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Abstract 
In monkeys performing a steptracking task, the discharge pattems of forearm motor units and 

connected premotoneuronal cells in cortex and red nucleus (identified by post-spike facilitation of 
EMG) fall into characteristic classes: tonic, phasic-tonic, decrementing, etc. We used dynamic neural 
network models incorporating these discharge pattems to investigate networks that could transform a 
step input of target position to the observed discharge pattems of flexor and extensor motoneurons. 
These networks have interconnected hidden units with either excitatory or inhibitory connections to 
each other and to the motoneurons. The activity of many hidden units resembles discharge pattems 
that are observed in monkey recordings. The network solutions typically involve preferential 
connectivity within synergistic groups and often include reciprocal inhibition of antagonists. A 
network trained on a specific input step level does not necessarily produce a proportional output for 
other step sizes; however, the networks can be trained to generate motor responses proportional to a 
target step size. The role of the hidden units can also be investigated by selective lesions or 
stimulation. 

Introduction 
The primate's ability to perform a sophisticated variety of tasks involving wrist and finger 

movements depends on the neural circuitry controlling forelimb muscles. The response properties of 
cells during movements have been investigated in monkeys performing specific types of movements. 
These have revealed a remarkable variety of response pattems in relation to even simple movements. 
To obtain a quantitative picture of the contributions of cells to control of wrist muscles, it is helpful to 
identify those cells whose output affects muscle activity. These premotoneuronal cells can be 
identified by spike-triggered averaging of EMG, which can reveal post-spike facilitation or 
suppression of target muscles. The response pattems of corticomotoneuronal (CM) cells and 
rubromotoneuronal (RM) cells have been documented during a simple altemating flexiodextension 
task designed to relate activity to changes in force and to sustained static force (Cheney & Fetz, 1980). 
The types of discharge pattems observed in CM and RM cells, as well as in single motor units (MU) 
of agonist muscles, fall into specific classes (Cheney et al 1988; Fetz et al 1990). During a ramp-and- 
hold movement, all three groups include cells that show phasic-tonic discharge. The phasic 
component is related to the changing force and the tonic component is proportional to the amount of 
static force exerted. All groups also include tonic cells which show steady discharge throughout the 
hold period in proportion to the active force. Each region also has cells with unique firing properties. 
A large proportion of motor units show decrementing discharge, which decreases gradually through 
the hold period. The RM population is unique in having cells that fire during both flexion and 
extension. In particular, an unmodulated group of RM cells shows steady discharge during active 
movement that is not modulated with the task (Cheney, et al, 1988). CM cells include a subset whose 
activity is steadily incrementing during the static hold period. Other response pattems have been 
observed in additional cells that do not facilitate motoneurons. In cerebral cortex many non-CM cells 
fire phasically at onset of movement and many of these fire bidirectionally with flexion and extension. 

Network Models 
To investigate the functional role of these cells and to infer the types of discharge patterns that 

might be required to transform a step signal to the observed output of motoneurons, we developed a 
model that can incorporate these firing pattems. The network utilizes a generalization of the back- 
propagation algorithm developed by Watrous (1986) in the temporal flow model, and is similar to the 
networks recently described by Williams and Zipser (1989). These networks allow arbitrary 
interconnectivity of all elements; in addition to feed-forward connections, they can also have cross- 
connections within layers as well as feedback. Secondly, the networks incorporate time-varying 
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activity of cells representing the firing rates of neurons. In our simulations we have used averaged 
firing rates of motoneurons recorded in monkeys performing a step-tracking task. 

The input-output function of each unit is the standard sigmoidal function, with an offset to 
assure that units generate negligible output in the absence of input activity. The input to a unit 
consists of the activation of all other cells connected to the unit times their synaptic weight; steady 
input may also be derived from a bias element with variable weight. The network is initialized with 
random synaptic weights and the back propagation algorithm is used to modify the connectivity to 
reduce the error for the specified target output activations. 

Reciprocal movements 
The simulation in Figure 1 was designed to derive a neural network that transformed a step 

change in target position at the input to the observed response pattems of motor units at the output. 
This simulates the step-tracking task between alternating flexion and extension target zones, and has 
each of the four types of motor units: tonic, phasic-tonic, decrementing and phasic for both flexor and 
extensor movements. The network consists of twelve excitatory and twelve inhibitory neurons. We 
found that using sign constraints on the outputs of units, i.e., that outputs from a given unit be either 
all excitatory or all inhibitory, provided more interpretable activation pattems. The squares in the 
matrix symbolize the strength of the synaptic connection from the unit in the row to the unit in the 
column. Excitatory weights are in black and inhibitory weights are open squares, and the size of the 
square is proportional to the strength of the connection. The absence of self-recurrent connections 
corresponds to the absence of diagonal elements. All the excitatory hidden units affect the output 
cells, and half also connect to the inhibitory group. Half of the inhibitory hidden units connect to the 
excitatory units and the other half connect only to the output cells. 

Figure 1 illustrates the weight matrix and the activation pattems of all units after ZOO0 training 
iterations. The discharge pattems of the units are shown at left; from top to bottom, these are the input 
steps (fs, es), the excitatory and inhibitory hidden units (a's and bs), and the output units (ft to ep). 
The activation pattems are repeated along the top, above the column representing the input weights to 
each unit. To better visualize the relationships between units, the hidden units were sorted in order of 
the strength of their effect on the tonic output units. The sorting algorithm used the product of 
activation and weight to the flexion tonic output unit minus activation times weight to the extension 
unit. Thus, the first hidden unit (a3) makes the maximal contribution to the tonic flexion motoneuron. 
The grouping of the connections indicates that the units which contributed most to tonic flexion 
activity also made the strongest contribution to the response pattems of all other flexor output units. 
In the matrix representing interconnection between hidden units, it is clear that units more strongly 
related to flexion were also more strongly interconnected to each other and least strongly connected to 
the extension units and vice versa. 

The activation pattems of the hidden units show several interesting features. Most hidden 
units are active during either flexion or extension, although some, (e.g., a9, b10, b8) show appreciable 
activity through both phases of movement. Secondly, although the profiles of the target motor units 
are identical for the flexion and the extension groups, the network solution involves an asymmetric 
assignment of hidden units devoted to each. There-are appreciably more hidden unit activations 
related to flexion than to extension, yet they produce essentially identical output effects. Third, the 
discharge patterns in the hidden units involve some recognizable variants of the output patterns. Thus, 
during the extension phase the excitatory hidden units exhibit phasic, phasic-tonic, and tonic pattems 
(a2, a4 & al). In the flexion phase none of the hidden units show phasic components. Instead the 
phasic component of the motoneuron activity is derived from the difference between early onset of 
excitatory tonic units and later onsets of inhibitory tonic units. Even within the excitatory flexion 
cells, there is a considerable variety of onset times and rates, which corresponds to physiological 
observations on CM cells (Cheney & Fetz, 1980). 

Magnitude scaling 
We also investigated a networks ability to generate output activation pattems proportional to 

the input step. In the step tracking task, monkeys leamed to generate force levels proportional to the 
size of the target step, and did so by a proportional scaling of discharge levels of the task-related cells. 
Such linearity was tested in a simpler network that transforms a step input to a phasic-tonic output 
(Fig. 2). Testing a given network trained on one force level with inputs representing other force levels 
yielded outputs that deviate rapidly from a proportional phasic-tonic pattem (Fig. 2, left). Going from 
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Fig 1. Connectivity matrix and activation patterns (left column and along top) for a 
network transforming alternating step inputs (fs, es) to eight motor unit discharge 
patterns (ft to ep; bottom left and top right). The synaptic weight from row unit to 
column unit is symbolized by the size of the square in the range calibrated at the top, 
and by a number for weights outside this range. Excitatory and inhibitory connections 
are represented by solid and open squares respectively. This is the state of the network 
after 2000 training iterations. Units were sorted within the excitatory and inhibitory 
groups by their net contribution to unit ft minus their net contribution to unit et. 
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Fig 2. Neural networks transforming step input to phasic-tonic patterns. Left: 
network trained on one step size (0.6). Right: network trained from same 
starting point on two step sizes (0.4 and 0.8). Bottom graphs give percent error 
between the actual output and a phasic-tonic pattern proportional to the step 
input, after 200 training iterations (white boxes) and 1000 iterations (black 
circles). Samples below show normalized outputs (dark lines) with their target 
phasic-tonic patterns (light lines) for input step sizes 0.2,0.6, and 0.9 using the 
1000-iteration networks. 
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200 to lo00 training iterations produced a slight improvement in accuracy at the training level (0.6) 
but resulted in greater deviations at other levels. We obtained a network that generates output in 
proportion to the input by simultaneous training at two step levels (Fig. 2, right). Training at both a 
high and a low force level (0.8 and 0.4) yielded a network solution similar to the network trained at a 
single level, although the excitatory hidden units contributed more equitably to the output (compare 
left and right networks). When tested with intermediate force levels, the second network generated 
proportional outputs. However, when tested with steps outside the range straddled by the training 
levels, the output still deviates slightly from a proportional response. 

Concluding comments 
In these dynamic networks the function of hidden units can be tested by making selective 

lesions -- i.e., by eliminating the activation of particular units and analyzing the behavior of the 
remaining network. For large networks with distributed weights, the lesion of a particular unit may 
have relatively little effect. However, for networks in which a few units with similar activations (e.g., 
phasic) are strongly interconnected, the lesion of one can drastically reduce activity of the others and 
can eliminate corresponding components of activity in the output units. 

The output effects of a given unit can also be tested by delivering a simulated stimulus and 
analyzing the propagated network response. The activation pulse can be delivered during various 
phases of the ongoing task to determine how the impulse response is modulated by changing cell 
activations. 

These network simulations provide a useful tool for analyzing neural mechanisms that could 
generate pattems of activity in motoneurons. By incorporating profiles of physiological activity and 
observing anatomical connectivity, they can be constrained to produce plausible models of 
sensorimotor integration. 
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