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Abstract— Neuroscience is just beginning to understand the 

neural computations that underlie our remarkable capacity to 

learn new motor tasks. Studies of natural movements have 

emphasized the importance of concepts such as dimensionality 

reduction within hierarchical levels of redundancy, optimization 

of behavior in the presence of sensorimotor noise and internal 

models for predictive control. These concepts also provide a 

framework for understanding the improvements in performance 

seen in myoelectric-controlled interface (MCI) and brain-machine 

interface (BMI) paradigms. Recent experiments reveal how 

volitional activity in the motor system combines with sensory 

feedback to shape neural representations and drives adaptation of 

behavior. By elucidating these mechanisms, a new generation of 

intelligent interfaces can be designed to exploit neural plasticity 

and restore function after neurological injury. 

 
Index Terms—Brain-Machine Interface, Myoelectric control, 

Internal models, Motor learning, Associative plasticity  

 

I. INTRODUCTION 

AVID Marr famously identified three levels on which to 

describe information processing in the nervous system: 

implementation, algorithm and computation [1]. Interfacing 

with the implementation of the brain, single neurons, is now 

reliably achieved in invasive BMIs with chronically implanted 

electrodes, which allow individual action potentials to be 

recorded from stable populations of 10s to 100s of neurons 

over period of weeks to years [2]-[5]. Interfacing at the level 

of algorithm may be considered as a problem of „decoding‟ the 

neural representation. Numerous methods have been 

developed for this purpose, often based on assuming neural 

encoding schemes for movement parameters determined 

during off-line analysis [6]-[11]. However, restoring 

sophisticated sensorimotor function after neurological injury 

will require BMIs to interface also with high-level, on-line 

processes that allow the brain to optimize control of complex 

effectors with multiple, redundant degrees of freedom. These 

occur over a range of time-scales, and may only become 

apparent once a BMI is incorporated into the motor system 
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over many days [12]-[14]. With improved stability of chronic 

electrodes, long-term BMI experiments are revealing plastic 

changes in neural representations and affording new insights 

into these complex adaptive processes driven by sensorimotor 

interactions. In this review, we draw on recent theoretical work 

in optimal motor control and experimental studies of learning 

and plasticity in the context of brain- and myoelectric-

controlled devices to present a framework for interfacing at the 

computational level of the brain. 

II. THE BIOMIMETIC DECODING APPROACH TO BMI 

The conventional biomimetic decoding approach to BMI 

design has its historical roots in neuroscience experiments 

from the 1960s onwards that attempted to uncover the neural 

representation of natural movements. In an influential study of 

center-out reaching, Georgopoulos and colleagues [15] found 

that activity of individual neurons in primary motor cortex 

(M1) was modulated with the direction of arm movements. 

Neuronal firing rates exhibited cosine-shaped tuning functions 

of direction that were maximal for movements in the cells‟ 

preferred direction (PD). By recording the activity of multiple 

neurons with different PDs, a population vector could be 

calculated (by a weighted sum of individual vectors) that 

closely matched the actual direction of movement. One 

interpretation of these results is that populations of neurons 

„encode‟ information about direction, which is „decoded‟ by 

downstream circuitry (perhaps located in the spinal cord) in 

order to execute a movement. Using such logic, the decoding 

machinery can be replaced by a BMI algorithm to read out 

movement information for control of an artificial effector, for 

example a computer cursor or robotic arm [16]-[18]. The 

advantage of effective biomimetic decoding is the ability to 

confer immediate intuitive control without undue cognitive 

load [19]. 

Since the first demonstrations of biomimetic BMIs, 

considerable effort has been expended developing decoding 

algorithms of increasing sophistication [6]-[11]. Typically 

decoders are trained on neural data recorded during natural 

movements before „brain control‟ commences, and this 

relationship between neural activity and movement parameters 

(or neuromotor mapping) is preserved for control of the 

artificial effector. The requirement for a training dataset 

presents a practical problem for ultimate clinical applications 

with paralyzed patients, although motor imagery may provide 

a suitable substitute for actual movement [19]. A more serious 

problem is that an artificial effector is unlikely ever to 

reproduce the rich sensory and proprioceptive feedback 
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provided by a real limb which influences the motor system at 

multiple levels [20-21]. It is therefore unlikely that neuromotor 

relationships derived from natural movements will be optimal 

under the deprived sensory conditions afforded by a BMI. This 

may explain why the quality of off-line decoding performance 

is rarely matched by on-line performance, which has been 

likened to the movements made by deafferented patients [22], 

particularly with regard to the lack of fast, on-line correction 

of errors. Unlike the smooth, ballistic trajectories of natural 

limbs, movements of a BMI often comprise discrete segments, 

with trajectory deviations corrected only after delayed visual 

feedback [23]. These observations have motivated attempts to 

restore proprioceptive feedback artificially, for example via 

microstimulation of sensory cortex or thalamus [22], [24], 

although such an agenda may present an even greater 

challenge than efferent decoding. Furthermore, a distinction 

should be drawn between errors that arise due to external 

sources of noise (i.e. uncertainty about the state of the limb or 

the environment it interacts with) and errors arising from 

internal sources of noise (due to the inadequacy of decoding 

from a limited population of motor cortex neurons). External 

sources of noise are fundamentally unpredictable, and 

therefore generate errors that can only be corrected through 

appropriate feedback. By contrast, internal sources of noise 

can in principle be monitored and compensated for on-line 

even in the absence of feedback. 

Another fundamental issue that has received surprisingly 

little attention within the BMI community is the validity of the 

primary assumption underlying the biomimetic approach, 

namely that movement parameters are meaningfully and 

consistently encoded by the firing rates of M1 neurons at all. 

Indeed the recent history of movement neuroscience may be 

viewed as a steady retreat from this idea [25]-[28], from 

debates over „muscles versus movements‟ [29]-[33] to the ever 

expanding range of parameters found to co-vary with neural 

activity in primary motor cortex [26], [27]. On the one hand, 

the lack of a specific „encoding‟ scheme does not render 

„decoding‟ impossible. Indeed, over forty years ago Humphrey 

and colleagues [34] showed that the correct choice of weights 

allowed them to decode from the same set of neurons either 

force, displacement or their temporal derivatives during 

repeated wrist movements (see also [18]). On the other hand, 

without principled assumptions about what parameters are 

encoded, there is no reason to expect any decoder to 

generalize beyond that sub-space of movements sampled 

within the training set. Thus, we should not be surprised to 

learn that neuromotor mappings derived from an instructed 

center-out task do not generalize to freely-made movements 

[35], [36], or that the distinct neural pathways subserving 

postural control, goal-directed movements and on-line 

trajectory corrections may employ different encoding schemes 

[27], [37], [38]. Therefore, while features of ballistic 

movements to targets made during training phases can be 

accurately fitted off-line, these decoders may be inappropriate 

for fast, on-line corrections of errors arising from central 

sources of variability in neural command signals. 

III. THE BIOFEEDBACK APPROACH TO BMI 

An alternative conceptual approach to BMI can be traced 

from early biofeedback experiments in which subjects were 

trained to volitionally modulate the firing rate of neurons [39], 

[40]. Typically, these experiments required subjects to learn 

arbitrary mappings between neural activity and a feedback 

signal (visual or auditory) in order to achieve a reward. An 

important early question was the degree of flexibility to 

associate or dissociate two signals. Thus, Fetz and Baker [41] 

showed that monkeys could learn within minutes to 

differentially activate neighboring motor cortical neurons to 

drive a biofeedback meter arm to the reinforcement target.  

Furthermore, the activity of cortical neurons and four groups 

of forearm muscles could also be readily activated in various 

combinations [42].  In particular, the activity of neurons and 

consistently coactivated forearm muscles could be dissociated 

when the monkey was rewarded for such patterns. More 

recently bidirectional dissociation has been demonstrated for 

corticomotoneuronal (CM) cells and their target muscles, 

which normally have tight correlational linkages [43]. This 

degree of flexibility indicates that the specific neuromotor 

mappings that subserve natural movements are unnecessary for 

learned BMI control. Moreover, volitional control could 

exploit a larger population of neurons than those identified by 

traditional biomimetic decoding methods [44]. 

Recently, Ganguly and Carmena [13] have extended this 

approach to a two dimensional BMI decoder. Importantly they 

used a subset of recorded cells which showed stable activity 

over a period of up to 20 days. This afforded the animal time 

to practice over several days and consolidate a stable neural 

representation of a biomimetic BMI. Interestingly, the animal 

was then able to learn a new, randomized neuromotor mapping 

based on the same set of neurons, and even to switch readily 

between the two when required. 

While biomimetic and biofeedback BMIs can be seen as 

contrasting approaches, it should be acknowledged that few 

BMI groups actually fall into such extreme positions. The 

pioneering closed-loop decoding studies [16]-[18] already 

recognized the importance of learning mechanisms to optimize 

BMI control. Nevertheless, this conceptual distinction is 

relevant to how BMIs are envisaged to relate to normal motor 

function. A biomimetic BMI may be conceived of as a 

„prosthesis‟ to restore (as seamlessly as possible) function lost 

through injury, whereas a biofeedback BMI represents a „tool‟ 

that the brain has to learn to use in a new way. Although such 

tools can replace a lost function, they may also have broader 

applicability in affording new or enhanced abilities to their 

user, or as a rehabilitation mechanism for training new neural 

circuits to compensate after injury [12], [45], [46]. 

IV. INTERNAL MODELS FOR ARM MOVEMENTS AND BMIS 

To understand how feedback drives learning in the BMI 

paradigm, it is useful first to consider the computations that 
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must be performed by the motor system during natural 

movements. Human reaching movements are typically fast, 

accurate and characterized by stereotyped features such linear 

trajectories and bell-shaped speed profiles [47]. It is 

commonly accepted that such movements cannot be generated 

by simple feedback control, due to delays in sensory 

information and the need to co-ordinate muscles acting across 

different joints of the limb [48]. Instead the motor system 

requires advanced knowledge of the kinematics and dynamics 

of the limb and environment; this knowledge is often described 

as an internal model. An „inverse model‟ describes the 

transformation from desired states of the environment to motor 

commands (Figure 1B) and could generate feed-forward, goal-

directed movements without the delays incurred by feedback. 

However, inverse models are in general ill-posed, one-to-many 

mappings due to multiple levels of redundancy in the motor 

hierarchy (Figure 1A). Whenever a particular goal is specified 

(for example an object to reach for), we are confronted with a 

wealth of potential choices concerning how best to achieve it. 

There are multiple trajectories that the hand could follow to 

reach the goal, and any given trajectory could be generated 

using multiple patterns of joint angles and muscular 

contractions (due to redundancy in the musculoskeletal 

system). A further level of redundancy results from the 

massive convergence and divergence within the corticospinal 

pathway [49], which allows a particular set of muscle 

activations to be achieved by many different activity patterns 

distributed across the population of cortical neurons.  

By analogy with natural movements, the ability of subjects 

to learn feed-forward control of a BMI requires the acquisition 

of an internal model of the neuromotor mapping between a 

desired goal state (e.g. target location) and the neural control 

signals required to achieve that state. As with natural 

movements, in general this inverse problem is ill-posed due to 

the dimensionality reduction from control to task spaces. If 

100 neurons control the position of a cursor in two dimensions 

then any given target can be reached by a manifold of potential 

solutions within the space of neural firing rates. 

Accurate control either of natural arm movements or a BMI 

therefore involves two distinct problems: (1) learning the 

relationship between motor commands and their effect on the 

world, and (2) choosing from the manifold of all possible acts 

that could achieve a desired goal the particular solution that is 

best. These problems are separated explicitly within the 

framework of optimal feedback control [50]. In this scheme, 

the motor system learns a „forward‟ model (which predicts the 

peripheral state based on a copy of the efference command) 

and a feedback policy that operates on task-relevant 

dimensions of the state-space (Figure 1C). Acquiring a 

forward model is then a well-posed problem that can be 

achieved by self-supervised mechanisms and may facilitate 

subsequent optimization of the controller. This theoretical 

framework has the additional advantage that internal 

predictions based on efference copy can be combined with 

available sensory feedback in generating an estimate of the 

current state. However, while optimal feedback control 

explains several features of natural movements, distinguishing 

the relative contributions of inverse models, forward models 

and sensory feedback remains an unresolved issue. 

V. OPTIMAL CONTROL OF A BMI 

Irrespective of how natural movements are controlled, their 

repeatable kinematic profiles have been interpreted at the 

computational level as the optimization of behavior within the 

constraints of the redundant motor system based on some 

additional criterion, e.g. smoothness [51], torque change [52] 

or inaccuracy due to motor noise [53], [54]. Optimal control 

theory can be formulated mathematically by defining a cost 

function, and selecting a control policy to minimize that 

function [55], [56]. By analogy, we may suppose that 

acquiring optimal control of a BMI involves minimizing some 

cost function within the constraints imposed by the decoding 

scheme. Experimental studies have described a variety of 

changes in the tuning functions of individual neurons during 

brain-control [16], [18], [57], [58]; reviewed in [14]. To what 

extent can these disparate results be explained by a single cost 

function? One possibility is that the brain tries to limit the 

Fig. 1.  A. Schematic representation of multiple levels of redundancy within 

the motor system. B. Generating optimal movements requires advance 

knowledge of the environment. Here an inverse model converts visual target 

information into a feed-forward motor command to drive a BMI. C. Optimal 

feed-back control uses a forward model to generate predictions based on a 

copy of the motor command. This prediction can be combined with sensory 

feedback to form a state estimate that drives movement through a feedback 

controller. 
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amount of effort required to make BMI movements, for 

example the metabolic cost of driving neurons to high firing 

rates. This is consistent with an overall decrease in firing rates 

with development of BMI control seen in some studies (e.g. 

[18], [58]). Alternatively, given the limited accuracy of BMI 

systems, it may be that minimizing the influence of neural 

noise on effector movements is critical for optimizing 

performance [59], [60]. The minimization of overall motor 

error has been used to explain cosine tuning of muscles during 

natural movements [54], [61]. However the extension of this 

approach to BMI paradigms is not straightforward since the 

signal-dependence of neural noise is hard to characterize and 

unlikely to be statistically independent across the population 

[61], [62]. In general, it seems likely that the brain attempts to 

minimize some combination of effort and inaccuracy with the 

relative contribution of each depending on particular 

experimental circumstances. 

VI. INVESTIGATING LEARNING USING MYOELECTRIC-

CONTROLLED INTERFACES 

To explore the ease with which the brain optimizes behavior 

under novel neuromotor mappings, Radhakrishnan and 

colleagues [63] developed a myoelectric-controlled interface 

(MCI) mimicking the dimensional reduction problem faced 

during BMI control. Rectified and smoothed EMG activity 

from six hand and arm muscles was mapped onto a two-

dimensional visual task space through a linear combination of 

vectors aligned to a direction of action (DoA) for each muscle. 

In what follows it will be important to distinguish the DoA 

(also referred to as the „decoded PD‟ [64]) from the preferred 

direction (PD) of individual units (neurons in BMI studies, or 

muscles in MCI studies) defined by the peak of the tuning 

function of activity with respect to actual cursor movements. 

The DoA is determined by the particular decoding algorithm 

chosen by the experimenter, while the PD is measured 

experimentally from the subjects behavior. In the case of 

Fig. 2.  A. Learning curves for MCI performance. Average trial time reaches a comparable level irrespective of whether the decoding algorithm is intuitive 

(muscles act on the cursor in directions that are consistent with their action on the limb) or non-intuitive (muscles act in random directions). By the end of a 

single training session, subjects make fast, straight movements to the target. Adapted from [63]. B. Learning curves for BMI performance with the same neural 

population. Average trial time decreases over successive days for two monkeys. In this case the decoding algorithm was biomimetic (intuitive). Subsequent 

training on a randomized (non-intuitive) decoder required several more days to be optimized (not shown; see Fig. 6 in [13]). Adapted from [13]. C, D. Proposed 

model for learning MCI and BMI control involves acquiring the mapping between a copy of the efferent command signal and task-space feedback provided by 

the interface. 
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biomimetic decoding, the DoA is chosen to be the same as the 

PD during natural hand movements in space, but this does not 

have to be the case. Reference [63] compared such intuitive, 

biomimetic control (in which DoAs were aligned with the 

action of each muscle on the hand), with „nonintuitive‟ control 

in which DoAs were assigned randomly. Although 

performance was initially poorer under nonintuitive 

arrangements, after 200 practice trials (~ 30min) performance 

reached a plateau comparable to control under the intuitive 

mapping  (Figure 2A). After training, tuning functions (muscle 

activity as a function of cursor movement) were cosine-shaped 

with a PD that aligned to the DoA in cursor space. Such broad 

tuning functions are consistent with the minimization of 

position error in the presence of signal-dependent muscle noise 

[54], [61]. Further experiments that manipulated the noise 

level in a subset of muscles showed a relative decrease in use 

of those muscles, again suggesting an accuracy constraint [63]. 

Importantly, after training these tuning functions emerged 

early in the movement, indicative of feed-forward control 

based on an appropriate predictive internal model. 

The apparent ease with which subjects could learn this task 

is in contrast to the longer time-frame (days) required to learn 

BMI control in animal studies [13] (Figure 2B). One 

explanation could be the presence of proprioceptive 

information about the limb in an MCI setting, even though the 

arm is restrained and actual movement is minimal. However 

degrading sensory signals with randomly amplitude- and 

frequency-modulated vibration of the hand and arm did not 

affect the rate at which MCI learning progressed [63]. We 

suggest that proprioception is unnecessary for MCI tasks since 

the brain has access to information about the motor command 

via efference copy. Acquiring an internal model of the MCI is 

then equivalent to learning the mapping between the efferent 

command and its consequence in the task space (Figure 2C). A 

similar process may underlie learning in BMI contexts when 

proprioceptive feedback is unavailable (Figure 2D). In 

principle, feedback about the task space may be provided in 

any modality and exploiting relatively direct proprioceptive 

channels into the motor system may be advantageous [65]. 

However, the key difference between MCI and BMI tasks is 

the level of efference copy onto which this maps. For an MCI 

task, the mapping is at the level of muscle activity, whereas in 

a BMI the task space maps onto the activity of individual 

neurons, which is lower in the hierarchical representation of 

Figure 1A. 

VII. HIERARCHICAL REMAPPING: A UNIFYING FRAMEWORK 

FOR MCI AND BMI EXPERIMENTS? 

Further insight into the mechanisms of internal model 

acquisition comes from experiments in which a previously 

learned BMI or MCI decoder is subject to specific 

perturbations [64], [66]. These experiments deliberately 

decouple the DoA of units (neurons or muscles) from their 

preferred direction with respect to arm movements. Again, the 

DoA is determined by the experimenter, while the PD (with 

respect to movements of the cursor) is measured empirically. 

Since the mapping from units to cursor space is redundant, 

multiple different strategies can compensate for any 

perturbation so subjects‟ particular choice is informative of 

their expectations about the causes of errors. Jarosiewicz and 

colleagues [64] examined three such strategies in response to 

rotational perturbation of the DoAs of 25% or 50% of cortical 

units: reaiming, reweighting and remapping (Figure 3A). 

Reaiming may be described as aiming for an imaginary target 

repositioned in the task space so as to compensate for the 

overall rotation, although this strategy need not be explicit 

[67]. In any case, when the activity of units is plotted as a 

function of the direction of cursor movement towards the 

actual target, reaiming appears as a consistent rotation of the 

PD of all units relative to their old DoA as if the perturbation 

were a global visuomotor rotation (note that since this applies 

to all the units, the magnitude of this rotation is less than the 

actual rotation applied to the perturbed units). However, this 

strategy requires an overall increase in activity (effort) since 

the new PD of units is inappropriate for the direction they 

actually act on the cursor (the perturbation in fact only affects 

some of the units). Reweighting is a local strategy in which the 

activity of perturbed units is selectively reduced. However, this 

strategy is also sub-optimal since subsequent control uses only 

the unperturbed subset of units and will therefore be less 

accurate. Local remapping describes the selectively rotation of 

the PDs of rotated units to reflect their new DoA; the tuning 

functions of remaining units are unchanged. This strategy 

minimizes both effort and inaccuracy since all units continue 

to contribute to control and are maximally active for 

movements aligned to the new direction they act on the cursor. 

Reaiming and remapping therefore reflect extremes of a 

spectrum ranging from global, sub-optimal to local, optimal 

strategies. While [64] found some evidence of local 

remapping, the observed PD changes for unperturbed units 

also indicated a large contribution of global, sub-optimal 

reaiming to the adaptation process.  

We have recently applied similar perturbations in the MCI 

setting by rotating the DoA of a subset of muscles [66]. In 

contrast to BMI experiments, we saw rapid remapping at the 

level of muscles, with PDs evolving to reflect the new DoAs 

within about 30 min while the PD of unperturbed muscles was 

unchanged. We suggest the difference in these results may be 

resolved by considering the motor hierarchy represented in 

Figure 3B. Since there is redundancy at each level, remapping 

at any one level may be achieved by a strategy that is either 

global or local at the level beneath. We propose that 

remapping is hierarchical such that control is optimized at 

progressively lower levels with time (Figure 3B). Therefore 

the time required to adapt to a perturbation will depend on the 

level within the hierarchy at which it acts. A globally-

consistent perturbation such as visuomotor rotation is learned 

quickly (typically around 20-50 trials). This would correspond 

to a prior expectation that environmental changes act on the 

body as a whole. In response to a perturbation of individual 
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muscle DoAs in an MCI task, subjects‟ behavior approaches 

optimality at the level of muscles after about 100 trials [66]. 

This hierarchical scheme can be extended to incorporate 

remapping at the neural level; the results of [64] suggest that 

such a process is incomplete within a single session. Transient 

increases in tuning depth reported early in brain control [60] 

may also reflect sub-optimal, global reaiming or reweighting at 

the neural level. The results of Ganguly and Carmena [13], 

however, suggest that after sufficient practice over several 

sessions, optimal remapping at the level of individual neurons 

is possible. 

The hierarchical remapping framework may also help 

explain why some BMI experiments report spontaneous 

changes or cessation of overt arm movements after extended 

periods of brain control [16], [18], [57]. Since only a small 

proportion of motor cortex neurons will contribute to any 

decoder, activation of the remaining population may be 

unnecessary for control. Recently, a reduction in the tuning 

depth of neurons that did not contribute to a BMI decoder has 

been reported [58], consistent with local remapping, but this 

occurred only late in the learning process after the monkey 

achieved proficiency. As cortical activity is optimized to the 

level of the individual neurons controlling a BMI, the 

population signal controlling activity at the level of muscles 

may no longer be appropriate or sufficient to move the limb. 

This is particularly advantageous if the motor system aims to 

minimize the overall effort. Note however that if accuracy is 

the more important factor, there may be no penalty for 

concurrent modulation of neurons that are not associated with 

brain control, which may explain the persistence of residual 

limb movements reported in other experiments [23]. 

The hypothesis of hierarchical remapping requires further 

Fig. 3.  A. Three (out of many) strategies that can be used to compensate for local rotational perturbation to a MCI or BMI mapping. The plots show the activity 

of representative units as a function of target direction relative to the original DoA (before a perturbation occurs). Tuning functions are assumed to be cosine-

shaped, initially peaked at the DoA (gray line). Plots show predictions of three strategies (reaiming, reweighting and remapping) after a local perturbation in 

which the DoA of a subset of units rotates (indicated by arrows beneath the abscissa). Tuning functions for rotated units (solid line) and non-rotated units 

(dashed line) are shown following perturbation. B. Schematic of the hierarchical remapping framework. Remapping progresses from global to local levels of the 

redundant motor hierarchy. Therefore optimal adaptation to perturbations at a high level (e.g. visuomotor rotation) occurs before adaptation at lower levels (e.g. 

after local perturbation of BMI decoders). 
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experimental testing to establish its validity. Nevertheless, 

theoretical considerations of redundancy suggest some such 

process must occur for the brain to be able to learn anything. 

In response to a global error signal, the brain is faced with a 

multitude of possible sources at the neural level. An 

unstructured search through this high-dimensional space would 

be impossibly inefficient. BMI remapping experiments like 

those in [13], [58] and [64] reveal the route by the brain 

eventually finds optimal solutions to these neuronal „credit 

assignment‟ problems. 

VIII. ROLE OF HEBBIAN PLASTICITY IN NEURAL REMAPPING 

Developing successful neuroprostheses will require 

interfacing with the brain on all three of Marr‟s levels. Here 

we have suggested that concepts derived from computational 

level descriptions of natural movements such as dimensionality 

reduction, cost functions, internal models and optimal 

feedback control may be usefully applied to the problem of 

learning to control a BMI. But because BMIs also interface 

directly with the implementation of the brain (individual 

neurons) they afford new possibilities for bridging these levels 

by relating neural activity during learning with the changes in 

neural connectivity and subsequent behavioural improvement. 

Donald Hebb [68] proposed that the efficacy of neural 

connections is enhanced when there is a persistent causal 

relationship between pre- and post-synaptic activity. We 

demonstrated such plasticity with a recurrent BMI that used 

endogenous activity recorded from M1 in a freely-behaving 

monkey to control intracortical microstimulation (ICMS) of a 

second site [12]. Continuous pairing of action potentials 

recorded at one site with stimuli delivered to a second 

electrode caused changes in the motor representation at the 

recording site consistent with a strengthening of connections to 

those cortical or downstream sites activated by stimulation. 

Plasticity could only be induced when stimuli were delivered 

within ~50 ms of the triggering spike, consistent with a 

mechanism of spike-timing dependent plasticity [69]. Similar 

Hebbian plasticity has now been demonstrated more directly 

for primate corticospinal connections. Using action potentials 

of CM cells to trigger intraspinal stimuli near the terminals of 

these cells during 20+ hours of free behavior led to clear 

increases in the sizes of post-spike effects obtained in spike-

triggered averages of EMG activity [70]. These plastic 

changes also depended on the interval between spikes and 

stimuli, consistent with spike-timing dependent plasticity. A 

third example of such plasticity has been reported for spike-

triggered stimulation of cortical sites in freely behaving rats 

[71]. 

Can the associative plasticity mechanisms revealed by these 

recurrent BMIs help to understand remapping observed in 

biofeedback BMI experiments? In a recurrent BMI, neural 

recordings cause electrical stimulation of a second site, 

whereas in biofeedback BMIs, neural recordings cause 

resultant sensory feedback. If associative plasticity occurs as a 

result of consistent causal relationships, then plasticity may 

occur at any sites receiving convergent input from both an 

efference copy of the command signals and resultant sensory 

representations. In simplistic terms, this may be precisely what 

is required in order to learn an internal model of the 

neuromotor mapping (Figure 2D). 

If activity-dependent plasticity underlies changes in 

behavior during learning then plasticity induced artificially 

should also have behavioral consequences. Reference [72] 

provides one recent demonstration of this in rats, by examining 

the perceptual threshold for detecting ICMS after pairing with 

another site. Reference [73] used a non-invasive paired-

stimulation protocol in humans to induce corticospinal 

plasticity and produce a mismatch between subjects‟ perceived 

and actual force production. These studies provide a small 

glimpse of the future possibilities afforded by BMI 

technologies. Long-term, recurrent interfaces between 

neuronal populations and sophisticated BMI decoding 

algorithms provide an unprecedented opportunity to shape 

neural representations and connectivity through activity-

dependent mechanisms. In combination with a computational-

level description of motor learning, these technologies may 

allow the formation of new hybrid circuits to replace or 

enhance damaged pathways and restore function following 

neurological injury.  
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