332 Part III: Articles

Dynamic Models of Neurophysiological Systems

Eberhard E. Fetz and Larry E. Shupe

Introduction

Dynamic recurrent network models can provide invaluable tools
to help systems neurophysiologists understand the neural mecha-
nisms mediating behavior. Biological experiments typically in-
volve bits of the system: anatomical structures and their
connections, effects of lesions on behavior, activity of single
neurons in behaving animals. The missing element required to
synthesize these pieces can be provided by neural network
models: a method of generating working models of the complete
system. New algorithms make it possible to derive networks
that simulate dynamic sensorimotor behavior and incorporate
anatomically appropriate connectivity. The resulting networks
determine the remaining free parameters based on examples of
the behavior itself.

Training procedures initially developed for feedforward net-
works have been extended to dynamic recurrent networks, which
have three key properties (see RECURRENT NETWORKS: SUPER-
VISED LEARNING): First, the units are dynamic, meaning they
can exhibit time-varying activity, which can represent the mean
firing rates of single or multiple neurons, membrane potentials,
or some relevant time-varying stimulus or motor parameter.
Second, the networks can have recurrent connectivity, including
feedback and cross-connections. Third, the network connec-
tions required to simulate a particular dynamic behavior can be
derived from examples of the behavior by gradient descent meth-
ods such as backpropagated error correction. The resulting mod-
els provide complete neural network solutions of the behavior,
insofar as they determine all the connections and activations of
the units that simulate the behavior.

Neural networks that emulate particular dynamic behaviors
basically transform spatiotemporal inputs into appropriate
spatiotemporal outputs. These networks are usually composed
of interconnected ‘“sigmoidal” units, whose outputs are
sigmoidal functions of their inputs; this mimics a biological
neuron’s property of saturating at maximal rates for large
inputs, and decreasing to zero for low inputs. To train the
network, the synaptic weights between units are initially as-
signed randomly, and the output response of the network is
determined. The difference between network output patterns
and the desired target output activations is the error. The
backpropagation algorithm optimally modifies the weights to
reduce this error. This weight change implements a gradient
descent of the error as a function of the weight. The process of
presenting input patterns and changing the weights to reduce
the remaining error is iterated until the network converges on
a solution with minimal error.

Applications

The applications for these dynamic recurrent networks fall into
three general categories:

1. Pattern recognition applications involve identification of
spatiotemporal input patterns into discrete categories. A set
of input units receiving time-varying signals can represent a
spatiotemporal pattern, and the output codes the categories.

2. Pattern generation networks produce temporal patterns in
one or more output units, either autonomously or under the
control of a gating input. These include oscillating networks
(Williams and Zipser, 1989) and simulations of central pat-
tern generators (Tsung, Cottrell, and Selverston, 1990;
Rowat and Selverston, 1991).

3. Pattern transformation networks convert spatiotemporal
input patterns into spatiotemporal outputs. Examples
include simulations of the leech withdrawal reflex (Lockery
and Sejnowski, 1992); step target tracking in the primate
(Fetz and Shupe, 1990); the vestibulo-ocular reflex (Arnold
and Robinson, 1991; Lisberger and Sejnowski, 1992; see
also VESTIBULO-OCULAR REFLEX: PERFORMANCE AND PLAS-
TICITY); and short-term memory tasks (Zipser, 1991). Recur-
rent networks can also simulate analytical transforms such
as integration and differentiation of input signals (Munro,
Shupe, and Fetz, 1994).

Oscillating Networks

Biological systems provide numerous examples of autonomously
generated periodic motor activity: locomotion, mastication, res-
piration, etc. The neural circuitry underlying cyclic movements
has been called a central pattern generator (CPG). Williams
and Zipser (1989) trained dynamic networks to generate oscil-
latory activity with various frequencies. The smallest circuit
that sustained quasi-sinusoidal oscillations consisted of two in-
terconnected sigmoidal units.

Tsung, Cottrell, and Selverston (1990) trained a network with
the connectivity and sign constraints of neurons in the lobster
gastric mill circuit to simulate their oscillatory activity. This
network replicated the correct phase relations of the biological
interneurons. If its activity was perturbed, the network reverted
to the original pattern, indicating that the weights found by the
learning algorithm represented a strong limit cycle attractor.
Rowat and Selverston (1991) developed algorithms to train os-
cillations in networks of units with biological properties like gap
junctions and membrane currents, and trained networks with
realistic constraints on connection weights to simulate known
oscillatory activations. Simulations suggest that recurrent net-
works of sigmoidal units are quite robust in generating oscilla-
tory activity, even to the point of meeting various constraints in
phase and period. (But see CRUSTACEAN STOMATGGASTRIC SYS-
TeM for more subtle oscillator properties involving neuromodu-
lation.)

Primate Target Tracking

We used dynamic networks to simulate the neural circuitry con-
trolling forelimb muscles of the primate. In monkeys performing
a step-tracking task, physiological experiments documented the
discharge patterns and output connections of task-related neu-
rons. Premotoneuronal (PreM) cells were identified by post-
spike facilitation of target muscle activity in spike-triggered
averages of EMG. During alternating wrist movements, the
response patterns of different PreM cells—corticomotoneuronal
(CM), rubromotoneuronal (RM), and dorsal root ganglion affer-
ents—as well as single motor units (MU) of agonist muscles,
fall into specific classes (Fetz et al., 1989). All groups include
cells that exhibit phasic-tonic, tonic, or phasic discharge, as
well as cells with unique firing properties. Many MUs show
decrementing discharge through the static hold period. Some
RM cells fire during both flexion and extension, and some are
unmodulated with the task.

To investigate the function of these diverse cells and to deter-
mine what other types of discharge patterns might be required
to transform a step signal to the observed output of moto-
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neurons, we derived dynamic networks that generated as
outputs the average firing rates of motor units recorded in
monkeys performing a step-tracking task. Changes in target
position were represented by step inputs to the network and/or
by brief transient bursts at the onset of target changes. The
input signals were transformed to either MU output patterns
{phasic-tonic, tonic, decrementing, and phasic flexors and
extensors) by intervening hidden units consisting of intercon-
nected excitatory and inhibitory units.

The activation patterns and connection matrix of units in
such networks are illustrated elsewhere (Fetz and Shupe, 1990;
Fetz, 1992 and 1993). In these simulations, the network solu-
tions have several features which resemble biological situations
but which were not explicitly incorporated:

1. Divergent connections of hidden units to different coacti-
vated motor units are representative of divergent outputs of
physiological PreM neurons (Fetz et al., 1989).

2. Many hidden units have discharge patterns resembling the
outputs, but some have counterintuitive patterns that are
also seen in biological neurons, ¢.g., bidirectional and sus-
tained activity.

3. Different network simulations with the same architecture,
but initialized with different weights often converged on differ-
ent solutions, comparable to the diversity of neural relations
seen in biological networks.

A useful heuristic feature of these networks is the ability
to quickly probe their operation with manipulations (Fetz and
Shupe, 1990; Fetz, 1993). The contributions of hidden units
can be tested by making selective lesions and analyzing the
behavior of the remaining network. The output effects of a
given unit can also be tested by delivering a simulated stimulus
and analyzing the propagated network response. Because of
changing activation levels, the effect of a stimulus depends
on the time it is delivered, as also observed in physiological
experiments. These networks can also be trained to scale their
responses—i.e., to generate output activation patterns propor-
tional to the size of the input. Moreover, their ability to gener-
alize across stimulus dimensions can be quickly tested by
presenting different inputs.

To generate more realistic models of the primate motor sys-
tem, the same approach has been used with networks incor-
porating additional biological features (Maier, Shupe, and Fetz,
1993): (1) the connectivity of specific neurons in motor cortex,
red nucleus and spinal cord (interneurons, and motoneurons)
and afferent fibers was included with appropriate relative con-
duction delays; (2) the activity of representative subsets of these
additional elements, where known, was required to be part of
the solution; and (3) in addition to the active target tracking
task, the network was required to simulate reflex responses to
peripheral perturbations of the limb. The resulting networks
have the ability to generate both types of behaviors, and have
more realistic properties. Although these networks are still highly
abstracted, they reflect many of the essential features of the
biological system in the monkey. Some complex activity pat-
terns seen in PreM neurons of monkeys, such as bidirectional
responses of RM cells, also appear in the networks. Even some
apparently paradoxical relations seen in monkeys, such as cor-
tical units that covary with muscles which they inhibit, appear
in networks and make contributions that are understandable in
terms of other units: their activity subtracts out inappropriate
components of bidirectional activity patterns. Thus, network
simulations have proven useful in elucidating the function of
many puzzling features of biological networks, including some
puzzling properties.

Short-Term Memory Tasks

Neural mechanisms of short-term memory have been investi-
gated in many experiments by recording cortical cell activity in
animals performing instructed delay tasks. A common type of
instructed delay task requires remembering the value of a par-
ticular stimulus. Zipser (1991) trained recurrent networks to
simulate short-term memory of an analog value during the de-
lay; the resulting network implements a sample-and-hold func-
tion. The network has two inputs: an analog signal representing
the stimulus value to be remembered, and a gate signal spec-
ifying the times to take samples. The network output is the
value of the analog input at the time of the previous gate.
During the delay between gate signals, the activity of many
hidden units resembles the response patterns of cortical neu-
rons recorded in monkeys performing comparable instructed
delay tasks. The activity patterns of hidden units, like those of
cortical neurons, fall into three main classes: sustained activa-
tion proportional to the remembered analog value, often with
a decay or rise; transient modulation during the gate signal;
and combinations of the two. The network simulations allow
the function of the patterns observed in the animal to be inter-
preted in terms of its possible role in the memory task.

We investigated such short-term memory networks to fur-
ther analyze their operation. To elucidate the underlying com-
putational algorithm, we constrained units to have either exci-
tatory or inhibitory output weights, and reduced the network
to the minimal essential network. A larger network was ini-
tially trained, then reduced by (1) combining units with similar
responses and connections into one equivalent unit and (2) elimi-
nating units with negligible activation or weak connections,
then (3) retraining the smaller networks to perform the same
operation. A reduced network performing the sample-and-hold
function is illustrated in Figure 1. It consists of three excitatory
and one inhibitory unit. The two inputs are the sample gate
signal (S) and the random analog variable (4); the output (0)
is the value of A4 at the last sample gate. This reduced version
reveals a computational algorithm that exploits the nonlinear
sigmoidal input-output function of the units. The first excita-
tory unit (SA4) carries a transient signal proportional to the
value of A at the time of the gate. This signal is derived by
clipping the sum of the analog and gating inputs with a nega-
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Figure 1. Reduced network performing a sample-and-hold function,
simulating short-term memory. The units are indicated by abbrevia-
tions and their representative activation patterns, shown at right. The
weights are indicated by squares (black = excitatory; grey = inhibitory)
proportional to the connection from row unit to column unit (e.g.,
arrows). The two inputs are the sample signal (S) and a random analog
value (4); the output (0) is the sustained value of the last sampled
analog value.
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tive bias, as shown by the input weights to S4 in the first col-
umn. This input sample is then fed to two excitatory units (M1
and M2) that maintain their activity through reciprocal con-
nections and also feed their summed activity to the output (MI
and M2 could also be replaced by a single self-connected M
unit). The inhibitory unit (SM) carries a transient signal pro-
portional to the previous value of 4. Its value is derived from a
clipped sum of the gate S and the previous values held in M1
and M2. As shown by its output weights, the function of SM is
to subtract the previously held value from the integrating hid-
den units and from the output. This illustrates how the weights
and activations of a complete network solution can reveal the
underlying algorithm—in this case, an elegant use of non-
linearity and integration to yield the appropriate remembered
value. It seems plausible that networks with more units imple-
ment a comparable algorithm in a distributed manmner.

Neural Integration

In biological motor systems, neural integrators have been pos-
tulated to transform transient commands into sustained activ-
ity and to mediate the vestibulo-ocular reflex (VOR). Arnold
and Robinson (1991) modeled the VOR integrator with a re-
current network whose connections resembled those of the
vestibulo-ocular system. Two input signals represented the
reciprocal responses of opposed vestibular afferents to head
movement; these connected to four interneurons, which were
interconnected to each other and to motoneurons. Since vesti-
bular afferents carry tonic activity in the absence of head move-
ment, the integrator had to be configured so as to integrate
only deviations from baseline, but not the baseline activity
itself. The authors used units with intrinsically sustained activ-
ity with decay and a nondifferentiable rectifying input-output
characteristic. To train the networks, they tweaked individual
weights and used the effect on the error t0 update the weights.
Integration was performed through positive recurrent connec-
tions between the interneurons. Removing hidden units in a
trained network reduced the time constant of integration, but
the network could be readily retrained. The networks could
also mimic more complex physiological responses, such as
post-saccadic drift. Similarly Anastasio (see VESTIBULO-OCULAR
REFLEX: PERFORMANCE AND PLASTICITY) trained dynamic net-
works of sigmoidal units with backpropagation to simulate
velocity storage in the vestibulo-ocular system.

Lisberger and Sejnowski (1992) used dynamic networks to
investigate mechanisms of learning in the vestibulo-ocular Sys-
tem. The network was constructed to include many anatomical
and physiological constraints, including pathways through the
cerebellar flocculus, with appropriate delays. The two inputs to
the network—head velocity and target velocity—were con-
verted to a single output: eye velocity. The network was ini-
tially trained to simulate three behaviors: smooth pursuit of a
moving visual target; the VOR to head movement; and sup-
pression of the VOR (when head and target move together).
Then the network was required to change the gain of the VOR
(as occurs after wearing magnifying or minifying goggles) and
also to maintain accurate smooth-pursuit visual tracking. These
requirements led to changes in the weights of connections at
two specific sites: the vestibular input to the flocculus and to
the brainstem neurons controlling oculomotoneurons, This study
exemplifies the insights gained from a biologically constrained
dynamic model that can incorporate the time course of neural
activity observed under different behavioral conditions, and

shows the power of such simulations to reveal novel network
mechanisms.

Discussion

The unique insights provided by neural network simulations
assures their continued use in elucidating the operations of neu-
ral systems. The basic limitation of conventional physiological
and anatomical data is that they provide a selective sample
of a complex system, leaving a wide gap between particular
glimpses of neural activity or anatomical structure, and the
behavior of the overall system. This gap is usually bridged by
intuitive inferences, often based on selective interpretations of
the data (Fetz, 1992). A more objective approach would be to
derive neural network models that simulate the behavior. These
models can incorporate the observed responses of units and
can help explain the functional meaning of neural patterns.
Thus, integrative neurophysiologists can profitably use a com-
bination of unit recording techniques and neural modeling to
elucidate network mechanisms. To the extent that models can
incorporate anatomical and physiological constraints, they can
provide plausible explanations of the biological neural mecha-
nisms mediating behavior.
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Fig. 1. Input-output properties for sigmoidal units used in dynamic recurrent
networks. Each unit generates a con%inuous activation (y;) agn;utput. Its net
input (:ji) is the weighted sum of activities of its input unlts (y;) and the bias,
weighted by synaptic connection strengths (wy). This sum is transformed by the
sigmoidal "squashing function" to limit the oufput between0and 1. ~
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Fig. 2. Typical network architecture and training procedure used with dynamic
recurrent networks. This network was used to simulate the step-tracking task
(cf. Fig. 5 for a specific example). The network in&)\ut consists of 4 representations
of the step target position and target change; the output represents the firing
patterns of eight representative motor units in flexor and extensor muscles. The-
connections of the intervening hidden units are indicated by the arrows.
Network training cFroceeds by calculating the difference between the network
output [N()] and the desifed target activations [T(t)], and changing the
connection weights in such a way as to reduce the error [E(t)]. Inset at lower left
illustrates the error as a function of one weight, and the use of the gradient of this
function to determine the appropriate weight change. .
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Fig. 10. Reduced network performinia sample-and-hold function, simulating
short-term memory. A larger network with weight constraints was originally
trained on the task, then reduced to the essential minimum by eliminatin

redundant and unnecessary hidden units. The two. inputs are the sample signa
(S) and a random analog value (A); the output (O) is the sustained value of the last
sampled analog value. "~ - '

a5
al2
o1






