© 1993 Elsevier Science Publishers B.V. All rights reserved.
Role of the Cerebellum and Basal Ganglia in Voluntary Movement.
N. Mano, 1. Hamada and M.R. DeLong, editors. 275

Neural mechanisms of sensorimotor behavior: Simulations with dynamic
network models

E. E. Fetz

Department of Physiology and Biophysics and Regional Primate Research Center, University of
Washington, Seattle WA 98195, USA

Introduction

The goal of systems neurophysiologists is to understand the neural mechanisms
underlying behavior. Traditional approaches toward this goal have involved anato-
mical and physiological techniques that reveal the connectivity or activity of specific
components of the system. Yet, despite innumerable studies documenting how le-
sions affect behavior, how stimulation evokes movement, and how single units fire
in behaving animals, we still have no consensus about how neural networks actually
generate movement. The basic reason that the experimental data has not yet pro-
duced a definitive causal explanation of motor behavior is clear: the traditional
techniques inevitably provide only limited samples of the system. For example,
recordings of single unit activity indicate their response patterns, but show nothing
about their relation to the rest of the system. What is missing is what neural network
models can provide: a method of generating working models of the complete system.

Two general approaches to neural network modelling should be distinguished: the
“bottom-up” approach involves synthesizing experimental details about cellular
mechanisms into a working network model. This approach appeals to physiologists
concerned with preserving biological reality, who wish to demonstrate how physio-
logical neurons could function when combined into circuits; however, the bottom-up
approach runs into problems dealing -with the whole organism, since many para-
meters of the nervous system are largely unknown and must be arbitrarily assigned.
Moreover, modelling the whole system with “‘realistic’” neurons soon becomes
prohibitively complex. Alternatively, recent advances in neural network algorithms
now make it possible to derive “top-down” simulations of sensorimotor behavior in
networks of appropriately chosen connectivity. The latter techniques provide simpli-
fied neural networks that perform specified behaviors, derived entirely on the basis of
examples of the behavior itself.

The first examples of such top-down simulations involved feed-forward networks
trained with back-propagation to transform spatial patterns. For example, feed-
forward networks have been trained to classify the shape of a surface from shaded
images [1]. Another such network combined the retinal coordinates of a visual
stimulus with eye displacement to provide a code for the position of the stimulus in
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head coordinates [2]. Interestingly, the hidden units in such networks often have
response properties resembling those seen in biological neurons recorded in animals.
The shape-from-shading networks developed hidden units with center-surround
receptive fields like visual cortex cells, even though the simulated task did not
explicitly require such properties or present stimuli with edges. The reasons that
units in network simulations of a task often have such close correspondence with
units in biological systems may be related to basic properties of identification models,
as discussed by Zipser [3].

Supervised training procedures have now been extended beyond feed-forward
networks, which transform spatial patterns through serial layers, to dynamic recur-
rent networks which can deal with spatiotemporal patterns and have feedback
connections [5-9]. Results obtained from top-down simulations of behavior with
dynamic recurrent networks are the subject of a recent review [4].

Three key properties distinguish dynamic recurrent networks from other modelling
approaches. First, the units are dynamic, meaning they can exhibit time-varying
activity. The activation of each unit is a temporal variable, which can represent the
firing rate of neurons, their synaptic potentials or some relevant time-varying sensory
or motor parameters. This means that the models can incorporate physiologically
recorded activity as activation patterns that the network can be required to generate.
Second, the networks have a recurrent architecture, which allows unrestricted con-
nectivity. In addition to feed-forward connections between successive layers of units,
the networks can have feedback and cross-connections. Thus, the models can
incorporate recurrent anatomical pathways. Third, the networks that simulate a
particular sensorimotor behavior can be derived from examples of the behavior by
gradient descent methods such as back-propagated error correction. The resulting
network models provide complete neural network solutions of the behavior, insofar
as they determine all the connections and activations of the units that simulate the
behavior.

Neural networks that emulate particular sensorimotor behaviors —i.e., that trans-
form spatiotemporal inputs to appropriate outputs — can be derived by various
training strategies. These networks are usually comprised of so-called “‘sigmoidal”
or “logistic” units, named for the fact that the unit’s output is a sigmoidal function of
its input. The unit’s input consists of the summed activation of all other celis
connected to that unit times their synaptic weight; a steady input may also be
provided by a bias element. The sigmoidal input-output function mimics a biological
neuron’s property of saturating at maximal rates for high levels of input and
decreasing to zero at low input levels.

To train the network to transform a particular input pattern to a desired output
pattern, the synaptic weights are initially assigned randomly, and the output response
of the network is determined; the difference between network output patterns and the
desired target output activations defines the error. The back-propagation algorithm
modifies the weights in such a way as to optimally reduce this error. This weight
change implements a “gradient descent” of the error as a function of the weight. After
each weight correction the input patterns are presented again and the new outputs
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determined. This process of changing the weights in proportion to the error gradient
is repeated iteratively until the network converges on a solution with minimal error.
Several types of algorithms have been used to implement such gradient descent
methods for dynamic recurrent networks [5-9]. A comparison of various training
methods for recurrent networks is presented by Williams and Zipser [9].

The applications for these dynamic recurrent networks can be classified into three
broad categories:
A. Pattern recognition applications involve identification of spatiotemporal input
patterns into discrete categories. A set of input units receiving time-varying signals
can be considered to represent a spatiotemporal pattern. Pattern recognition appli-
cations include speech recognition [7], and conditional delay tasks [4,8].
B. Pattern generation networks produce temporal patterns in one or more output
units, either autonomously or under the control of a gating input. These include
oscillating networks [3,4,8] and simulations of central pattern generators [10,11].
C. Pattern transformation networks convert spatiotemporal input patterns into spa-
tiotemporal outputs. Examples include simulations of the leech withdrawal reflex
[12], step target tracking in the primate [4,13], the vestibulo-ocular reflex (VOR)
[14-16] and short-term memory tasks [4,17].

Primate target tracking

Our own interest in dynamic recurrent networks derived from a desire to understand
the neural circuitry controlling forelimb muscles of the primate. In monkeys per-
forming a step-tracking task, previous experiments have documented the physiolo-
gical discharge patterns and output connections of task-related neurons [18]. The
premotoneuronal (PreM) cells which affect muscle activity were identified in behav-
ing monkeys by post-spike facilitation of target muscles in spike-triggered averages
of EMG recordings. The response patterns of three groups of PreM cells — cortico-
motoneuronal (CM), rubromotoneuronal (RM) and dorsal root ganglion afferents —
have been documented during a simple alternating flexion/extension task designed
to relate their activity to changing and sustained force [18,22]. The discharge pat-
terns observed in PreM cells, as well as in single motor units (MU) of agonist
muscles [19], fall into specific classes. During a ramp-and-hold movement, all three
groups include cells that show phasic-tonic discharge. The phasic component is
related to the changing force and the tonic component is proportional to the
amount of static force exerted. All groups also include tonic cells which show stea-
dy discharge throughout the hold period in proportion to the active force. Each
group also has cells with unique firing properties. A significant proportion of motor
units show decrementing discharge, which decreases gradually through the static
hold period. The RM population has cells that fire during both flexion and exten-
sion, and some cells that are unmodulated with the task and provide a constant bias.

To investigate the possible functional role of these cells and to determine what
other types of discharge patterns might be required to transform a step signal to the
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Fig. 1. Dynamic network simulating step-tracking task. The network transforms transient inputs to firing
patterns of motor units at output. Unit activations during a flexion-extension cycle are shown at left and
along the top. The rows represent, from top to bottom, the bias (a constant value of 1, not illustrated), the
input signals (fb and eb), the excitatory hidden units (a and ¢), inhibitory hidden units (b and d) and the
output flexor and extensor motor units (ft-ep). Squares represent strength of connection from unit at left
to unit at top. Values greater than 3 (range of scale at top) are given numerically. Excitatory connections
are filled, inhibitory open. Hidden units were sorted in order of contribution to flexion vs. extension
outputs [unpublished simulation by Shupe, Konodi & Fetz].

observed output of motoneurons, we derived dynamic networks that generated as
outputs the average firing rates of motor units recorded in monkeys performing the
step-tracking task [13]. The inputs were representations of the visual targets, either
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steps or transients or both. The “hidden units” mediating the transform of input to
output consisted of excitatory and inhibitory units ubiquitously connected to each
other and to the output. This relatively unstructured architecture was modified by
training, as illustrated by previously published networks [4,13]. The post-training
connectivity matrix reveals a network structure that preferentially routes the activity
of phasic and tonic input signals to the appropriate output and sculpts the response
patterns. We expected such networks to develop reciprocal inhibition between the
flexion and extension groups, but found that many units inhibit coactivated motor
units. In general, different network simulations with the same architecture and
trained on the same task but starting with different initial weights, usually converged
on different solutions, suggesting that additional constraints could be imposed to
obtain more unique solutions.

Figure 1 illustrates a more constrained neural network which simulates the step-
tracking task; it shows the activation patterns and the connection matrix of all units
after the network produces the eight different output patterns in response to only
transient inputs. The discharge pattern of each unit is shown along the left, next to the
row of output weights of that unit, and is shown again at the top of the column of
weights representing the input connections to that unit. Self-recurrent connections
(corresponding to weights on the diagonal) were excluded. The connectivity of this
network was constrained to separate flexor and extensor circuits and to include
reciprocal inhibitory connections. The step change in target position is represented
by a brief transient input at the onset of each target change (fb and eb). The network
transforms these input signals to the response patterns of eight motor units at the
output. The four types of motor unit patterns observed experimentally — tonic,
phasic-tonic, decrementing and phasic — are generated for both flexor and extensor
movements (ft—ep). The intervening hidden units consist of excitatory and inhibitory
units configured with reciprocal connections. The transient flexor signal activates
eight excitatory units (al—-a8) which are recurrently interconnected, and which also
excite four inhibitory units (b1-b4), and the four flexor output units (ft—fp). An
equivalent set of units exists for the extensor input and output. The inhibitory units of
each set are reciprocally cross-connected to the excitatory units of the opposite set.

To better visualize the relationships between units, the hidden units were sorted in
order of the strength of their contribution to the phasic-tonic output units. Thus, the
first hidden unit (al) makes the largest relative contribution to the flexion phasic-
tonic output unit (fpt). This hidden unit developed the strongest weights to the flexion
tonic output unit (ft), but was also connected to other flexor units. Such divergent
connections to different motor units, as well as to synergist muscles are representative
of CM cells [18].

The activation patterns of the hidden units show several interesting features. The
transient flexor input is converted to a sustained tonic activity by recurrent connec-
tions between excitatory units (e.g., al, a2 and a8). This strategy is typical of neural
integrators [20]. The discharge patterns in the hidden units involve some recognizable
variants of the output patterns, i.e., tonic, phasic, phasic-tonic, and decrementing
patterns. Secondly, although the activation profiles of the flexor and extensor target
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Fig. 2. Activity patterns of representative units in a network simulating the instructed delay task. Input
pulses on inputs il and i2 are cues for the network to generate outputs ol and 02, respectively when the go
signal i3 is presented after a delay [Fetz & Shupe, unpublished].

motor units are the same, the network solution is different for each: the tonic flexor
outputs are derived by integrating the transient input; the tonic extensor activity is
derived from the bias minus input from the reciprocal inhibitory units active with
flexion (b’s).

These simulations are obviously too simplistic to be taken as realistic models of the
primate motor system. Nevertheless, even these highly abstracted networks reflect
some of the features of the biological system in the monkey. For example, many
different combinations of hidden units contribute to the same output. Furthermore,
some complex activity patterns seen in premotor neurons of monkeys, such as
bidirectional responses of RM cells, also appear in the networks. Even certain
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apparently paradoxical relations seen in monkeys, such as cortical units that covary
with muscles which they inhibit, appear in networks and make contributions that are
understandable in terms of other units [4,13,22]. Thus, the networks have been useful
in elucidating the function of many puzzling features of biological networks.

Short-term memory tasks

Neural mechanisms of short-term memory have been investigated in many experi-
ments by recording cortical cell activity in animals performing instructed delay
tasks. One variant of these tasks begins with an instruction cue that the monkey
has to remember during a delay period. At the end of the delay a go stimulus
signals the time to execute the appropriate response indicated by the cue. A simula-
tion of this paradigm in a dynamic recurrent network is illustrated in Fig. 2. The
network receives three inputs, consisting of the two separate cues and the go signal;
the network has two outputs, corresponding to the response appropriate for each
cue. Thus, following cue 1 (or 2) the go signal will generate activation of output unit
1 (or 2). Activations of the units in a trained network for several trials involving
different delays are illustrated in Fig. 2. The connectivity matrix shows that the
hidden units are configured to form a flip-flop that routes the go signal to the
appropriate output. This network simulates the operation of short-term memory
during the delay; some hidden unit activations (e.g., b3) carry mixed representa-
tions of cue and movement signals, which have been seen in premotor and prefron-
tal cortex neurons.

Another type of instructed delay task involves the requirement to remember the
value of a particular stimulus, which can range over a continuum of values. Zipser
[17] trained recurrent networks to simulate short-term memory of an analog value
during the delay; in essence the network implements a sample-and-hold function. The
network has two inputs: an analog signal representing the stimulus value to be
remembered and a gate signal specifying the sample and output times. The network
output is the sustained value of the analog input at the time of the previous gate.
During the delay the activity of many hidden units resembles the response patterns of
cortical neurons recorded in monkeys performing comparable instructed delay tasks
[17,21]. The activity patterns of hidden units, like those of cortical neurons, fall into
three main classes: activation profiles proportional to the remembered analog value,
often with a delay, activation during the gate signal, and some combination of the
two. The network simulations allow the function of each of these patterns observed in
the animal to be interpreted in terms of its role in the task.

We have also investigated such short-term memory networks in order to further
analyze their operation. To elucidate the underlying computational algorithm we
have found it useful to constrain units to have either excitatory or inhibitory output
weights (not both), and to reduce the network to the minimal essential network that
performs the same function. A reduced network performing the sample-and-hold
function with sign constraints on the weights is iflustrated in Fig. 3. It consists of three
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Fig. 3. Reduced network performing a sample-and-hold function, simulating short-term memory. A larger
network with weight constraints was originally trained on the task, then reduced to the essential minimum
by eliminating redundant and unnecessary hidden units. The two inputs are the sample signal (S) and a
random analog value (A); the output (O) is the sustained value of the last sampled analog value [Fetz &
Shupe, unpublished].

excitatory and one inhibitory unit. The two inputs are the gate signal to take a sample
(S) and the analog variable (A); the output (O) is the value of A at the last sample
gate. This reduced version reveals an elegant computational algorithm that exploits
the non-linear sigmoidal input-output function of the units. The first excitatory unit
(SA) carries a transient signal proportional to the value of A at the time of the gate.
This signal is derived by clipping the sum of the analog and gating inputs with a
negative bias, as shown by the input weights to SA in the first column. This input
sample is then held in memory by two excitatory units (M1 and M2) that maintain
their activity by reciprocal connections and which feed their summed activity to the
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output. The inhibitory unit (SM) carries a transient signal proportional to the
previous value of A. Its value is derived from a clipped sum of the gate S and the
previous values held in M1 and M2. The function of SM is to subtract the previously
held value from the integrating hidden units and from the output. Thus, the network
reveals an elegant use of non-linearity and integration to yield the appropriate
remembered value. Networks with more units may well implement a comparable
algorithm in a distributed manner.

Models of motor learning

Lisberger and Sejnowski [16] used dynamic networks to investigate mechanisms of
motor learning in the vestibulo-ocular system. The network was constructed to
include many anatomical and physiological constraints, including pathways
through the cerebellar flocculus. The two inputs to the network, head velocity and
target velocity, were converted to one output: eye velocity. The network was initially
trained to simulate three behaviors: smooth pursuit df a moving visual target, the
VOR to head movement, and suppression of the VOR (when head and target move
together). Then the network was required to change the gain of the VOR, as occurs
after wearing magnifying or minifying goggles, and also to maintain accurate
smooth pursuit visual tracking. These requirements led to changes in the weights of
connections at two specific sites: the vestibular input to the flocculus and to the
brainstem neurons controlling oculomotoneurons. A change in the balance of input
from phasic-tonic and tonic vestibular afferents contributed to a change in the gain
of the VOR, because the transient signal was integrated by a positive feedback loop
[16]. This study exemplifies the usefulness of a biologically constrained dynamic
model that can incorporate the time course of neural activity observed under differ-
ent behavioral conditions, and shows the power of such simulations to reveal novel
network mechanisms.

Conclusion

The unique insights provided by neural network simulations assures their continued
use in elucidating the operations of neural systems. The basic limitation of conven-
tional physiological and anatomical data is that they provide a highly selective
sample of a complex system, leaving a wide gap between particular glimpses of
neural activity or anatomical structure, and the behavior of the overall system. This
gap is usually bridged by intuitive inferences, often based on selective interpretation
of the data [22]. A more objective method of bridging the gap is with models that
provide complete neural networks that simulate the behavior. Dynamic models can.
incorporate the observed response patterns of neurons and can help explain their
functional meaning. Thus, systems neurophysiologists can profitably use a combina-
tion of unit recording techniques and neural modeling to elucidate the network
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mechanisms generating sensorimotor behavior. Unit recordings can provide impor-
tant information on the activity of related neurons, but the network models can
provide working examples of complete solutions simulating the behavior. To the
extent that models can incorporate anatomical and physiological constraints, they
can provide plausible explanations of the neural mechanisms underlying behavior.
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