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Abstract 

We describe an integrate-and-fire (IF) spiking neural network that incorporates spike-timing 

dependent plasticity (STDP) and simulates the experimental outcomes of four different 

conditioning protocols that produce cortical plasticity.  The original conditioning experiments 

were performed in freely moving non-human primates with an autonomous head-fixed 

bidirectional brain-computer interface.  Three protocols involved closed-loop stimulation 

triggered from (a) spike activity of single cortical neurons, (b) EMG activity from forearm 

muscles, and (c) cycles of spontaneous cortical beta activity.  A fourth protocol involved open-

loop delivery of pairs of stimuli at neighboring cortical sites.  The IF network that replicates the 

experimental results consists of 360 units with simulated membrane potentials produced by 

synaptic inputs and triggering a spike when reaching threshold.  The 240 cortical units produce 

either excitatory or inhibitory post-synaptic potentials in their target units.  In addition to the 

experimentally observed conditioning effects, the model also allows computation of underlying 

network behavior not originally documented.  Furthermore, the model makes predictions about 

outcomes from protocols not yet investigated, including spike-triggered inhibition, gamma-

triggered stimulation and disynaptic conditioning.  The success of the simulations suggests that 

a simple voltage-based IF model incorporating STDP can capture the essential mechanisms 

mediating targeted plasticity with closed-loop stimulation. 

 

Author summary 

Previous experiments have shown that the connections between neurons in the brain can be 

modified by several different activity-dependent stimulation methods.  Understanding the 

underlying mechanisms that mediate these changes is key to designing effective protocols for 

producing targeted plasticity in clinical and basic science applications.  We describe a simple but 

powerful neural network model that replicates a wide range of experimental results.  It 

provides valuable additional information about the underlying processes and more importantly, 

predicts new protocols that have never been tested but could be.  The network model is 

composed of interconnected “integrate-and-fire” units that, like biological neurons, add the 
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inputs they receive and fire when the results exceed threshold.  The model also includes a well-

documented rule for changing the strength of connections between two units based on the 

relative timing of their activity. 

The model captures the neural plasticity produced in recent experiments that delivered activity 

dependent stimulation or controlled patterns of stimulation.  The model explores how such 

paradigms would strengthen indirect as well as direct neural connections.  It also predicts that a 

new experimental protocol using easily recorded neural signals would be very effective in 

modifying neural connections.  The results represent a major advance in understanding 

fundamental neural mechanisms and designing new protocols for inducing targeted neural 

plasticity. 

 

Introduction 

Computational neural network models provide a powerful tool for understanding mechanisms 

of neural computation and for exploring network behavior in ways that physiological recordings 

cannot [1-4].  Neural networks consisting of integrate-and-fire (IF) spiking units have proven 

useful in studying network dynamics produced by spiking neurons (for reviews see [5-11]).  The 

IF units typically sum inputs to produce a simulated membrane potential function that triggers 

a spike when it reaches a threshold.  The inputs can simulate postsynaptic potentials with rise 

time and decay; the units can also incorporate biophysical conductances [12].  Spike-timing-

dependent plasticity (STDP) rules [13-16] can be incorporated into IF networks to investigate 

consequent changes in synaptic connections on network dynamics.  For example, large 

networks of biophysically realistic spiking units with STDP have been shown to form functional 

interacting groups [17-20] and capture global changes induced by conditioning [21].  We here 

used an IF network with STDP to simulate experimental results from recent physiological 

conditioning studies performed with a closed-loop brain computer interface (CL-BCI). 

The strength of synaptic connections between motor cortical neurons has been experimentally 

modified by several different conditioning protocols.  In non-human primates (NHP), CL-BCIs 
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have induced plasticity with spike-triggered stimulation of neighboring cortical sites during free 

behavior [22].  After a day of conditioning the output effects on muscles and isometric wrist 

responses evoked by microstimulation of the recording site (labeled A) included the output 

effects evoked from the stimulation site (B), consistent with a strengthening of connections 

from A to B.  Changes occurred only for spike-stimulus delays of 50 ms or less, consistent with 

the time course of STDP.  These changes lasted for up to 10 days post-conditioning.  A second 

conditioning paradigm triggered cortical stimulation from pulses generated by 

electromyographic activity of a forearm muscle [23].  This produced changes in the output 

effects evoked by stimulating the cortical site (A) that was associated with the recorded muscle 

to now include effects evoked from the stimulated site (B).  Again, the results were consistent 

with a strengthening of connections from A to B.  A third conditioning paradigm used paired 

sequential stimulation of sites A and B and found changes in the magnitude of potentials at B 

evoked by stimulation at A [24].  These effects were found at some, but not all site pairs, and 

were again seen for stimulus intervals of 30 ms or less.  A fourth conditioning paradigm 

produced cortical plasticity using a CL-BCI to stimulate site A during specific phases of 

spontaneous beta oscillations at B [25].  This produced transient changes in the connection 

from A to B; the connections increased or decreased, depending on whether stimuli were 

delivered during the phase in which neurons at B would tend to be depolarized or 

hyperpolarized, respectively.  These changes in connectivity were induced by spontaneous 

oscillatory episodes with 3 or more cycles and decayed within seconds. 

We here investigated whether the neural mechanisms underlying these four conditioning 

protocols could be captured by an IF neural network model that incorporates STDP.  This 

approach differs from a previous neural network model using populations of Poisson firing units 

to analytically compute the net effects produced by spike-triggered stimulation [26] (See 

Discussion).  Our IF model replicated the results of all four conditioning protocols with a single 

set of network parameters and enabled derivations beyond the original experimental 

observations, providing a more complete picture of conditioned changes and insights into the 

effects of relevant network parameters.  Furthermore, the model also provided totally novel 

predictions about the outcomes of possible conditioning experiments that have not yet been 
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performed.  Thus, there is a productive symbiotic relation between the model and physiological 

experiments.  Our IF model provides a powerful tool for elucidating the synaptic mechanisms 

underlying cortical plasticity and discovering new conditioning paradigms. 

 

Results 

The model 

The IF model consists of 360 integrate-and-fire units with a “membrane potential” that 

integrates synaptic inputs and upon reaching threshold triggers a spike and resets (Fig 1A; see 

Methods for more detail).  After a conduction delay the spike generates excitatory or inhibitory 

post-synaptic potentials in connected target units that are proportional to the size of the 

synaptic weights (Fig 1A and B).  During conditioning the synaptic weights are modified by a 

STDP function that depends on the relative timing of pre- and postsynaptic spikes (Fig 1C). 

The network contains 240 cortical units grouped into three “columns”, A, B and C (Fig 2A).  

Excitatory and inhibitory units within a column are sparsely interconnected, and excitatory units 

connect sparsely to units of other columns.  Units also receive excitatory external drive 

consisting of uncorrelated and correlated spike events (Fig 2A and B).  Each column also has an 

associated group of 40 motor units with graded thresholds and EMG potentials (Fig 2B).  In 

addition to spike events the model monitors the “local field potentials” calculated as the sum of 

all postsynaptic potentials within a column (Fig 2C). 

Electrical stimulation is simulated by a large excitatory input delivered simultaneously to all 

units of a column.  During conditioning stimuli can be triggered by other activity or delivered in 

open-loop mode.  Test stimuli can be delivered to document the magnitude of net excitatory 

connections between columns by the size of the evoked local field potentials. 
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Fig 1.  Integrate and fire model.  (A) External input (Ej) and spiking input from connected 
units (U1 to Un) are summed into a target unit’s potential (Vj).  When a unit’s potential 
reaches threshold it is reset to 0 and the unit sends a spike to all its target units.  The spike 
evokes an excitatory or inhibitory post synaptic potential proportional to synaptic weight wij.  
(B) PSP Shape is calculated as the difference between two exponential functions (dotted and 
dashed lines).  (C) The Spike Timing-Dependent Plasticity Curve shows how much weight wij is 
changed given the difference in spike times between the target unit i and the source unit j. 
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Fig 2.  Network connectivity.  (A) Cortical network configuration.  Units are grouped into 3 
columns A, B, and C.  Each column contains 40 excitatory units (e.g. Ae1 … Ae40) and 40 local 
inhibitory units (Ai) all sparsely interconnected.  Only excitatory units project to other 
columns.  Columns also receive external input, consisting of correlated and uncorrelated 
(C/U) exponentially distributed spikes.  (B) Column configuration.  Associated with each 
cortical column is a pool of motor units that produce muscle potentials (EMG).  The dashed 
lines designate unmodifiable connections.  (C) Example spiking activity of excitatory (e), 
inhibitory (i) and motor units (m) associated with each column.  LFP is the sum of within-
column post-synaptic potentials in e and i units. 
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Spike-triggered stimulation 

To simulate conditioning with spike-triggered stimulation [22,27], each time the first excitatory 

unit (Ae1) in Column A fired, a conditioning stimulus was applied to all units in Column B at a 

given delay (Fig 3A).  Conditioning effects were observed as increased connection strengths 

between Column A and Column B.  Fig 3C shows color-coded strengths of all connections after 

spike-triggered stimulation with a spike-stimulus delay of 10 ms, showing strengthened 

connections from Ae to B units relative to connections between other columns.  Connectivity 

between Columns A and B was also documented by the average evoked potential (EP) (Fig 3D 

insets) in the LFP of Column B produced by a test stimulus to A (Fig 3A). 

 

Fig 3.  Spike-triggered stimulation.  (A) A Conditioning stimulus (ST) is applied to all units in 
Column B at a delay from each trigger spike (T) detected on the first excitatory unit (Ae1) of 
Column A.  Testing shows stimulus applied to all Column A units to evoke a potential (EP) in 
LFP of Column B.  (B) Histogram of excitatory A and B unit firings aligned with spikes on Ae1 
(T) during conditioning with a 10 ms delayed stimulus.  (C) Final connection strengths 
(calibrated in uV) between units after conditioning.  (D) Average percent increase in the EP as 
a function of the delay between trigger spike and stimulation.  Insets show average EPs 
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before and after conditioning for two delays.  Grey dashed line shows the EP response in 
Column B after tetanic stimulation of Column B. 

 

After conditioning for 500 seconds of simulation time, the conditioning unit (Ae1) showed near 

maximum connection strengths to its target units in Column B.  Other units in A also show 

increased connections to B depending on the percent of correlated bias inputs to A.  Networks 

with 30% correlated bias inputs show a moderate conditioned response in other Column A→B 

connections.  Networks with 20% correlated bias inputs show little conditioned response 

except for connections from unit Ae1.  Fig 3B shows the activity in the entire Ae population 

aligned with the triggering Ae1 spike times (T).  The sharp peak at 0 ms represents the trigger 

spikes and the broad peri-trigger peak reflects the synchrony between Ae units imposed by 30% 

external correlated bias.  Fig 3B also shows the times of spikes in Column B (red); the large peak 

at 10 ms reflects the occurrence of stimulus pulses in B. 

Fig 3D shows the size of A→B EPs after spike-triggered conditioning at various spike-stimulus 

delays.  The peak in the curve reflects the effect of the STDP rule.  At long delays, the spike-

triggered conditioning effect approaches the small effect of tetanic stimulation applied to 

Column B (dashed line).  At “zero” delay the size of the EP is decreased (Fig 3D).  In this case the 

spike-stimulus delay is shorter than the conduction delay and connections from A to B become 

weaker.  This decrease in synaptic strength is consistent with the STDP rule and with 

experimental results obtained for corticospinal connections [28]. 

The original experiments of Jackson et al [22] could not document the conditioning effects by 

recording short-latency EPs because of stimulus artifacts, so instead measured conditioning 

effects indirectly by using cortical microstimulation to evoke EMG responses.  To simulate these 

experimental observations, the motor unit pools were activated by trains of cortical stimuli 

delivered at separate times to each column (Fig 4).  This simulation shows that after 

conditioning, stimulation of Column A now also evoked responses in the muscle of Column B, 

mediated by the strengthened A→B connections and as reported by Jackson et al (their figure 

2). 
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Fig 4.  Simulation of output effects on muscles before and after spike-triggered stimulation.  
Averages of rectified EMG responses evoked by repetitive stimulation of Column A 
(containing conditioning trigger unit), Column B (stimulus column), and Column C (control) for 
preconditioning (blue) and post-conditioning (orange) periods (cf. figure 2 in [22]).  For this 
simulation, inter-column connection probability was doubled to 1/3 and the correlated bias 
drive was set to 50%.  The test stimulus train was 1 mV, 25 pulses, 500 Hz delivered during 
intervals marked by black bars (the response delay is due to the 10 ms corticospinal 
conduction time).  Ordinate scale is in millivolts. 

 

EMG-triggered stimulation 

Cortical conditioning effects could also be produced in NHPs by triggering cortical stimulation 

from muscle activity [23].  To simulate these experimental results the trigger pulses were 

obtained from threshold crossings of multiunit EMG activity of Muscle A (Fig 5A).  The threshold 
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was chosen such that triggered stimuli were delivered to Column B at a rate comparable to that 

used for other conditioning methods (approximately 3000 conditioning stimulations over a 500 

second conditioning period).  This paradigm strengthened the synaptic connections from A to B, 

as shown by the connectivity matrix (Fig 5C) and by the A→B evoked potentials (Fig 5D).  The 

conditioning effect is explained by the computed histogram of spikes in the Ae units aligned 

with the threshold detection (Fig 5B).  This shows a peak in firing of A units that generated the 

coincident input to the motor units (blue curve) and that preceded the triggered responses in B 

(red peak). 

 

Fig 5.  EMG-triggered stimulation.  (A) A conditioning stimulus is applied to all units in 
Column B at a delay after threshold crossing (θ) in EMG of A motor units.  (B) Histograms of 
Ae and Be unit firing during conditioning aligned with EMG A threshold detection (0 ms).  (C) 
Connection strengths between pre and post synaptic units after conditioning.  (D) The 
average percent increase in the EPs evoked in Column B (orange) and C (blue) from 
stimulating A as function of delay of EMG-triggered stimulation. 
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Paired pulse stimulation 

Paired pulse conditioning [24,29] was simulated by stimulating Column A followed by 

stimulation of Column B at a fixed delay (Fig 6A).  The resultant connection strengths are shown 

in Fig 6C for a stimulus delay of 10 ms.  Conditioning effects were also documented by 

delivering test stimuli to Column A and measuring the average EPs in Columns B and C.  Fig 6D 

plots the change in amplitudes of the A→B EPs and A→C EPs as a function of interstimulus 

delay.  Consistent with the bidirectional STDP function, there is a decrease in the size of the EPs 

for negative conditioning delays (i.e. B stimulated before A), but this is shallower than the peak 

for positive delays because of the choice for the weakening parameter, which tended to keep 

synaptic weights small.  The histograms of unit firings shows the peak in A spikes produced by 

the stimulus in A (blue trace) and two peaks in B firing (red trace): the first peak is due to a 

synaptically relayed response to the A burst and the second is due to the delayed stimulus of B. 

For the same stimulus amplitude, paired pulse conditioning tends to be stronger than spike-

triggered conditioning (see Testable outcomes and Fig 10) and does not require correlated bias 

inputs, since the conditioning pulses themselves evoke strong correlated activity between A 

and B.  The conditioning effect is seen with far fewer conditioning stimuli than used for spike-

triggered conditioning, for the same stimulus intensity.  Our 500-second conditioning time 

yielded only 700 paired pulse conditioning stimuli, compared to over 3000 stimuli when using 

the spike-triggered conditioning method. 

In these simulations conditioning effects were obtained by delivering pairs of single pulses.  

However, in the physiological experiments it was necessary to use a triplet of pulses to obtain 

effects [24,29].  In the model conditioning with paired triplets of stimuli shows a more potent 

conditioning effect, which became evident for a range of lower intensities where single stimuli 

were insufficient (Fig 10). 
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Fig 6.  Paired pulse stimulation.  (A) Pairs of pulses delivered sequentially to A and B with 
fixed delay.  (B) Histogram of Ae and Be unit activity during conditioning aligned with times 
when first of the paired stimuli occurred (10 ms conditioning delay).  (C) Connection strengths 
after conditioning.  (D) Average percent increase in the evoked potential between the 
conditioned and unconditioned effect as a function of the interstimulus delay.  Insets show 
the shape of the average EP at conditioning delays of −30 ms and 10 ms.  Grey trace plots 
same for EPs in Column C. 

 

Cycle-triggered stimulation 

To simulate cycle-triggered conditioning [25], episodes of oscillatory beta activity were 

generated by modulating the bias input to Column B (episodes of 6 oscillations at 20 Hz 

occurred four times during each 10 second simulation time block).  The local field potentials 

from Column B were filtered with a 15-25 Hz band pass and when this filtered LFP exceeded a 

given level, the next zero crossing was either taken as a 0ᵒ phase (when rising through zero) or 

180ᵒ phase (falling through zero) to define the phase of the cycle trigger.  During conditioning a 

stimulus was applied on all units in Column A whenever the cycle trigger for the specified phase 
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occurred in B (Fig 7A).  To measure conditioning effects, we applied test pulses on Column A 

before and after the oscillatory episodes, as in the original experiments.  These test pulses 

could cause a certain amount of tetanic conditioning, but this was lower than the changes 

caused by the cycle-triggered conditioning. 

 

Fig 7.  Cycle-triggered stimulation.  (A) A stimulus is applied to Column A at a particular phase 
of local field potential oscillations in Column B.  (B) Post conditioning histogram of Ae and Be 
units aligned with stimulus trigger at 0 ms.  (C) Connection strengths after conditioning with 

cycle-triggered stimulation at 0 phase.  (D) Increase of the evoked responses as a function of 
stimulation phase.  Legend identifies traces for stimulated and recorded columns.  Dashed 
line shows A→B EP increase for tetanic stimulation on Column A with a rate approximately 
matching that for cycle triggered stimulation. 

 

As shown in Fig 7C, cycle-triggered conditioning at 0ᵒ phase shift increased connections from 

Column A→B and to a lesser extent the connections from Column A→C.  In addition, the B→A 

connections were reduced.  Cycle-triggered conditioning at 180ᵒ phase shift decreased 

connections from Column A→B and increased connections from Column B→A (not shown). 
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Fig 7B shows histograms of unit firings relative to the trigger for stimuli delivered at 0ᵒ phase 

shift.  The Ae units fired in response to the stimuli (peak at zero in blue curve).  The Be units 

show the broad oscillatory increase and response to the stimuli (red). 

Conditioning was also performed with stimuli delivered at other phases.  Fig 7D shows how 

evoked responses vary with conditioning phase for A→B, A→C, and B→A connections.  

Maximum evoked responses for A→B occurred at about −30ᵒ, which matches the phase 

difference between the bias input modulation and the resulting modulation in the filtered LFP 

of Column B.  Maximum B→A EP responses occurred at about 150ᵒ phase shift.  The least 

amount of response occurred with phase shifts between 90ᵒ (peak) and 270ᵒ (trough) for A→B, 

and −90ᵒ to 90ᵒ for B→A. 

Control for tetanic stimulation 

An important control for conditioning effects is the effect of a comparable amount of open-loop 

stimulation not triggered by preceding activity.  To reduce the effects of such tetanic 

stimulation, the amount of external bias drive and the area difference between the weakening 

and strengthening sides of the STDP curve were chosen such that tetanic stimulation, at rates 

similar to rates for conditioning protocols, did not cause large conditioning effects.  The results 

of tetanic stimulation are shown in Fig 8, for Poisson-distributed stimulation delivered to 

Column B during the conditioning period.  The connection matrices for tetanic stimulation show 

slight increases over the “no-conditioning” network in the connectivity from Column B to A and 

B to C (Fig 8A).  The changes in connectivity between columns as measured by EP amplitudes 

are illustrated in Fig 8B and plotted in Fig 8C as a function of stimulus frequency.  Tetanic 

stimulation of B has the greatest effect on connections from B for frequencies between 8 and 

16 Hz.  The EP increases for other connections are small or slightly negative (Fig 8B and C).  

Most of the conditioning protocols modified the A→B connections with triggered stimulation of 

Column B.  In these cases the conditioned A→B effects were clearly larger than the tetanic 

effect which had the opposite effect of decreasing A→B EPs.  For cycle triggered stimulation 

where Column A was stimulated, the conditioned effect was larger than the effect of tetanic 

stimulation of A alone (Fig 7D). 
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Fig 8.  Tetanic stimulation.  (A) Effect on connection strengths of tetanic stimulation of 
Column B at 5 and 9 Hz (intensity of 2.0 mA), compared to no stimulation.  (B) Examples of 
averaged EPs before and after tetanic stimulation of B at 9 Hz.  (C) Mean (over 10 randomized 
networks) of averaged EP changes produced by tetanic stimulation of B at different 
frequencies.  Legend identifies traces for test-stimulated → EP-recorded columns. 

 

Testable outcomes 

Importantly, our IF model can simulate variables and procedures that were not documented in 

the original physiological experiments.  Notably, the strength of synaptic connections in the 

model was documented by computing stimulus-evoked potentials (Fig 4D-7D and 8C), a test 

that could in principle be performed experimentally, but is technically difficult.  Another 

comprehensive measure of conditioning effects on synaptic strength is the sum of all the 

synaptic weights connecting one column to another.  There is no feasible physiological or 

anatomical experiment to measure these weights directly in vivo, but they can be readily 
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calculated from the model.  Significantly, Fig 9A shows that the computed weight changes 

closely track the changes in the EPs.  Moreover, the weights can be tracked with high temporal 

resolution, during and after the conditioning to document the induction and decay of the 

conditioned weight changes.  Fig 9B shows the time course of the weight changes in the A→B 

connections during and after a period of spike-triggered stimulation with STDP.  The stimulation 

is applied during the first 4 seconds of each 10-second time block.  The plot of the average time 

course over 50 blocks shows how the weights tend to increase during the stimulation and then 

decay towards their preconditioned state after stimulation is turned off. 

Another testable property that the model can predict is the relative efficacy of conditioning as a 

function of stimulus intensity and number, as shown for the spike-triggered and paired pulse 

paradigms in Fig 10.  The curve for spike-triggered stimulus pairs rises faster than the curve for 

spike-triggered single stimuli; this is partly due to the pairs acting as a higher intensity stimulus, 

but that does not entirely explain the higher asymptote achieved.  The curve for paired single-

pulse stimulation initially rises more slowly than that for spike-triggered single stimuli, but then 

surpasses it at 2 mV, our standard conditioning stimulation intensity.  The curve for paired 

triplet stimuli (which had to be used experimentally) rises much faster than that for paired 

single-pulse stimulation, revealing a stimulus range over which the triplets are more effective 

than single pulses.  The curves asymptote at high stimulus intensities, when most of the units in 

the stimulated column respond. 
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Fig 9.  Network weight measurements.  (A) Comparison between EP increase and mean A→B 
weight increase for conditioning with spike-triggered stimulation as function of spike-stimulus 
delay.  (B) Average evolution of A→B weights during and after 4 seconds of spike-triggered 
stimulation at 10 ms conditioning delay. 
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Fig 10.  Effect of conditioning stimulus amplitudes and trains.  Stimulating with pulse trains 
(33 ms interstimulus interval) instead of single pulses increases the efficacy of conditioning 
for spike-triggered stimulation (Spike Trig 2 vs 1) and for paired pulse conditioning (Paired 
Pulse 3 vs 1) at all stimulus amplitudes.  n is the total number of stimuli delivered during each 
simulation.  Running the Paired Pulse 1 conditioning longer (n = 3500 compared to n = 700) 
does not provide the same increase in efficacy as Paired Pulse 3 (n = 714) until efficacy 
approaches an upper limit at stimulus amplitudes ≥ 2.5 mV. 

 

Testable predictions for novel protocols 

Our IF model can also be used to predict outcomes of experiments not yet performed.  For 

example, it is possible to trigger a pulse of inhibition of Column B from action potentials of a cell 

in Column A, which could be achieved by optogenetic spike-triggered inhibition (Fig 11A).  The 

inhibitory effect was modeled as a negative deflection (-2 mV) to the slow decaying part of the 

membrane potential.  The results of this simulation show that the connections from A to B 

would be reduced (Fig 11D).  The trigger-aligned histograms in Fig 11B document the pairing of 

increases in Ae units with subsequent decreases in B units.  The time-course of conditioned 

reduction in connections as a function of spike-pulse delay roughly resembles the inverse of the 

increase with spike-triggered stimulation. 
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Fig 11.  Spike-triggered inhibition.  (A) Spikes in one unit in Column A (Ae1) trigger an 
inhibitory effect on all units in Column B.  (B) Perispike histogram of Ae and Be units.  (C) Post-
conditioning connectivity matrix for 10 ms delay.  (D) The standard network parameters yield 
a relatively mild EP decrease (orange curve).  A more active network with 45% correlated bias 
drive, a weakening value of 0.5, and a −3mV  stimulus produces a more robust post-stimulus 
inhibition (brown). 

 

A second untested conditioning paradigm involves triggering stimuli from threshold crossings of 

gamma range LFPs.  On the rationale that gamma LFP reflects multiunit activity, these 

threshold crossings should detect coincident spiking activity that should also produce plasticity.  

Fig 12 shows the effects of stimuli in B triggered from band-passed mid-gamma LFP in Column A 

(in 50-80 Hz range).  The histogram of Ae unit spikes aligned with the falling gamma threshold 

crossings (Fig 12B) shows a robust pre-stimulus peak in Ae units (and in LFP A) that generates 

the threshold crossing.  The increase in A→B connections is shown in both the connection 

matrix (Fig 12C) and in the size of EPs (Fig 12D).  Similar effects were found for triggers from 

high (80-100 Hz) and low range (30-50 Hz) gamma (Fig 12D).  Triggering from the rising slope of 
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the gamma activity is associated with a later peak in Ae activity (Fig 12B), consistent with a later 

latency and a smaller conditioning effect (Fig 12D) than triggering from the falling slope. 

 

Fig 12.  Gamma-triggered stimulation.  (A) Stimuli were triggered from threshold crossings of 
LFP filtered in the gamma frequency ranges shown.  (B) Histograms of Ae units (blue) and Be 
units (red) relative to triggers from falling and rising mid-range gamma filtered LFP in A.  Grey 
curve shows simultaneous LFP in A.  (C) Connection strength matrix for falling LFP filtered in 
mid gamma range (50-80 Hz).  (D) changes in EPs for rising and falling threshold crossings for 
different gamma frequency ranges.  Circled points used for histograms in (B). 

 

Relative efficacy of conditioning paradigms 

To compare the relative efficacy of different conditioning paradigms, the resulting change of 

the A→B connections was tested by the change in the EP in B evoked by stimulating A.  The 

results, plotted for different amplitudes of the conditioning stimuli, are shown in Fig 13.  The 

simulations were run with 30% correlated bias drive to the columns.  As a control for 

stimulation alone, the solid gray curve shows the effects of tetanic stimulation of Column B 

with exponentially distributed stimulation intervals, at the same average rate as the spike-



21 
 

triggered stimulation (blue curve).  Above 1.5 mV the other four paradigms all produce stronger 

effects than spike-triggered stimulation, probably because the stimuli involve larger numbers of 

Ae spikes.  In particular, triggering from EMG and gamma produce larger effects than spike-

triggered stimuli above 1 mA because they are selective for coincident Ae spikes (as shown in 

the histograms in Fig 5B and 12B). 

 

Fig 13.  Relative efficacy of conditioning paradigms.  Curves show increase in A→B EP as 
function of stimulus intensity using standard network parameters.  Tetanic stimulation was 
randomly spaced with rates approximating that for spike-triggered stimulation.  Paired pulse 
interval was 10 ms, same as the spike-trigger delay, while rising EMG and falling gamma 
trigger delay was 0 ms. 

 

Tetanic stimulation of Column B (grey solid curve) is the control for spike-, gamma- and EMG- 

triggered stimulation of B.  Tetanic stimulation of Column A (grey dashed curve) is the control 

for cycle-triggered stimulation of A (here performed at a phase of 0ᵒ in beta cycles).  Both 

tetanic curves are relevant to paired pulse conditioning. 

The conditioning effects asymptote at stimulus intensities above 2.5 mV, due to maximal 

activation of units in the stimulated column.  The asymptote for spike-triggered stimulation 

(blue curve) is lower than those of the other conditioning paradigms, but this was a function of 

the synchrony input driving the Ae units and could be increased by increasing the amount of 

synchronous relative to asynchronous input drive. 
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Strengthening disynaptic pathways 

The preceding conditioning paradigms focused on changes induced in monosynaptic 

connections.  The degree to which polysynaptic pathways can be modified would be of basic 

interest and clinical relevance for inducing targeted plasticity to treat lesions.  Disynaptic 

conditioning was investigated for paired stimulation of A and B in the absence of direct 

connections between A and B (Fig 14).  The conditioning paradigm is identical to that shown in 

Fig 6A for paired stimulation of intact networks, but now the most direct pathway between A 

and B is disynaptic, via Column C (Fig 14A).  The weight matrix shows clear increases in A→C 

and C→B connections after conditioning (Fig 14C).  This increase in the disynaptic path was a 

function of the intensity of the two stimuli, as shown by the increases in A→B EP size plotted 

for different combinations of intensity in Fig 14B.  To produce conditioned changes with pairs of 

single pulses the stimulation intensity of A had to be at least 3 mV, higher than the typical 2 mV 

used in other simulations.  This was likely necessary so that some tetanic conditioning from 

A→C would occur (as in Fig 13 Tetanic Col A).  However, tetanic stimulation of A alone did not 

produce a sizeable disynaptic EP (Fig 14B, B stim = 0).  The A→B EPs increase appreciably for 

conditioning with interstimulus delays above 8 ms (Fig 14D), about twice the minimal delay of 4 

ms for direct connections (Fig 6D). 

Although larger than standard stimuli were necessary to produce disynaptic conditioning with 

paired single pulses (Fig 14B), paired triplet stimulation with standard intensities of 2 mV did 

produce clear disynaptic effects (Fig 16). 
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Fig 14.  Disynaptic paired pulse stimulation.  (A) Circuit connections between columns with 
standard A↔B connections removed.  (B) Size of A→B EP as a function of stimulus intensity 
for the two pulses (for delay of 12 ms).  (C) Post-conditioning connection matrix (for A and B 
stimulus intensities of 3 mA and delay of 12 ms).  (D) Size of conditioned A→B EPs as function 
of paired pulse delays (A and B stimulus intensities of 3 mA). 

 

Cycle-triggered stimulation could also be used to strengthen disynaptic connections (Fig 15).  

The conditioning paradigm is identical to normal cycle-triggered stimulation shown in Fig 7A, 

but now connections between Column A and Column B have been removed (Fig 15A).  

Therefore, any EP in Column B caused by a stimulus in Column A must be mediated 

disynaptically, through Column C.  Oscillatory drive was applied only to column B (Fig 15B).  The 

weight matrix again shows that conditioning produced clear increases in A→C and C→B 

connections (Fig 15C).  The stimulation intensity had to be increased to 3.5 mV, more than the 

typical 2.0 mV used in other simulations.  This was probably necessary so that some tetanic 

conditioning from A→C would occur (as in Fig 13, Tetanic Col A).  However, tetanic stimulation 

of A alone did not produce a sizeable disynaptic A→B EP (Fig 15D, green line). 
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Fig 15.  Disynaptic cycle-triggered stimulation.  (A) Circuit connections between Columns A 
and B are removed.  A stimulus (CT) on Column A is triggered on phases of an oscillatory 
episode in LFP B.  (B) The oscillatory episode in Column B (starting at 0.5 sec) is produced by 
modulating the probability of external bias spikes to B with a sine wave (7 cycles at 20 Hz).  
(C) Post conditioning connection matrix shows absence of A↔B connections, and the 
strengthened A→C and C→B connections that mediate the A→B EP.  (D) Conditioned EP sizes 

for conditioning with different stimulation phases ().  In contrast to cycle-triggered 
stimulation with full networks, the B→A EP was slightly depressed and unmodulated with 
phase.  Inset shows A→B EP before (blue) and after (red) conditioning. 

 

Disynaptic A→B connections could not be strengthened with spike- or gamma-triggered A→B 

stimulation, nor with stimulation of B triggered from EMG of Muscle A, even with larger than 

standard stimulus intensities.  These paradigms did strengthen A→C connections, but they did 

not produce the necessary increase in C→B connections. 

The above tests involved disynaptic conditioning with A↔B connections deleted.  A related 

question is whether comparable disynaptic conditioning occurs in intact networks as well.  
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Intact networks conditioned with paired triplets using standard 2 mv stimuli (Fig 16A) showed a 

clear disynaptic bump in the A→B EP (Fig 16B, arrow).  Lesioned networks without A↔B 

connections that were conditioned with paired triplets (Fig 16C) showed a disynaptic A→C→B 

EP (Fig 16D) whose timing coincided with the delayed bump produced in the intact network.  

However, their amplitudes differed.  To measure the size of the disynaptic EP produced in the 

intact network we computed the A→C→B EP evoked with the A↔B connections removed for 

testing.  The disynaptic EP produced by conditioning the lesioned networks was about 1.6 times 

larger than the recovered disynaptic component of the EP in the intact networks, with the 

identical conditioning protocol. 

To investigate the reason for this difference we examined the sizes of disynaptic A→C→B EPs 

and the monosynaptic A→B and C→B EPs for the two networks.  To elucidate the effects of 

initial weight choices on these values, this comparison was done for 10 intact networks (each 

starting with different initial synaptic weights) and 10 lesioned networks that had identical 

initial weights except with A↔B connections deleted before conditioning (with paired triplets).  

Fig 16E plots the relative sizes of these EPs produced in the 10 networks.  The disynaptic 

A→C→B EPs in the intact and lesioned networks (blue points) are proportional, with a linear 

slope of 1.57.  The monosynaptic A→C and C→B connections (orange and black points) were 

also proportional, with slopes of 0.81 and 1.61, respectively.  The two dotted triangles connect 

three corresponding EPs for two initial conditions (the ones that produced the largest and 

smallest EPs).  The plots illustrate the variation in absolute sizes that can emerge from different 

starting points and also show that the sizes of the 3 EPs covary.  These plots show that the 

larger disynaptic EP in the lesioned network can be attributed to a larger increase in the C→B 

connections. 
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Fig 16.  Paired triplet stimulation with standard 2 mV stimuli.  (A) Intact network.  (B) A→B 
EP after conditioning intact network with 10 ms delay between paired triplets (red) and 
before conditioning (blue).  Arrow points to disynaptic component of EP.  (C) Lesioned 
network trained without A↔B connections but other connections identical with intact 
network in (A).  (D) A→B EP after conditioning lesioned network.  (E) Sizes of intercolumn EPs 
in 10 conditioned intact and lesioned networks, with different starting weights.  X→Y EP refer 
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to monosynaptic A→C and C→B connections (orange and black points) and disynaptic 
A→C→B EPs (blue points); for the conditioned intact network the disynaptic A→C→B EPs 
were obtained after removing A↔B connections.  Dotted triangles connect corresponding 
EPs from two starting conditions. 

 

Discussion 

Our IF model captures the experimental outcomes from four different conditioning paradigms 

experimentally investigated in motor cortex of awake NHPs.  A powerful feature of the model is 

to explore estimates of many variables that were not measured in the original experiments, 

such as changes in the connection matrices, sizes of evoked potentials (which measure the 

synaptic strength of inter-column connections), and peristimulus histograms of neural activity.  

Furthermore, the model predicts the outcomes of novel experiments not yet performed. 

In comparison, a previous neural network model used populations of Poisson firing units and 

STDP to analytically compute the population effects produced by spike-triggered stimulation 

[26].  That model replicated the experimental results on net changes in connectivity and 

showed that the amount of conditioning was dependent on the correlations between units.  

Their model predicted that conditioning efficacy would be greater when cross-correlation peaks 

were wider, as they typically are during sleep compared to waking.  In contrast, our IF model is 

based on simulating the synaptic connections between excitatory and inhibitory spiking 

neurons that integrate synaptic inputs to firing threshold.  Our IF network provides cellular 

resolution of conditioning effects and their dependence on network parameters and simulates 

many different conditioning protocols. 

A similar approach was used to model conditioning with spike-triggered stimulation in 

somatosensory cortex of NHPs [21].  That study examined the effect of spike-triggered and 

random microstimulation on firing rates and mutual information in S1.  A large network of 

biophysical units with STDP reproduced many of the global physiological findings.  In contrast, 

our smaller network of much simpler IF units was sufficient to replicate relatively detailed 

spatiotemporal measures of conditioning effects. 
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Other modelling studies have combined IF networks with STDP to investigate related issues.  

Adding a STDP rule to large populations of conductance-based units [12] led to the emergence 

of interconnected groups under steady-state conditions [17].  Our model had fewer units with 

predetermined connections between groups, and reached an equilibrium steady state under 

STDP before conditioning procedures were introduced.  Another large-scale cortical network 

model showed that realistic synaptic plasticity rules coupled with homeostatic mechanisms led 

to the formation of neuronal assemblies that reflect previously experienced stimuli [19]. 

Bono and Clopath investigated STDP and dendritic spike mechanisms in producing plasticity in 

biophysically realistic neural models [18].  Another study showed that STDP rules had to be 

augmented with mechanism for heterosynaptic competition to generate networks capable of 

producing sequences of neural activity [30].  On the behavioral level, a model of orbitofrontal 

networks of IF units with STDP learned the rules of goal-directed actions [20].  These studies 

investigated various functional issues, in contrast to our focus on mechanisms of synaptic 

plasticity. 

Differences between the IF model and physiological mechanisms 

It seems remarkable that our simple voltage-based IF model could replicate the results of many 

different physiological conditioning experiments.  This robust performance raises the question 

of where the model has limitations that would require further refinement.  There are several 

differences between the performance of our model and the original physiological conditioning 

experiments.  First, in the cortical spike-triggered stimulation experiments, not all site pairs 

developed strengthened connections [22,27].  This may simply be due to a lack of sufficient 

synaptic connections between those sites to strengthen.  However, this explanation would not 

apply to the original paired stimulation experiments [24], in which many pairs of sites did seem 

to have sufficient synaptic connections to mediate EPs, but these did not show conditioned 

changes.  Second, with paired stimulation in vivo a minimum of three pulses was required to 

produce conditioned changes [24,29].  In contrast, our IF model exhibited reliable conditioning 

even with pairs of single pulses, although triplet stimulation was substantially more potent than 

pairs of single stimuli over a range of intensities.  The need for triplet instead of single pulses in 
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vivo and the lack of conditioning effects for certain cortical sites remain to be better 

understood before these physiological observations can inform a change in the model. 

It seems possible that more sophisticated models, such as a network of biophysically more 

realistic units would help address some of these limitations.  For example, the conductance-

based units of Izhikevich capture biophysical properties that can replicate the complex firing 

properties of many types of cortical neurons in response to prolonged current injection [12,21].  

It will be interesting to use the conductance-based units with STDP to simulate the different 

conditioning paradigms investigated here.  This will require decisions about the number and 

connectivity of specific types of units in such a model as well as their biophysical parameters.  

The fact that our simple voltage-based IF network replicates the overall experimental 

observations may be related to two factors.  It may represent an effective and sufficient 

average of the different types of biophysical neurons involved in the in vivo experiments.  

Second, the different response properties of biophysical units that can be demonstrated with 

prolonged intracellular or synaptic drive may be less critical for the phasic events that underly 

these conditioning protocols. 

Our model used a STDP rule that required pre- and post-synaptic spikes to generate a change in 

synaptic connections.  Physiological synapses could also be strengthened when the 

postsynaptic cell is merely depolarized after arrival of the presynaptic spike [15].  This would 

represent a plasticity paradigm that does not require post-synaptic spikes.  This mechanism 

would contribute to conditioning with cycle-triggered stimulation, for example.  Intracellular 

recordings in vivo indicate that many cortical neurons show periodic membrane depolarization 

during beta oscillations that do not reach threshold for spiking [31,32].  Phase-locked 

stimulation would modify the strength of synaptic connections to these depolarized neurons as 

well as to spiking neurons.  This may explain the slight difference in the phase for maximum 

conditioning effects.  Our simulations did not track the depolarization level of each unit, so the 

results of this STDP mechanism remain to be investigated in a future study. 
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Parameter choices 

The performance of our IF model depends of course on the choice of parameters.  One choice 

involves the strength of baseline synaptic connections.  To capture the small unitary synaptic 

potentials between cortical neurons [33,34] the plasticity parameters chosen for our model 

tend to produce a steady-state network with small connections when no activity-dependent 

conditioning protocol is in effect.  This limits the effects produced by tetanic stimulation alone 

and makes conditioned increases in weights relatively robust.  However, it also limits 

conditioned decreases in weights, since the starting size for most weights is already small.  A 

possible future direction would be to develop a method to encourage a steady state of 

moderate weights so that both strengthening and weakening effects can manifest more 

equitably.  This might also allow for more effects to emerge from inhibitory units, which play 

very little role in the network simulations shown here.  We found that IF networks that were 

run without inhibitory units showed conditioning responses similar to networks that had many 

inhibitory connections. 

A second choice in our model was using the same STDP function for inhibitory and excitatory 

units.  The STDP function for inhibitory neurons has been found to vary, depending on the 

specific types of source and target neurons [13,15,35,36].  We decided to use the same STDP 

function for both, which has empirical support [37], and to leave the consequences for different 

functions for inhibitory units, such as symmetric functions, to be explored in another study.  

Moreover, our STDP rule is based on pairs of pre- and post-synaptic spikes; models with “multi-

spike” STDP interactions can produce different network dynamics [38]. 

A third choice in our model involved the relative amount of external correlated input bias. High 

amounts of correlated input can cause sufficient synchrony to strengthen connections from 

that column even in the absence of conditioning.  As the percent of correlated biases increases, 

the weakening portion of the STDP curve may be increased to prevent this effect from 

interfering with the manifestation of conditioning effects.  For example, in our networks, the 

weakening value of 0.55 showed a spontaneous conditioning effect with 50% correlated/50% 

uncorrelated bias inputs, but did not show this effect with our chosen 30% correlated biases. 
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In general, our choice of network parameters was guided by achieving realistic physiological 

performance.  Notably, the same set of parameters was used to simulate all four conditioning 

paradigms.  Network performance was generally stable for modest deviations from the chosen 

parameters.  The consequences of larger variations in different parameters would be 

interesting to explore but are beyond the scope of this report. 

Modeled connectivity and activity 

An informative use of the model is to simulate activity and network connectivity that were not 

measured in the original experiments but that elucidate associated mechanisms.  For example, 

calculating the EPs provides an easy and experimentally feasible measure of net connectivity 

between sites and can reveal its dependence on conditioning parameters like stimulus 

amplitude and delay, synchrony, etc.  The changes to connection weights themselves can be 

computed in the model (but not experimentally); these weights closely tracked the EP measure 

(Fig 9A).  The weights further revealed a better time-resolved prediction of the induction and 

decay of these synaptic connections (Fig 9B). 

A particularly useful insight from the model is the activity of relevant units around the stimulus 

trigger events.  Their stimulus-aligned histograms reveal why EMG-triggered and gamma-

triggered stimulation are such effective conditioning paradigms: they both select for coincident 

unit activity, as shown by the preceding peak in activity of A units (Fig 5B and 12B).  This peak 

preceding the stimulus-evoked post-synaptic activity in B is responsible for the strengthening of 

the A→B connections. 

Testable predictions 

A possible therapeutic application of closed-loop conditioning is to strengthen polysynaptic 

pathways as well as strengthen direct connections.  Such targeted plasticity could restore 

functional pathways lost to injury or stroke [39].  The model was used to examine conditioning 

of disynaptic links by performing A-B paired-pulse conditioning in a network without direct A-B 

connections and looking for development of A→C→B connections.  This did occur, as shown by 

development of relevant disynaptic evoked potentials after conditioning and by the 

connectivity matrix (Fig 14).  Similarly, cycle-triggered stimulation could also strengthen 
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disynaptic connections (Fig 15); however, this paradigm would be significantly more challenging 

to apply in vivo than paired stimulation.  Both paradigms involved sufficient stimulation of A to 

strengthen A→C connections.  The other 3 paradigms involved only stimulation of B and did not 

strengthen disynaptic A→C→B links.  Another significant prediction of the model is that 

disynaptic effects are conditioned more robustly between sites that lack direct connections as 

compared to sites that also have direct connections.  These simulations provide useful 

predictions of effective targeted plasticity paradigms and parameters to strengthen 

polysynaptic pathways. 

The model also predicts several conditioning paradigms that improve on methods used to date.  

Instead of spike-triggered single stimuli, the use of spike-triggered bursts of stimuli is more 

effective, increasing with the number of stimuli (Fig 10).  Second, gamma-triggered stimulation 

is more effective than spike-triggered stimulation because it detects coincident spikes that 

produce the gamma threshold crossing.  Importantly, gamma-triggered stimulation is 

experimentally much easier to perform in vivo because it does not require long-term isolation 

of single action potentials.  An important caveat here is that the model assumes that gamma is 

generated in a large number of A units that are synchronized and also connected to the B units.  

The efficacy of gamma-triggered conditioning would decrease if fewer units generating the 

gamma LFP in A sent connections to the stimulated units.  Preliminary tests of this paradigm by 

R. Yun (unpublished) indicate that conditioning effects are less robust in vivo in NHP motor 

cortex than in the model.  This indicates that the connectivity of our network, designed to 

separate the recorded, stimulated and control groups may be too simple to accurately predict 

experimental outcomes for more complex biological networks in which these functional groups 

are intermingled with many other connectivities. 

Concluding comments 

The simple IF spiking network described here has proven remarkably effective in capturing 

experimental results previously obtained in NHPs with four different conditioning paradigms, 

including three with closed-loop activity-dependent stimulation.  In addition to replicating the 

observed phenomena, the model also allows computation of underlying network behavior and 
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correlated changes not originally documented.  The model also makes significant predictions 

about protocols not yet investigated, including triggering bursts instead of single stimuli and 

gamma-triggered stimulation.  The success of these simulations suggests that a simple voltage-

based IF model incorporating STDP is sufficient to capture the essential mechanisms that 

produce targeted plasticity.  Further detailed comparisons with physiological experiments will 

likely inform development of models with more realistic connectivity and biophysical 

properties. 

 

Methods 

Integrate-and-fire network model 

The cortical network model is comprised of 240 integrate-and-fire units.  Each unit maintains a 

potential Vi(t) which represents the sum of the synaptic inputs from units with connections to 

unit i (Fig 1A).  Vi(t) is calculated at discrete time steps of 0.1 ms.  When Vi(t) exceeds a 

threshold θ, the unit “fires” and its spike function Ui(t) is set to 1 for that time step (Eq 3).  Each 

time a unit fires, its potential is reset to zero on the next time step and an output spike is 

initiated from that source unit to all its target units. 

The responses of the modeled units to spiking inputs represent the post-synaptic potentials 

(PSPs) of physiological neurons (Fig 1B).  The form of the PSP is calculated as the difference 

between two exponential decay functions as follows. 

𝑃𝑆𝑃(𝑡) = 𝑤(𝑒−(𝑡−𝑡𝑠𝑝𝑖𝑘𝑒)/𝜏𝑠 − 𝑒−(𝑡−𝑡𝑠𝑝𝑖𝑘𝑒)/𝜏𝑓), if 𝑡 ≥  𝑡𝑠𝑝𝑖𝑘𝑒  ; 0 otherwise 
(1) 

The time constants τs (slower decay) and τf were chosen to give reasonably shaped PSPs, rising 

rapidly from zero to a maximum, and then decaying more slowly back towards zero (Fig 1B).  

The parameter w is the connection weight -- this parameter is modified by the plasticity 

calculations.  A related parameter, the connection strength is measured by the PSP maximum, 

which represents the synaptic efficacy in voltage change, relatable to distance to threshold.  

The relation between the weight and strength depends on τs and τf (Fig 1B).  The calculation of 
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Vi(t) is greatly simplified by using the same value of τs and τf for all connections.  This allows Vi(t) 

to be represented by two leaky integrators Vs
i(t) and Vf

i(t) that decay with these constants (Eq 

4, 5); they both receive the same spiking input and reset with the same spike time function 

Ui(t).  Here the Euler method is used to estimate the exponential decay functions.  We let Ai(t) 

be the sum of all incoming spike activity to unit i at time t (Eq 6), and then calculate the unit 

potential Vi(t) and spike time function Ui(t) as follows. 

𝑉𝑖(𝑡) = 𝑉𝑖
𝑠(𝑡) −  𝑉𝑖

𝑓(𝑡) 
(2) 

𝑈𝑖(𝑡) = 1, if 𝑉𝑖(𝑡) >  𝜃;  0 otherwise 
(3) 

𝑉𝑖
𝑠(𝑡 + ℎ) = (1 – ℎ/𝜏𝑠) 𝑉𝑖

𝑠(𝑡) + 𝐴𝑖(𝑡),  if 𝑈𝑖(𝑡) = 0;  0 if 𝑈𝑖(𝑡) = 1 
(4) 

𝑉𝑖
𝑓(𝑡 + ℎ) = (1 – ℎ/𝜏𝑓) 𝑉𝑖

𝑓(𝑡) + 𝐴𝑖(𝑡),  if 𝑈𝑖(𝑡) = 0;  0 if 𝑈𝑖(𝑡) = 1 
(5) 

Each connection linking source unit j to target unit i at time t is defined by a weight wij(t).  Non-

existent connections assume a weight of 0.  Axonal plus dendritic conduction times are 

modeled as a global delay parameter d for all connections.  To provide additional background 

activity each unit also receives external input Ei(t) the sum of all external spiking activity arriving 

at unit i at time t (Eq 7).  Ai(t) is defined as follows: 

𝐴𝑖(𝑡) = 𝐸𝑖(𝑡) + ∑(𝑈𝑗(𝑡 − 𝑑) ∙ 𝑤𝑖𝑗(𝑡))

𝑛

𝑗=1

 

(6) 

where n equals the total number of units.  The units are subdivided into three populations 

called “columns”, representing recorded, stimulated and control sites (see below).  To provide 

background spontaneous activity, each column receives excitatory external inputs Ei(t) that are 

a combination of correlated inputs Ec
i(t) and uncorrelated inputs Eu

i(t). 

𝐸𝑖(𝑡) =  𝐸𝑖
𝑐(𝑡) + 𝐸𝑖

𝑢(𝑡) 
(7) 
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These inputs produce PSPs with the same waveform as other connections in the network, 

varying only in amplitude.  For each column, the correlated events occur with a given 

probability at each time step; every unit in the column receives the correlated input at a 

random time within a Gaussian distribution with a standard deviation of 3 ms.  Uncorrelated 

events occur with a separate independent probability at every time step for each unit.  The 

delivery probabilities of correlated and uncorrelated events can be modulated in time to 

simulate different dynamics of background activity (e.g. oscillations).  For our networks Ec
i(t) 

and Eu
i(t) assume a fixed connection weight at times of external spike delivery and are 0 

otherwise. 

Plasticity rule 

When spike-timing dependent plasticity is active, connection weights are modified based on 

the relative firing times of the target and source units.  The STDP Curve (Fig 1C) shows how 

much weight wij changes as a function of the difference in spike times between target unit i and 

source unit j.  The curve has two components: a strengthening portion for positive differences 

Δt between time of postsynaptic spike and arrival of presynaptic spike that will strengthen the 

weight, and a weakening portion for negative time differences that will weaken the weight.  

Each half of the STDP function was approximated with exponential decay functions similar to 

the PSP function except with longer time constants (as, af, bs, bf) and with amplitudes controlled 

by the training factor r and a weakening factor c. 

𝑆𝑇𝐷𝑃(𝑡) = {
𝑟(𝑒−𝛥𝑡/𝑎𝑠 − 𝑒−𝛥𝑡/𝑎𝑓), 𝑡 ≥ 0

−𝑐𝑟(𝑒𝛥𝑡/𝑏𝑠 − 𝑒𝛥𝑡/𝑏𝑓), 𝑡 < 0
 

(8) 

The weakening side of the STDP curve has a lower amplitude but decays more slowly than the 

strengthening side, and has larger overall area [13].  The same STDP function was used for 

excitatory and inhibitory synaptic connections, for which there is empirical support [37].  For 

further discussion of this and alternate STDP functions for inhibitory synapses, see Discussion. 

Choosing the right amount of weakening vs strengthening is important to the evolution of the 

network connections.  If the weakening factor is too small, the greater area of the 
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strengthening side of the STDP curve will eventually cause all weights to grow to a maximum 

limit.  If the weakening factor is too high, the greater area of the weakening side will push all 

weights strongly toward zero.  We chose a weakening factor of c = 0.55, so that the network 

sustained low weight values in the absence of any conditioning stimuli but showed noticeable 

increases in some weights when conditioning was applied. 

For a single weight wij and time difference between spikes of unit i and arriving spikes of unit j, 

the change in wij is equal to the value taken from the STDP function in Fig 1C.  To facilitate 

computation of weight changes, strengthening and weakening potentials are maintained for 

each unit similar to the way unit potential Vi(t) sums PSPs (except with no threshold crossing 

reset).  Sj(t) sums the strengthening side of the STDP curve for each source unit j using time 

constants as and af with input activity Uj(t - d).  Ti(t) sums the weakening side for each target 

unit i using time constants bs and bf with input activity Ui(t).  Thus, when a spike occurs, weight 

changes can be calculated with respect to previous spikes by taking signed and scaled values of 

Sj(t) and Ti(t) (Eq 15). 

𝑆𝑗(𝑡) = 𝑆𝑗
𝑠(𝑡) −  𝑆𝑗

𝑓(𝑡) 
(9) 

𝑆𝑗
𝑠(𝑡 + ℎ) = (1 – ℎ/𝑎𝑠) 𝑆𝑗

𝑠(𝑡) + 𝑈𝑗(𝑡 − 𝑑) 
(10) 

𝑆𝑗
𝑓(𝑡 + ℎ) = (1 – ℎ/𝑎𝑓) 𝑆𝑗

𝑓(𝑡) + 𝑈𝑗(𝑡 − 𝑑) 
(11) 

 

𝑇𝑖(𝑡) = 𝑇𝑖
𝑠(𝑡) −  𝑇𝑖

𝑓(𝑡) 
(12) 

𝑇𝑖
𝑠(𝑡 + ℎ) = (1 – ℎ/𝑏𝑠)𝑇𝑖

𝑠(𝑡) + 𝑈𝑖(𝑡) 
(13) 

𝑇𝑖
𝑓(𝑡 + ℎ) = (1 – ℎ/𝑏𝑓) 𝑇𝑖

𝑓(𝑡) + 𝑈𝑖(𝑡) 
(14) 
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The change to wij at a given time step is: 

𝑤𝑖𝑗(𝑡) = 𝑟 sgn (𝑤𝑖𝑗(𝑡)) (𝑆𝑗(𝑡) 𝑈𝑖(𝑡) − 𝑐 𝑇𝑖(𝑡) 𝑈𝑗(𝑡 − 𝑑)) 

(15) 

𝑤𝑖𝑗 (𝑡 + ℎ) = 𝐹 (𝑤𝑖𝑗(𝑡) + 𝑤𝑖𝑗(𝑡)) 

(16) 

The function F(w) clips excitatory weights to the range wmin ≤ w ≤ wmax, and inhibitory weights 

to the range -wmax ≤ w ≤ -wmin.  The standard parameter values used in simulations are shown in 

Table 1. 

Table 1.  Standard parameter values. 

Number of excitatory units in each column 40 

Number of inhibitory units in each column 40 

Unit firing threshold 5 mV 

Conduction delay between cortical units 3 ms 

Conduction delay to motor outputs 10 ms 

External input PSP size 350 μV 

Unit potential time constants τs, τf 3.2 ms, 0.8 ms 

External input rate 1800 spikes per second 

External input correlated/uncorrelated rate 0.3 

External input correlated event standard deviation 3 ms 

Training factor r 100 

Weakening factor c 0.55 

STDP strengthening curve time constants as, af 15.4 ms, 2 ms 

STDP weakening curve time constants bs, bf 33.3 ms, 2 ms 

Conditioning stimulus size 2 mV 

Maximum connection strength 500 μV 

Minimum weight wmin 1 

Probability of excitatory cortical connections 1/6 

Probability of inhibitory connections 1/3 

Probability of corticomotoneuronal connections 1/3 

Number of motoneurons in each column 40 

Motoneuron thresholds 5 to 6 mV 

Motor unit potential size 0.5 to 1.5 mV 
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Network topology 

Cortical units were grouped into three columns:  A, B, and C, as shown in Fig 2A.  Each column 

has 40 excitatory units (e) that project only positive weights, and 40 inhibitory units (i) that 

project only negative weights.  Excitatory units connect sparsely to all other units in the 

network and inhibitory units connect less sparsely to all cortical units within the same column.  

The probability of each possible connection is listed in Table 1.  Unit self-connections are not 

allowed.  Each column also has a simulated local field potential (LFP) which is the sum of all 

post-synaptic potentials occurring within a column. 

To provide background spontaneous activity each column receives an external excitatory bias 

input generated separately for each column.  Some bias inputs provide correlated spikes to 

each unit in a column, and others provide independent uncorrelated spikes to all units (C and U 

in Fig 2A), for a combined mean bias rate of 1800 spikes/sec to each unit.  The ratio of the 

number of correlated to uncorrelated spikes each unit receives can be modified to control the 

degree of synchronization within a column.  The mean bias rate can also be modulated over 

time, for example to generate oscillatory activity or simulate behavioral activation. 

To simulate experiments that involved recording muscle activity, the network includes pools of 

motor units driven by the cortical columns (Fig 2B).  Associated with each column is a pool of 40 

motoneurons that receive inputs from a third of the excitatory units of that column, as well as 

from uncorrelated external drive to simulate all additional inputs.  Consistent with the size 

principle [40], the pool included a range of small to large motoneurons, with increasing 

thresholds from 5 to 6 mV and increasing muscle unit potentials from 0.5 to 1.5 mV.  Multiunit 

electromyographic (EMG) activity was simulated by summing all the muscle unit potentials in 

the same manner as for unit PSPs and then filtering the result with a 100 to 2500 Hz bandpass 

filter. 

Fig 2C shows the simulated spiking activity of all units under steady-state conditions.  Also 

plotted are the corresponding LFPs for each column.  The coordinated bursts of activity are 

produced by 30% correlated external bias drive. 
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Conditioning stimulation 

The effect of electrical stimulation on a stimulated unit is modeled by a large and immediate 

deflection of its potential towards threshold, computed by adding a large stimulus pulse to the 

unit’s Vs
i(t), proportional to stimulus intensity.  The standard conditioning stimulus produces a 

step in Vi(t) of amplitude 2ma.  The standard testing stimulus for evoking EPs produces a step in 

Vi(t) of amplitude 3ma.  Normally a conditioning stimulus is applied to all units in a column 

simultaneously, causing many of them to fire.  This burst of spikes will evoke a measurable 

response in the LFP of other columns, called the Evoked Potential (EP).  The EP is a measure of 

the net synaptic strengths from the stimulated column to the recorded column.  The size of 

each EP is calculated as the difference between the amplitude of the LFP peak after the 

stimulus compared to pre-stimulation baseline LFP.  The average change in the EP amplitude 

produced by conditioning is quantified as the percent increase of the average EP amplitude 

after conditioning compared to before conditioning (Eq 17). 

𝐸𝑃 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 % =
 100 (𝑃𝑜𝑠𝑡 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑃 – 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑃)

𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑃
 

(17) 

Implementation 

The network has many modifiable parameters that can affect the outcome of a simulation 

(Table 1).  Temporal parameters are generally scaled in milliseconds.  The network runs in time 

steps of 0.1 ms to strike a balance between accuracy and computation time.  Connection 

strengths, stimulation amplitudes, and PSP-related parameters are scaled in microvolts to 

relate such values to physiological variables.  Connection strengths are initially small values (20 

to 60 percent of maximum) taken randomly from a uniform distribution. 

Most networks were run in 10-second time blocks for 2000 seconds of simulated time, divided 

into four periods of 500 seconds each (Table 2).  During the preconditioning period STDP is on 

and the network settles into an unconditioned steady state.  During the two testing stages 

before and after conditioning the STDP calculations are turned off, allowing graphs and tests to 
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be compiled while the network runs with static weights.  The conditioning paradigm is run 

during the conditioning period with STDP on. 

Table 2.  Sequential training periods. 

Period Preconditioning Precondition 
Testing 

Conditioning Post Condition 
Testing 

Plasticity On Off On Off 

Conditioning Off Off On Off 

 

Tetanic stimulation 

To control for the effects of stimulation alone, tetanic stimulation was performed with a 10 Hz 

Poisson spike train with an imposed 10 ms refractory period.  This can have a strengthening 

effect on connections from the stimulated column to the other two columns, and a weakening 

effect in the reciprocal directions.  These effects were minimized by selecting a weakening 

factor large enough to yield preconditioned networks with small weights that would readily 

show the effects of strengthening conditioning methods (Fig 8A).  There is substantial variation 

in the sizes of conditioned EPs (Fig 8B) due to differences in initial conditions, the randomness 

of the external input, and the magnitude of the training factor parameter.  However, averaging 

over a set of simulations using 10 different initial conditions yield a reliable measure of the 

effects of tetanic stimulation (Fig 8C).  These tetanic effects can support or oppose other 

conditioning methods.  For example, any paradigm to strengthen A→B connections that 

employs stimulation on Column B must overcome the tendency for tetanic stimulation on B to 

weaken those connections.  On the other hand, paradigms that stimulate Column A (like cycle-

triggered stimulation) should be evaluated relative to simple tetanic stimulation of Column A. 

Source code 

The Matlab source code for the IF network model is available on the website 

https://depts.washington.edu/fetzweb/ifnetwork.html.  This includes documentation and 

instructions on running the model as well as further explanation of effects of network 

parameters. 
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