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Introduction

Dynamic recurrent network models can provide invaluable tools to
help systems neurophysiologists understand the neural mechanisms
mediating behavior. They can help overcome the limitations of
biological experiments, which typically provide limited samples of
the system, such as anatomical structures and their connections, the
effects of lesions on behavior, or the activity of single neurons in
behaving animals. The missing element required to synthesize
these pieces can be provided by neural network models of the com-
plete system. New algorithms make it possible to derive networks
that simulate dynamic sensorimotor behavior and incorporate an-
atomically appropriate recurrent connectivity. The resulting net-
works determine the remaining free parameters based on examples
of the behavior itself.

Training procedures initially developed for feedforward net-
works have been extended to dynamic recurrent networks, which
differ from other modeling approaches in three key properties.
First, the units are dynamic, meaning they can exhibit time-varying
activity that can represent the mean firing rates of single or multiple
neurons, membrane potentials, or some relevant time-varying stim-
ulus or motor parameter. Second, the networks can have recurrent
connectivity, including feedback and cross-connections. Third, the
network connections required to simulate a particular dynamic be-
havior can be derived from examples of the behavior by gradient
descent methods, such as backpropagated error correction. The re-
sulting models provide complete neural network solutions of the
behavior, insofar as they determine all the connections and acti-
vations of the units that simulate the behavior.

Neural networks that emulate particular dynamic behaviors ba-
sically transform spatiotemporal inputs into appropriate spatiotem-
poral outputs. These networks are usually comprised of intercon-
nected “sigmoidal” units (units whose outputs are sigmoidal
functions of their inputs); this mimics a biological neuron’s prop-
erty of saturating at maximal rates for large inputs and decreasing
to zero for low inputs.

To illustrate the training procedure, Figure 1 shows a represen-
tative network of such units, with input and output patterns that
simulate a target-tracking task. Four input units carry signals rep-
resenting the step changes in target locations; eight output patterns
represent the firing rates of motor units in monkeys tracking such
targets. To train the network, the synaptic weights between units
are initially assigned randomly and the output response of the net-
work is determined. The difference between network output pat-
terns N(t) and the desired target output activations T(t) is the error
E(t). The backpropagation algorithm calculates the weight changes
that would reduce this error, and therefore implements a “gradient
descent” of the error as a function of the weights (Figure 1, inset).
The process of presenting input patterns and changing the weights
to reduce the remaining error is iterated until the network converges
on a solution with minimal error. Various training methods for
recurrent networks are presented in Williams and Zipser (1989)
(see also RECURRENT NETWORKS: LEARNING ALGORITHMS). It
should be recognized that backpropagation is not a model for bio-
logical learning, simply an effective method of obtaining a solution.
Biologically plausible learning algorithms will also find the same
solutions, but usually take longer (Mazzoni, Andersen, and Jordan,
1991; see also REINFORCEMENT LEARNING IN MOTOR CONTROL).
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and target change; the output represents the firing pat-

AN /\ ~— terns of eight representative motor units in flexor and

extensor muscles. The intervening hidden units consist

N I~ ————_~  ofexcitatory and inhibitory groups, with distributed con-

nections indicated by the open arrows. Network training
proceeds by calculating the difference between the net-
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[T(t)], and changing the connection weights in such a
way as to reduce the error [E(t)]. Inset at lower left il-
lustrates the error as a function of one weight, and how
the gradient of this function is used to determine the
appropriate weight change.
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Other algorithms, such as genetic algorithms (see LOCOMOTION,
VERTEBRATE) or random weight perturbations (Arnold and Rob-
inson, 1991), can also be applied when the unit input-output func-
tions are not differentiable.

Applications

The applications of these dynamic recurrent networks fall into three
general categories:

1. Pattern recognition applications involve sorting of spatiotem-
poral input patterns into discrete categories. A set of input units
receiving time-varying signals can represent a spatiotemporal pat-
tern, and the output codes the appropriate categories.

2. Pattern generation networks produce temporal patterns in one
or more output units, either autonomously or under the control of
a gating input. These include oscillating networks (Williams and
Zipser, 1989) and simulations of central pattern generators (Tsung,
Cottrell, and Selverston, 1990; Rowat and Selverston, 1993; Lan-
sner, Kotaleski, and Grillner, 1998; see also ACTIVITY-DEPENDENT
REGULATION OF NEURONAL CONDUCTANCES).

3. Pattern transformation networks convert spatiotemporal input
patterns into spatiotemporal outputs. Examples include simulations
of the leech withdrawal reflex (Lockery and Sejnowski, 1992), step
target tracking in the primate (Fetz, 1993), the vestibulo-ocular
reflex (Arnold and Robinson, 1991; Lisberger and Sejnowski,
1992) and short-term memory tasks (Zipser, 1991; Moody et al.,
1998). Recurrent networks can also simulate analytical transforms
such as integration and differentiation of input signals (Munro,
Shupe, and Fetz, 1994).

Oscillating Networks

Among the many examples of autonomously generated periodic
motor activity to be found in biological systems are locomotion,
mastication, and respiration. The neural circuitry underlying cyclic
periodic movements has been called a central pattern generator
(CPG). Williams and Zipser (1989) first trained dynamic recurrent
networks to generate oscillatory activity with various frequencies.
The smallest circuit that sustained quasi-sinusoidal oscillations
consisted of two interconnected sigmoidal units.

Tsung et al. (1990) trained a network with the connectivity and
sign constraints of neurons in the lobster gastric mill circuit to
simulate their oscillatory activity. This network replicated the cor-
rect phase relations of the biological interneurons. If its activity
was perturbed, the network reverted to the original pattern, indi-
cating that the weights found by the learning algorithm represented
a strong limit cycle attractor. Dynamic recurrent networks simu-
lating the oscillatory activity of the gastric mill circuit have shown
remarkably robust abilities to mimic the observed patterns (Rowat
and Selverston, 1993; see also ACTIVITY-DEPENDENT REGULATION
OF NEURONAL CONDUCTANCES).

Primate Target Tracking

We used dynamic networks to simulate the neural circuitry con-
trolling forelimb muscles of the primate. In monkeys performing a
step-tracking task, physiological experiments documented the dis-
charge patterns and output connections of task-related neurons.
Premotoneural (PreM) cells were identified by postspike facilita-
tion of target muscle activity in spike-triggered averages of EMG.
During alternating wrist movements, the response patterns of dif-
ferent PreM cells—corticomotorneuronal (CM), rubromotor-
neuronal (RM), dorsal root afferents, and PreM interneurons—as
well as of single motor units (MU) of agonist muscles fall into
specific classes (Fetz et al., 1989). All groups include cells that
exhibit phasic-tonic, tonic, or phasic discharge, as well as cells with

unique firing properties. Many MUs show decrementing discharge
through the static hold period. Some RM cells fire during both
flexion and extension, and some are unmodulated with the task.

To investigate the function of these diverse cells and to deter-
mine what other types of discharge patterns might be required to
transform a step signal to the observed output of motor neurons,
we derived dynamic networks that generated as outputs the average
firing rates of motor units recorded in monkeys performing a step-
tracking task (Figure 1). Changes in target position are represented
by step inputs to the network and/or by brief transient bursts at the
onset of target changes. The input signals are transformed to eight
output patterns by intervening hidden units consisting of intercon-
nected excitatory and inhibitory units.

The activation patterns and connection matrix of units in such
networks are illustrated elsewhere (Fetz, 1993). In these simula-
tions the network solutions have features that resemble biological
situations but that were not explicitly incorporated: (1) Divergent
connections of hidden units to different co-activated motor units
are representative of divergent outputs of physiological PreM neu-
rons (Fetz et al., 1989). (2) Some hidden units have counterintuitive
discharge patterns also seen in biological neurons, e.g., bidirec-
tional and sustained activity. (3) Different network simulations
with the same architecture but initialized with different weights
often converged on different solutions, comparable to the diversity
of neural relations seen in biological networks

A useful heuristic feature of these networks is the ability to
quickly probe their operation with manipulations (Fetz, 1993). The
contributions of hidden units can be tested by making selective
lesions and analyzing the behavior of the remaining network. The
output effects of a given unit can also be tested by delivering a
simulated stimulus and analyzing the propagated network response.
Because of changing activation levels, the effect of a stimulus de-
pends on the time it is delivered, as is also observed in physiolog-
ical experiments. These networks can also be trained to scale their
responses, that is, to generate output activation patterns propor-
tional to the size of the input. Their ability to generalize can be
quickly tested by presenting different inputs.

To generate more realistic models of the primate motor system,
the same approach has been used with networks incorporating ad-
ditional biological features (Maier, Shupe, and Fetz, 1993): (1) the
connectivity of central and segmental neurons was included with
appropriate conduction delays; (2) the known activity of some cen-
tral units was required to be part of the solution; and (3) in addition
to the active target-tracking task, the network was required to sim-
ulate reflex responses to peripheral perturbations of the limb. The
resulting networks can generate both types of behaviors and have
more realistic properties. Some complex activity patterns seen in
PreM neurons of monkeys, such as bidirectional responses of RM
cells, also appear in the networks. Even some apparently paradox-
ical relations seen in monkeys, such as PreM units that covary with
muscles that they inhibit, appear in networks and make contribu-
tions that are understandable in terms of other units: their activity
subtracts out inappropriate components of bidirectional activity
patterns. Thus, network simulations have proved useful in eluci-
dating the function of many puzzling features of biological
networks.

In contrast to such simulations of a specific neuronal system,
others have modeled the representation of reaching movements, as
described in REACHING MOVEMENTS: IMPLICATIONS FOR CONNEC-
TIONIST MODELS.

Short-Term Memory Tasks

Neural mechanisms of short-term memory have been investigated
in many experiments by recording cortical cell activity in animals
performing instructed delay tasks. A common type of instructed
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delay task involves the requirement to remember the value of a
particular stimulus. Zipser (1991) trained recurrent networks to
simulate short-term memory of an analog value during the delay;
the resulting network implements a sample-and-hold function. The
network has two inputs: an analog signal representing the stimulus
value to be remembered and a gate signal specifying the times to
take samples. The network output is the value of the analog input
at the time of the previous gate. During the delay between gate
signals, the activity of many hidden units resembles the response
patterns of cortical neurons recorded in monkeys performing com-
parable instructed delay tasks. The activity patterns of hidden units,
like those of cortical neurons, fall into three main classes: sustained
activation proportional to the remembered analog value, often with
a decay or rise; transient modulation during the gate signal; and
combinations of the two. The network simulations allow the func-
tion of the patterns observed in the animal to be interpreted in terms
of their possible role in the memory task.

We investigated such short-term memory networks to further
analyze their operation. To elucidate the underlying computational
algorithm, we constrained units to have either excitatory or inhib-
itory output weights, and reduced the network to the minimal
essential network. A larger network was initially trained, then
reduced by (1) combining units with similar responses and con-
nections into one equivalent unit and (2) eliminating units with
negligible activation or weak connections, then (3) retraining the
smaller networks to perform the same operation. A reduced net-
work performing the sample-and-hold function (Figure 2) consists
of three excitatory and one inhibitory unit. The two inputs are the
sample gate signal (S) and the analog variable (A); the output (O)
is the value of A at the last sample gate. This reduced version
reveals a computational algorithm that exploits the nonlinear sig-
moidal input-output function of the units. The first excitatory unit
(SA) carries a transient signal proportional to the value of A at the
time of the gate. This signal is derived by clipping the sum of the
analog and gating inputs with a negative bias, as shown by the
input weights to SA in the first column. This input sample is then
fed to two excitatory units (M1 and M2) that maintain their activity
by reciprocal connections and also feed their summed activity to
the output (M1 and M2 could also be replaced by a single self-
connected M unit). The inhibitory unit (SM) carries a transient
signal proportional to the previcus value of A. Its value is derived
from a clipped sum of the gate S and the previous values held in
M1 and M2. The function of SM is to subtract the previously held
value from the integrating hidden units and from the output. Thus,
the network uses nonlinearity and integration to yield the appro-
priate remembered value.

S+A M1 M2 SM O
bias—~[ | W M| | =

S.--. _l J

More sophisticated recurrent networks have been derived that
perform delayed matching-to-sample tasks (Moody et al., 1998),
These networks identified test stimuli presented at the location of
a previous sample and ignored intervening distractor stimuli. In
reduced networks, the hidden units performed either storage or
comparator functions. Another form of spatial memory is involved
in making delayed saccades to remembered targets. This function
can be simulated in networks whose inputs represent visual targets
in space and eye position, and whose hidden units have recurrent
connections. The outputs can represent either motor error (Xing
and Andersen, 2000) or stored locations in retinal and head-cen-
tered coordinates that remain stable in the face of intervening sac-
cades (Mitchell and Zipser, 2001).

Neural Integration

In biological motor systems, neural integrators have been postu-
lated to transform transient commands into sustained activity and
to mediate the vestibulo-ocular reflex (VOR) (see VESTIBULO-
OcuLAR REFLEX). Arnold and Robinson (1991) modeled the VOR
integrator with a recurrent network whose connections resembled
those of the vestibulo-ocular system. Two input signals represented
the reciprocal responses of opposed vestibular afferents to head
movement; these connected to four interneurons that were inter-
connected to each other and to motor neurons. Since vestibular
afferents carry tonic activity in the absence of head movement, the
integrator had to be configured so as to integrate only deviations
from baseline, but not the baseline activity itself. The authors used
units with intrinsically sustained activity with decay and a nondif-
ferentiable rectifying input-output characteristic. To train the net-
works, they tweaked individual weights, and used the effect on the
error to update the weights. Integration was performed through
positive recurrent connections between the interneurons. The net-
works could mimic physiological responses to lesions and postsac-
cadic drift.

Lisberger and Sejnowski (1992) used dynamic networks to in-
vestigate mechanisms of learning in the vestibulo-ocular system.
The network was constructed to include many anatomical and
physiological constraints, including pathways through the cerebel-
lar flocculus, with appropriate delays. The two inputs to the net-
work, head velocity and target velocity, were converted to a single
output: eye velocity. The network was initially trained to simulate
three behaviors: smooth pursuit of a moving visual target, the VOR
to head movement, and suppression of the VOR (when head and
target move together). Then the network was required to change
the gain of the VOR (as occurs after wearing magnifying or min-
ifying goggles) and also to maintain accurate smooth pursuit visual

Figure 2. Reduced network performing a sample-and-
hold function, simulating short-term memory. The units
are indicated by abbreviations and representative acti-
vation patterns at right. The weights are indicated by
squares (black = excitatory; gray = inhibitory) pro-

m portional to the connection from row unit to column unit

(e.g., arrows). The two inputs are the sample signal (S)
and a random analog value (A); the output (O) is the
sustained value of the last sampled analog value.
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tracking. Performing these functions required changes in thelcon-
nection weights at both of two specific sites: the vestibular input
to the flocculus and to the brainstem neurons controlling oculo-
motor neurons. This study exemplifies the insights gained from a
biologically constrained dynamic model that can incorporatq the
time course of neural activity observed under different behavioral
conditions, and shows the power of such simulations to reveal
novel network mechanisms.

Discussion

The unique insights provided by neural network simulations as-
sures their continued use in elucidating the operations of neural
systems. The basic limitation of conventional physiological and
antomical data is that they provide a selective sample of a complex
system, leaving a gap between particular glimpses of neural activit.y
or anatomical structure and the behavior of the overall system. This
gap is usually bridged by intuitive inferences, often based on se-
lective interpretations of the data (Fetz, 1992). A more objectlve
approach would be to derive neural network models that simulate
the behavior. These models can incorporate the observed responses
of units and can help explain the functional meaning of neural
patterns. Thus, integrative neurophysiologists can profitably use a
combination of unit recording and neural modeling to elucidate
network mechanisms. To the extent that models can incorporate
anatomical and physiological constraints, they can provide plgu—
sible explanations of the biological neural mechanisms mediating
behavior.
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