10]: in this scheme, the functional organiza-
tion involves hierarchical sets of INs and supraspinal
neurons defined in terms of their correlational linkage with
agonist motoneurons, with each neuron contributing in pro-
portion to its activity. Here, we review recent advances in
these approaches as they pertain to understanding the role
of spinal INs in generating movements in vertebrates.
Finally, we address the issue of integrating the information
obtained using these different approaches.

Reflex organization of spinal cord circuitry
The classic approach of analyzing reflex circuits has gener-
ated a wealth of fundamental information, as summarized
in comprehensive reviews [1,2] and recent symposia
[11,12]. The basic functional modules are reflexes evoked
from muscle, cutaneous and joint afferents, mediated by
various classes of INs such as the Ia inhibitory neuron,
which mediates reciprocal inhibition associated with the Ia
stretch reflex. Recent studies have investigated the modu-
lation of basic reflex circuits during fictive movement and
their modification by neuromodulators. The reflex frame-
work has also been useful for investigating long-term
plasticity following adaptation to nerve section [13] (see
the review by S Rossignol, pp 708–716, this issue).

The basic reflex circuits revealed in acute preparations are
found to be highly variable in gain and polarity under condi-
tions of fictive or actual movement [14•,15–18]. As a recent
example, Burke and colleagues analyzed state-dependent
transmission through polysynaptic pathways from low-
threshold cutaneous and muscle afferents to hindlimb flexor
and extensor motoneurons during fictive locomotion and
scratching in decerebrate cats [16,19]. Postsynaptic poten-
tials evoked from cutaneous afferents were enhanced during
the flexor phase of fictive locomotion but these cutaneous
reflexes were depressed during all phases of fictive scratch-
ing. Disynaptic group I post-synaptic potentials were also
modulated during both fictive movements, albeit differently
for locomotion and scratching (Figure 1).

Many recent studies have focused on the role of
monoamines and other [20•,21] neuromodulators in 
mediating changes in the excitability of sensory and motor
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pathways in the spinal cord. Monoaminergic actions on
motor pathways continue to be demonstrated with morpho-
logical [22,23] and behavioral [24] evidence. Studies have
suggested that descending monoaminergic pathways are
important for maintained motor output, especially in tonic
hindlimb muscles [24–26], and perhaps for the selection of

specific spinal reflex patterns [27]. For example, in the iso-
lated neonatal rat cord, NMDA-induced locomotor activity
deteriorates over time, but a coordinated, rhythmic motor
pattern can be “rescued” by bath-applied noradrenaline
[25]. Jankowska and colleagues have extended their studies
on the modulation by monoamines of transmission in mus-
cle spindle, tendon organ, and cutaneous afferent pathways
[28••,29,30]. Their results, using iontophoretic application
of drugs to identified neurons in spinal reflex pathways or
ascending tract cells, show that serotonin and noradrenaline
have facilitatory or suppressive effects, depending on both
the type of afferent and the IN involved. In addition, sero-
tonin and noradrenaline have similar effects on some INs,
but opposite effects on others.

During voluntary movements, the INs of these reflex
pathways are driven by descending supraspinal commands.
A class of IN of particular interest for the cortical control of
forelimb movements is the upper cervical (C) pro-
priospinal neuron (PN). In the cat, a disynaptic excitatory
pathway from motor cortex to motoneurons through
C3–C4 PNs has been implicated in mediating cortical con-
trol of target-reaching movements [31]. Lemon has argued
that in the evolution toward higher primates, the relative
importance of direct corticomotoneuronal projections
increased, while that of the propriospinal pathway weak-
ened [32]. This suggestion is supported by the low
proportion of upper limb motoneurons with disynaptic
excitatory postsynaptic potentials (EPSPs) in response to
electrical stimulation of the contralateral pyramidal tract in
the macaque [33], and the larger proportion in the squirrel
monkey [34], whose finger movements are less advanced
than the macaque’s. Challenging this view, Alstermark and
colleagues recently reported that the C3–C4 system also
exists in macaques, but is under stronger inhibitory control
than in the cat or squirrel monkey [35]; intravenous strych-
nine uncovered disynaptic pyramidal EPSPs in forelimb
motoneurons that were not evident prior to administration
of the glycine blocker. The existence of disynaptic corti-
cospinal excitation in man is supported by evidence from
studies of the H-reflex (monosynaptic activation of
motoneurons by electrical stimulation of muscle nerve)
combined with transcranial magnetic stimulation of the
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Figure 1 legend

Modulation of reflexes during fictive locomotion in the cat. (a) Records
during fictive locomotion, identifying flexor (F) and extensor (E) phases.
From top: intracellular recording from flexor hallucis longus
motoneuron (FHL IC) and electroneurograms from muscle nerves
(LGS, lateral gastrocnemius-soleus; FDL, flexor digitorum longus; TA,
tibialis anterior). (b) Averaged disynaptic Ia inhibitory postsynaptic
potentials (IPSPs) evoked during different parts of the step cycle by
stimulating extensor digitorum longus nerve (EDL) at 1.8 times
threshold (T). Note increase in IPSPs during flexion despite
hyperpolarization shown in (a). (c) Schematic diagram of reflex circuits
from hindlimb muscle afferents, showing types of modulation from
CPG during flexor and extensor components of fictive locomotion.
Large circles are motoneurons (MN); small circles are INs; filled
boutons represent inhibitory connections. (PBST, posterior biceps-
semitendinosis; Gr I, group I muscle afferents) [16].
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motor cortex [36,37], although the segmental location of
the excitatory premotor neurons remains debatable.

The reflex responses evoked by afferent volleys appear
not only in motor output, but also include depolarization of
primary afferent fibers, which can evoke dorsal root reflex-
es [38•] and affects subsequent sensory input through
presynaptic inhibition. The underlying mechanisms have
been recently reviewed [38•,39••,40] and the reader is
referred to these excellent reviews for further details.

Modular organization of spinal cord revealed
by stimulation
A drastically different approach to investigating the organi-
zation of spinal circuitry, introduced by Bizzi and colleagues
[6,8], bypasses the detailed functional and anatomical analy-
sis of the INs comprising spinal circuitry and uses a
movement-based framework to study spinal cord organiza-
tion. Using repetitive intra-spinal stimulation in frogs whose
ankles were anchored in different locations in the work-
space, they mapped the isometric force field generated by
stimulus trains delivered at different spinal sites [8]. A small
number of stereotypical force fields were found consistent-
ly across different frogs, leading the authors to suggest the
existence of corresponding spinal centers controlling
“movement primitives”. Furthermore, simultaneous stimu-
lation at two spinal sites resulted in a field that resembled
the linear sum of the two fields produced by stimulating
each site separately, leading to the suggestion that different
movements could be linear combinations of a small number
of movement primitives [41,42]. 

Having taken great pains to elucidate the intricate details of
intertwined reflex pathways, many classical neurophysiolo-
gists greeted the direct electrical stimulation of these
circuits with some concern. To address the concern that
repetitive electrical stimulation produces widespread acti-
vation of functionally diverse cells and passing fibers, Bizzi
and colleagues used focal intra-spinal injection of NMDA
to more selectively activate dendrites and somata of local
INs [42]. NMDA injection evoked responses at 30% of the
sites from which electrical stimulation was effective, and
the responses were usually in the same direction. In addi-
tion to sites that elicited tonic activation of muscles,
NMDA produced rhythmic activation at many other neigh-
boring sites. Regions that generated rhythmic muscle
activation were usually in close proximity to sites that gen-
erated a tonic response in the same direction as that
expressed during some phases of the rhythmic response.
The authors suggested that tonic responses are the building
blocks of the CPG and that this CPG has a patchy structure. 

To investigate the applicability of these findings to mam-
mals, Tresch and Bizzi repeated the stimulation
experiment in the rat [43]. They found that a smaller
repertoire of responses was obtained in the rat compared to
the frog, and that the elicited response was usually a limb
withdrawal movement towards the body (Figure 2). The

optimal depth for evoking a response was more dorsal than
in the frog. Surprisingly, stimulation in the intermediate
zone (where most of the motor-related interneuronal sys-
tem resides) was practically ineffective. 

To address the concern that electrical stimulation evokes
artificial movements, the modular organization of the
spinal cord was developed further in terms of a natural
reflex movement, the wipe reflex [8,44,45••]. Giszter and
colleagues showed that the wipe reflex in spinal frogs can
be construed as the appropriate time-varying summation of
the force field primitives (FFPs) found with electrical
stimulation [8]. Figure 3 shows the correspondence
between the directions of torque components of the wipe
response and torques evoked by intraspinal electrical stim-
ulation. The observation that a specific component of the
wipe was spontaneously deleted in some trials further
argues for modular organization. The modulation of the
wipe reflex in response to an encountered obstacle could
also be explained as a single stimulus-evoked FFP super-
imposed on those FFPs comprising the wipe reflex [45••]. 

Irrespective of the existence of spinal modules controlling
movement primitives, the fact that intraspinal stimulation
elicits specific types of stereotyped motor responses pro-
vides a potential therapeutic tool for aiding people with
impairment or loss of descending control of spinal activity
[46,47•]. A small set of intraspinally evoked movements
and their linear summation could simplify the require-
ments for control parameters, as compared with
stimulating single muscles individually to generate appro-
priate movements. Prochazka and colleagues showed that
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Figure 2

Forces evoked by intraspinal stimulation in the rat.  Stimulation at
different segmental levels (abscissa) evokes two major directions of
movements (ordinate): flexion withdrawal (upper points) and extension
(middle set) [43]. L, lumbar; S, sacral.
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intraspinal microwires implanted in an otherwise intact cat
provided a secure and reliable method for motor stimula-
tion [47•]. The evoked responses typically involved

coordinated movements about a joint, and in some cases
were sufficient to support the cat’s hindquarters. These
results have implications for neural prostheses: intraspinal
stimulation could be used to generate appropriate forces to
maintain posture or facilitate locomotion, or to ‘amplify’
impaired commands for voluntary movement in patients
with reduced muscle tone. 

Organization of interneurons generating
voluntary movement
A direct approach to understanding the function of spinal
INs in normal voluntary movement has become available
with the application of chronic unit recording techniques
in spinal cord of behaving monkeys [9,10,48]. The contri-
bution of cervical INs to controlling forearm muscles
during a step-tracking task was investigated by document-
ing their activity in monkeys generating flexion–extension
torques about the wrist. A striking finding was the high
level of activity in many INs: most spinal INs (77%) exhib-
ited some activity during both flexion and extension as
well as at rest, in contrast to the strictly unidirectional
activity of motoneurons, corticomotoneuronal (CM) cells
[49] and spindle afferents [48]. Task-related INs increased
their activity more strongly in one of these two directions;
the response patterns in their preferred direction were typ-
ically tonic or phasic–tonic, and their activity was an
increasing function of the active torque generated.

In addition to revealing IN activity during normal behavior,
these studies allowed identification of the correlational link-
ages to muscles by spike-triggered averages (STAs) of
electromyographic (EMG) activity. Reflex studies have
extensively documented the inputs to INs evoked from affer-
ent and descending pathways; in contrast, in these behavioral
studies, STAs reveal the output connections to motoneurons
of multiple forelimb muscles. STAs detected significant fea-
tures in agonist and antagonist muscle activity for many
task-related spinal neurons. Interneurons that produced post-
spike facilitation or suppression of EMG at appropriate
latencies were identified as premotor INs (PreM-INs). STA
features were predominantly facilitatory (85%) and occurred
twice as often in flexor as in extensor muscles. Figure 4 shows
an example of an inhibitory PreM-IN that produced post-
spike suppression of flexor muscles. This IN increased its
activity during active extension, with a rate that was an
increasing function of torque. These are the characteristics
expected of the reciprocal Ia inhibitory interneuron, which
would suppress antagonist muscles in proportion to agonist
activity. This example illustrates the advantage of combining
information about the normal firing rate and the output
effects in inferring functional contribution to muscle control.
The relationships between movement modulation and the
postspike effects for many PreM-INs are summarized in
Figure 4. The post-spike effects were generally synergistic
with the response pattern of the PreM-IN.

To contrast the role of motor cortex and spinal cord in con-
trolling movements and muscles, it is interesting to
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Figure 3

Movement primitives underlying frog hindlimb wiping reflexes.  Force
production under isometric conditions at a single limb position is
examined in hindlimb wiping in a spinal frog. This frog spontaneously
omitted a phase of wiping in some trials. (a) Complete wiping pattern.
(b) Pattern in trials in which the knee extensor component was deleted.
Force vectors over time are plotted in reference to the frog and drawn
anchored at the ankle (left). Forces tend to develop and dwell in three
specific directions in (a), and in two directions in (b), in which phase 3 is
omitted. Polar histograms (center) show direction of force-magnitude
peak in each phase. Plots of torque magnitude (right) and the vector
difference (dotted line) suggest that the difference corresponds to a
missing primitive; moreover, the loss of the third force-direction occurs
independently of the other elements of the pattern (cf. [45••]). (c) Polar
histograms from two other frogs (bf39, bf66) and average polar
histogram from combined data of 11 frogs. Numbers give number of
samples represented by outer circles. (d) Force response direction
vectors elicited by microstimulation in an extensive spinal cord mapping
(direction vectors extracted using K-means analysis). Directions of
electrically evoked primitives correspond to those of primitives 1 and 2 of
the wiping response (SF Giszter, WJ Kargo, unpublished observations).
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modulation of PreM-INs during wrist movement (rows). Agonist
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suppression (sup) or cofacilitated both groups (co). Numbers in
symbols give number of INs, with totals on the right. The symbols
indicate functional relationships that are entirely consistent (square),
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compare the properties of spinal PreM-INs and CM cells,
documented under similar experimental conditions. The
muscle fields of PreM-INs were smaller than those of
supraspinal PreM cells in cortex and red nucleus [49], and
rarely involved reciprocal inhibitory effects on antagonist
muscles. This suggests that single CM cells more often
represent synergistic groups of muscles, whereas PreM-
INs are organized to target specific muscles. In contrast to
the bidirectional activity of PreM-INs (and rubromotoneu-
ronal cells), CM cells fire either during flexion or
extension, not both. Thus, CM cells are more strictly
recruited for particular movements, whereas PreM-INs are

more widely activated and operate through superimposed
excitation and inhibition of motoneurons.

Interneuronal participation in preparation for
voluntary movement 
The ability to record activity of spinal INs in awake behav-
ing animals provides an opportunity to investigate whether
INs participate in behavioral functions other than sensory
or motor processing. The first direct indication that this is
the case comes from recordings in monkeys trained to per-
form an instructed delay task [50••]. Neurons in many
cortical areas show preparatory activity during an instructed

704 Motor systems

Figure 5

Activity of spinal IN inhibited during an
instructed delay period. At the bottom is a
schema of the behavioral components of the
task. Filled circle represents a cursor whose
position is controlled by the monkey; squares
represent targets. The instructed delay begins
with a transient visual cue (right target is filled
for 500 ms) and ends with a go signal
(extinguishing of center hold target). Middle
traces illustrate activity of flexor digitorum
sublimis (FDS) and extensor digitorum 4 and
5 (ED45) muscles and IN, and isometric
torque. The top part of the figure shows
responses during successive extension trials,
aligned on cue onset (at time 0). From bottom
up, traces of torque trajectories, rasters of IN
responses in successive trials and
peristimulus histogram (PSTH) of IN firing
rate [50••].
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delay period between the presentation of a cue that indi-
cates the appropriate movement and a subsequent ‘go’
signal for execution. Similarly, many spinal INs modulate
their activity during the instructed delay period. Figure 5
illustrates an IN that was inhibited during the instructed
delay and increased its activity during generation of active
torque. Such suppression during the delay was characteris-
tic of two thirds of the INs with delay period modulation.
For other INs the delay period activity changed in the same
direction (increase or decrease) as the subsequent move-
ment-related activity, suggesting a subthreshold shift in the
direction required for the active response. The overt
expression of this shift may be prevented by a global super-
imposed suppression of the spinal INs.

This set-related activity indicates that spinal circuitry is
involved, with cortex, in the earliest stages of movement
preparation. An intriguing question for future investigation
is whether spinal INs will be shown to be involved in other
‘higher’ functions [51]. This seems plausible, given the
extensive interconnections between cortical and spinal
levels. For example, subjects instructed to imagine press-
ing a foot pedal showed enhanced spinal reflexes to the
involved soleus muscle [52]. The electrically evoked H-
reflex was bilaterally enhanced, while the tendon reflex
increased specifically for the appropriate side. Recent evi-
dence shows that the representation of observed
movements seen in cortical mirror neurons [53] also has
effects at the spinal level: in subjects passively watching
the performance of a grasping movement, the H-reflex in
the agonist muscle was modulated (L Fadiga, personal
communication). These H-reflex experiments showed
changes in motoneuron excitability, but similar effects
would be expected in INs. If these and other ‘cognitive’
representations previously documented in cerebral cortex
are found to involve spinal INs, our ideas about spinal cord
function will be significantly expanded.

Concluding comments
Finally, can these different approaches to understanding
the spinal cord ever be integrated? Each approach is clear-
ly investigating the same system but producing different
reports, like the blind men sampling the elephant. Unlike
this analogy, however, a synthesis will involve more than
simply combining the different observations because each
approach deals with different states of the elephant, from
tranquilized to performing. Spinal reflexes are strongly
modulated during movement, rendering the usefulness of
the reflex concept as either debatable [54] or exploitable
[14•]. Obviously, one way to synthesize these different
approaches would be to examine the same cells under each
of the appropriate conditions. For example, identifying the
INs recorded in behaving monkeys in terms of particular
reflex circuits (e.g. the IN in Figure 4) would involve test-
ing with appropriate electrical stimuli; unfortunately, high
intensity nerve stimulation is incompatible with maintain-
ing cooperative monkeys. Another challenge is to integrate
the framework of movement primitives, which involves

special methodologies; one question is how these concepts
would be applied to interpreting neural activity during 
voluntary movements (but see [45••]). 

Another strategy that could help bridge the gaps between
these approaches, but has been largely neglected in spinal
cord research, is neural network modeling. Several notable
starts to modeling spinal circuits have been made [55,56]
and these efforts could be developed much further. The
experimental results generated by the many studies of
spinal cord INs provide a rich database for deriving neural
networks that could simulate different functional states
using the same circuit elements.

Update
Y Aoyagi, VK Mushahwar, RB Stein and A Prochazka have
found that the directions of hindlimb movements evoked
by intraspinal stimulation in the cat lumbar cord resemble
those evoked by muscle and nerve stimulation, and sug-
gest that the preferred movement vectors could reflect
biomechanical groupings rather than spinal primitives
(personal communication). Moreover, the movement vec-
tors evoked from a given intraspinal site could change
when the state of the cat changed from anesthetized to
decerebrate to spinal. Movement vectors were also a func-
tion of stimulus intensity.
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