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Dynamic neural network models that incorporate time-varying activity and
allow unrestricted connectivity were trained by back-propagation to generate
discharge patterns of cells previously observed in behaving monkeys.
Neuronal recordings in monkeys performing a simple alternating step-tracking
task have shown that forearm motor units and connected premotoneuronal cells
fire with characteristic patterns: phasic-tonic, tonic, decrementing, etc.. To
investigate the properties of networks that could transform a step input of target
position to the four observed discharge patterns of flexor and extensor motor
units we trained dynamic network models to generate these firing patterns as
outputs. These networks have hidden units with either excitatory or inhibitory
connections to each other and to the output "motor units". Network solutions
have been found for a variety of connection matrices corresponding to different
network topologies. The activity of many hidden units resembles the discharge
patterns that have been observed in physiological recordings of neurons in
motor cortex and red nucleus. In networks receiving both sustained (step) input
and transient input signals, preferential connections can develop within subsets
of phasic and tonic units.

The function of specific hidden units in the network can be tested by making
selective lesions of particular units and determining the behavior of the
remaining network. When relatively few hidden units with similar activations
are strongly interconnected, removing a particular unit can have appreciable
consequences in eliminating corresponding components of activity in other
units. The output effects of a given unit can also be tested by delivering a
simulated stimulus and analyzing the propagated network response. Delivering
the stimulus pulse during various phases of the ongoing task shows how the
impulse response is modulated by the changing activation patterns.

1. INTRODUCTION: PHYSIOLOGICAL NETWORKS

The neural circuitry controlling forelimb muscles of the primate has been
elucidated by experiments on the anatomical connections and physiological discharge
patterns of the neurons during movements. Particularly revealing are experiments in
which both the activity and output connections of the same cells can be determined. The
premotoneuronal cells which affect muscle activity can be identified in behaving
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monkeys by spike-triggered averaging of EMG recordings, which can reveal post-spike
facilitation or suppression of target muscles [2,3]. The response patterns of
corticomotoneuronal (CM) cells and rubromotoneuronal (RM) cells have been
documented during simple alternating flexion/extension task designed to relate activity to
changes in force and to sustained static force [1,2]. The types of discharge patterns
observed in CM and RM cells, as well as in single motor units (MU) of agonist muscles,
fall into specific classes [1-3,5]. During a ramp-and-hold movement, all three groups
include cells that show phasic-tonic discharge. The phasic component is related to the
changing force and the tonic component is proportional to the amount of static force
exerted. All groups also include tonic cells which show steady discharge throughout the
hold period in proportion to the active force. Each region also has cells with unique
firing properties. A large proportion of motor units show decrementing discharge, which
decreases gradually through the hold period. The RM population is unique in having
cells that fire during both flexion and extension. In particular, an unmodulated group of
RM cells shows steady discharge during active movement that is unmodulated with the
task [2]. Other response patterns have been observed in additional cells that do not
facilitate motoneurons. In cerebral cortex many non-CM cells fire phasically at onset of
movement and many of these fire bidirectionally with flexion and extension.

2. DYNAMIC NETWORK MODELS

To investigate the possible functional role of these cells and to determine whether
other types of discharge patterns might be required to transform a step signal to the
observed output of motoneurons, we developed a model that can incorporate these firing
patterns. The network utilizes the back-propagation algorithm of the temporal flow
model developed by Watrous [7], and is similar to the dynamic network algorithms
recently desciibed by Williams and Zipser [8]. These networks allow arbitrary
interconnections between all elements; thus, in addition to feed-forward connections,
they also permit cross-connections within layers as well as feedback connections.
Secondly, the networks incorporate dynamic time-varying activity of units, representing
the firing rates of neurons. In our simulations we have used as outputs the averaged
firing rates of motor units recorded in monkeys performing a step-tracking task [5].

The input-output function of each unit is the standard sigmoidal function, with an
offset to assure that units generate negligible output in the absence of input to the unit.
The input consists of the summed activation of all other cells connected to the unit times
their synaptic weight; a source of steady input may also be derived from a bias element.
The synaptic weights are initially assigned randomly, and then modified by the back-
propagation algorithm to reduce the error for the specified target output activations.

Figure 1 shows a neural network which simulates the input-output transformation
performed by a monkey during the step-tracking task. The monkey sees a step change in
target position, alternating between flexion and extension target zones. This is
represented by sustained step input to the network for both flexion (fS) and extension
(es). Since many visual cells discharge transiently, we also provided brief transient
input at the onset of each target change (fb & eb). The network transforms these input
signals to the observed response patterns of motor units at the output. The four types of
motor unit patterns observed experimentally -- tonic, phasic-tonic, decrementing and
phasic -- are generated for both flexor and extensor movements (ft to ep). The
intervening hidden units consist of twelve excitatory and twelve inhibitory neurons (a
and b units, respectively). The squares in the matrix symbolize the strength of the
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Fig. 1. Network transforming step and transient inputs to firing patterns of motor units at output.
Unit activations during a flexion-extension cycle are shown at left and along the top. The
weight matrix gives the strength of connections from the row to column units (scale at top). The
rows represent, from top to bottom, the bias (which was eliminated for this simulation), the
inputs (fs to eb), the excitatory hidden units (a's), inhibitory hidden units (b's) and the output
flexor and extensor motor units (ft to ep). The target output patterns are tonic (ft & et), phasic-
tonic (fpt & ept), decrementing (fd & ed) and phasic (fp & ep).
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synaptic connection from the row unit to the column unit. Black squares designate
excitatory weights and open squares represent inhibitory weights. The size of each
square is proportional to the strength of the connection, except those which exceed the
calibrated scale are designated numerically. Self-recurrent connections (corresponding to
weights on the diagonal) were excluded. The excitatory hidden units are connected to
each other, to the inhibitory group and to the output cells. The inhibitory hidden units
connect to the excitatory units and to the output cells. There are also feedback
connections from the output units back to the hidden units.

Figure 1 illustrates the weight matrix and the activation patterns of all units after
2000 training iterations, which was sufficient to produce the eight different output
patterns. The discharge pattern of each unit is shown along the left, next to the row of
output weights of that unit, and is shown again at the top of the column of weights
representing the input connections to that unit. To better visualize the relationships
between units, the hidden units were further sorted in order of the strength of their
contribution to the phasic-tonic output units. The sorting algorithm used the product of
activation and weight to the flexion phasic-tonic motor unit minus activation times
weight to the extension phasic-tonic unit. Thus, the first hidden unit (a11) makes the
largest relative contribution to the flexion phasic-tonic output unit (fpt). This hidden unit
also developed the strongest weights to the flexion tonic output unit (ft), and also
contributed connections to the other flexor units. Such divergent connections to different
~ motor units, as well as to synergist muscles are representative of CM cells [1].

The activation patterns of the hidden units show several interesting features. The
discharge patterns in the hidden units involve some recognizable variants of the output
patterns, i.e., tonic, phasic, phasic-tonic, and decrementing patterns. Secondly, although
the activation profiles of the target motor units are identical for the flexion and the
extension groups, the network solution involves a different assignment of hidden units
devoted to each. There are more excitatory and fewer inhibitory hidden unit activations
related to flexion than to extension, yet they produce essentially identical output effects.
Physiological experiments have revealed similar asymmetries between flexor and
extensor related premotoneuronal cells [2].

Another striking feature of the connections are the preferentially strong
connections within the sets of units with sustained and transient activity. Thus, the first
two flexor hidden units exhibiting tonic activity (211 & a2) are strongly interconnected
with each other and receive potent input from the flexion step and connect strongly to the
tonic output unit. Similarly, the transient input (fb) is most strongly connected to the
phasic hidden units (a1l & a8), which are strongly interconnected with each other and
which also have strong reciprocal connections with the phasic output unit (fp).

Despite this tendency for sustained and transient signals to propagate through
segregated pathways, most cells receive a mixture of phasic and tonic input signals. For
example, the phasic flexor motor unit (fp) receives input not only from the phasic hidden
units (a1 & a8), but also from cells with sustained activity (211 & a10); indeed, some
of its phasic activity is derived from the difference between excitatory and inhibitory
tonic cells with different onset times (e.g., @11 and b1). Such a subtraction of a delayed
tonic pattern is used to produce phasic output in network simulations which receive only
step inputs [4].

We expected the network to develop reciprocal inhibition between the flexion and
extension groups. Although a few inhibitory units activated during one phase of
movement (e.g. extension) do affect primarily reciprocally activated motor units (e.g., b8
& b5), just as many inhibit coactivated motor units (e.g., b12). Interestingly, the major
drive on the tonic inhibitory units with connections on synergistic motor units is derived
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from recurrent feedback from the motor units (e.g., et to b4 & b9, which in turn inhibit
ep). This recurrent feedback makes these inhibitory hidden units more analogous to the
Renshaw cells of the spinal cord than to the Ia inhibitory neurons. Another group of
inhibitory hidden units develop connections to both flexor and extensor motor units (b1
& b10), a patterns that has no known correlate in physiological studies.
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Fig. 2. Effect of lesioning and stimulating specific hidden units in the network in Fig. 1. The
activations of representative units are shown for the unmanipulated, intact network (control, first
column); after lesioning the tonic excitatory hidden unit a11 (second column); after lesioning
the phasic excitatory hidden unit @1 (third column); and after stimulating the phasic excitatory
hidden unit a1 (fourth column). The modified activations are shown superimposed on a stippled
profile of the control activations.
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3. MANIPULATION OF HIDDEN UNITS
3.1 LESIONS

The function of hidden units in the network can be tested by making selective
lesions -- i.e., by eliminating the activation of particular units and analyzing the behavior
of the remaining network. Fig 2 illustrates the effects of removing one of the tonic
hidden units (a11) and one of the phasic hidden units (a1). The control activations of
the units in the intact network are shown in the first column. A lesion of the tonic hidden
unit a11 (second column) eliminates much of the tonic activity of the output and of the
other hidden units. In contrast, lesioning the phasic unit (third column) eliminates the
phasic activity of the output flexor units (fpt, fd and p), as well as eliminating activity of
the other phasic hidden unit (€8). The effects of these lesions are quite substantial
because the network has relatively few units carrying a particular pattern, and these are
strongly interconnected.

3.2 STIMULATION

The output effects of a given unit can also be tested by delivering a simulated
stimulus and analyzing the propagated network response. The fourth column in Fig. 2
shows the effect of brief activation pulses delivered to al during the flexion and
extension phase of the activity. The second pulse, during extension, evokes a response in
the phasic output unit as well as in some of the active inhibitory hidden units.
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Fig. 3 Modulation of stimulus-evoked activity during the movement cycle. Left: unit al
stimulated with a pulse during flexion (at time t;) and extension (t;). Response in three
representative hidden units (210, a1 & a8) and two flexion motor units (fpt & fp). The evoked
response e(t) was calculated as the difference between stimulated and control activation. Right:
Magnitude of evoked response plotted as a function of stimulus delay in the cycle.

6



In contrast, the first pulse, delivered during the flexion phase, evokes a stronger response
in the phasic output unit, as well as more prolonged responses in the phasic-tonic and
decrementing units; it also evokes activity in some of the excitatory hidden units.

The appearance of larger evoked responses in certain phases of the movement
than in others is clearly related to the gating function of the activation of the intervening
units. Such modulation of evoked responses is well-known in motor systems physiology
[6]. To investigate this phenomenon more systematically, we delivered stimulus pulses
at successive times during the movement cycle and measured the evoked response,
defined as the difference between the stimulated and control activation (Fig. 3). Plotting
the evoked response as a function of time in the flexion-extension cycle revealed
modulations that were not simply proportional to the activation of the stimulated or target
cell, but were more complex functions of the activations of the intervening units. The
units with sustained activation patterns, such as al10, tended to exhibit more prolonged
responses to the pulse than units with transient activity. In all cases the magnitude of the
response evoked from this flexion unit was enhanced during the flexion period.

4. CONCLUDING COMMENTS

These preliminary observations suggest that dynamic network models may
provide a useful tool for simulating neural mechanisms that generate patterns of activity
in motor systems. Although these networks are still quite artificial in their connectivity,
they develop many of the properties of biological networks [4]. Among the less realistic
features of the present simulation are the ubiquitous recurrent interconnections of the
hidden units. Such connectivity can lead to solutions in which relatively few
interconnected units carry representative signals. It should be noted that such units could
be interpreted as representing a larger population of neurons, and their connection
weights interpreted as being proportional to the size of the population. Although these
networks are highly abstracted, by incorporating profiles of physiological activity and by
observing more realistic anatomical connectivity, we believe these models can be
constrained to produce plausible simulations of sensorimotor integration.
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