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Traditionally, the neural control of movement has been studied by
recording cell activity in restrained animals performing repetitive,
highly trained tasks within a restricted workspace. However, the
degree to which results obtained under these conditions are valid
during natural, unconstrained behavior remains unknown. Using an
autonomous, implantable recording system, we examined the relation-
ships between the firing of motor cortex cells and forearm muscle
activity in primates under three behavioral conditions: performance of
a conventional torque-tracking task, unrestrained behavior, and natu-
ral sleep. We found strong correlations over long periods of daytime
activity, suggesting a consistent relationship between cortex and
muscles across the repertoire of awake behavior. The range of corre-
lation values was comparable during task performance, but many
individual cells exhibited significant differences across conditions.
During the night, phases of sleep were associated with a cyclical
pattern of cell and muscle activity. Across the population, the strength
of cell-muscle correlations was related to preferred direction for
daytime but not nighttime activity. The relationship of cells to behav-
ior remained consistent over periods of several weeks. These findings
extend the interpretation of results obtained under constrained condi-
tions and are relevant to the development of neural prostheses for
restoring natural movements to patients with motor deficits.

I N T R O D U C T I O N

Since the pioneering work of Evarts (1964), extracellular
recordings of action potentials in awake primates have greatly
advanced our understanding of the neural control of movement
and may eventually lead to the development of neural prosthe-
ses for patients with motor deficits (Donoghue 2002). The
firing rate of motor cortex cells has been related to a variety of
movement parameters including direction (Georgopoulos et al.
1982), force (Cheney and Fetz 1980; Evarts 1968), velocity
(Moran and Schwartz 1999), final posture (Aflalo and Graziano
2006), muscle activity (Holdefer and Miller 2002; McKiernan
et al. 1998; Townsend et al. 2006), and combinations of these
(Thach 1978). However, the traditional techniques for sensing,
amplifying, and recording action potentials have limited pre-
vious studies to artificially constrained behavior. Typically
animals sit in a chair, often with head position fixed and limbs
restrained, performing highly trained, stereotyped movements
within a restricted workspace. Moveable microelectrodes ad-
vanced into the cortex are connected with cables to large,

rack-mounted amplifiers and recording equipment (Lemon
1984).

Constrained experimental paradigms offer the methodolog-
ical advantage of controlled movements under conditions that
can be systematically varied but may be unrepresentative of
natural behavior. Furthermore, stereotyped motion imposes
correlations between movement parameters, which could lead
to spurious relationships being mistaken for neural coding
(Fetz 1992; Todorov 2000). For example, the directional tuning
of cell activity calculated for movements from a single arm
position does not generalize to the entire range of motion
(Aflalo and Graziano 2006; Caminiti et al. 1990). Moreover,
repetition may influence the representation of trained actions
(Nudo et al. 1996). Therefore it remains to be seen how
generally applicable results obtained under these experimental
conditions are to natural, unconstrained behavior.

Advances in chronic recording electrode techniques
(Hoogerwerf and Wise 1994; Kralik et al. 2001; Nordhausen et
al. 1996) and autonomous, implantable electronics (Jackson et
al. 2006a; Mavoori et al. 2005) are for the first time allowing
continuous single-unit recording in completely unrestrained
primates. In contrast to repetitive tasks, an unconstrained
paradigm allows the study of natural, synergistic motor control.
With an implanted recording system, the same cells can be
followed long-term and related to movements through the
entire repertoire of normal behavior including sleep states as
well as task performance. Although unconstrained behavior is
difficult to quantify and may not sample the movement space
systematically, experiments in freely behaving animals are
essential for understanding the neural control of natural move-
ments and provide information crucial to the informed devel-
opment of neuromotor prostheses (Jackson et al. 2006a,b).

Using a novel implanted recording system, we have for the
first time contrasted activity obtained during constrained and
unconstrained paradigms. We recorded the firing rate of the
same primary motor cortex (M1) cells during performance of a
trained motor task, unrestrained behavior, and natural sleep
with the aim of determining how results obtained under con-
strained conditions generalize to completely unrestrained be-
havior. Motor activity was characterized by muscle electro-
myogram (EMG), which provides a simple and consistent
quantification that can be compared across conditions. We
found robust correlations between cortical cells and EMG on a
variety of time scales during each condition. In particular, high
correlation coefficients between M1 firing rates and EMG
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profiles over up to seven hours of unrestrained daytime activity
suggests a largely consistent muscle representation across the
behavioral repertoire. However, the cell-muscle correlations
obtained for free behavior often differed from those during task
performance; some cells exhibited strikingly different patterns
in each condition. Nevertheless, for the population of cells we
could relate the average strength of cell-muscle correlations
during free behavior to the preferred direction of the cell as
defined from the trained task. During the night, motor cortex
cells exhibited a cyclical pattern reflecting rapid-eye-move-
ment (REM) and slow-wave sleep phases with bursts of muscle
activity observed predominantly at the beginning and end of
REM sleep. The pattern of cell-muscle correlation during this
period differed from daytime recordings and no longer re-
flected directional preference in the task. Some of these results
have been published previously in abstract form (Jackson et al.
2005).

M E T H O D S

Behavioral training

Two male Macacca nemestrina monkeys (monkey Y: 3 yr, weight:
4.3 kg, and monkey K: 3 yr, weight: 4.6 kg) were trained to perform
a two-dimensional torque-tracking task with the right wrist. The
monkeys sat in a chair with the elbow and hand immobilized by
padded restraints. A six-axis force transducer (model FS6, AMTI,
Watertown, MA) measured the isometric torque exerted by the mon-
keys around the wrist joint, and the flexion-extension and radial-ulnar
components of this torque controlled the horizontal and vertical
position of a cursor on a screen. The monkey’s task was to hold the
cursor inside targets which appeared on the screen. One complete trial
required the monkey to move the cursor from a central target to one
of eight peripheral targets and hold for 1 s before returning to the
center to receive a fruit sauce reward.

Surgical implants

Before surgery, an array incorporating 12 microwire electrodes was
assembled under sterile conditions using 50-�m-diam, Teflon-insu-
lated tungsten wire (No. 795500, A-M Systems, Carlsborg, WA) cut
flush with sharp scissors, yielding a tip impedance of around 0.5 M�
at 1 kHz. The wires ran from a crimp-connector (Centi-Loc, ITT
Canon, Santa Ana, CA) into polyamide guide-tubes �20 mm in
length which funneled into a 6 � 2 array (inter-electrode spacing: 500
�m). Each guide tube was filled with ophthalmic antibiotic ointment
(Gentak, Akorn, Buffalo Grove, IL) and sealed at both ends with
silastic (Kwik-Sil, WPI, Sarasota, FL).

The monkeys received pre- and postoperative corticosteroids (dexa-
methasone: 1 mg/kg po) to reduce cerebral edema. During a surgery
performed under inhalation anesthesia (isoflurane: 2–2.5% in 50:50
O2:N2O) and aseptic conditions, the scalp was resected and a crani-
otomy made over left M1 (A: 13 mm, L: 18 mm). The dura mater was
removed, and the pia mater was bonded to the edge of the craniotomy
with cyano-acrylate glue to prevent cerebrospinal fluid leakage and to
stabilize recordings (Kralik et al. 2001). The central sulcus was
visualized, and the precentral cortex was stimulated with a silver ball
electrode to locate the lowest threshold site for eliciting wrist and
hand movements. The microwire assembly was positioned at this
location with the long axis of the array running parallel to the central
sulcus, and the connector was anchored with dental acrylic to several
titanium skull screws. Because the Teflon-insulated microwires slide
freely through the silastic seal, our design allowed each wire to be
lowered individually into the cortex during surgery and adjusted at
any time subsequent to implantation.

A 6-cm-diam cylindrical titanium chamber to protect the microwire
assembly and house the electronics was anchored with additional
skull-screws. Wires were wrapped around two of the screws to serve
as ground connections. Any remaining space inside the craniotomy
was filled with gelfoam, and the exposed skull was coated with dental
varnish (Copaliner, Bosworth, East Providence, RI). The inside of the
implant was sealed with a thin layer of dental acrylic covering the
skull and craniotomy. The casing was closed with a removable
Plexiglas lid, and the skin was drawn around the implant with sutures.
Twisted pairs of stainless steel wires were tunneled subcutaneously
from the inside of the casing to a connector on the monkey’s back for
attaching EMG electrodes. Surgery was followed by a full program of
analgesic (buprenorphine: 0.15 mg/kg im and ketoprofen: 5 mg/kg po)
and antibiotic (cephalexin: 25 mg/kg po) treatment.

During the course of the experiment, the monkeys were lightly
sedated with ketamine (10 mg/kg im) on a weekly basis to sterilize the
inside of the head casing (with dilute chlorohexadine solution fol-
lowed by alcohol). With the monkeys sedated, the cortical microwires
could be moved to sample new cells. This was usually performed
every 2–3 wk and always after the interior of the casing had been
sterilized. The microwires were moved by grasping the loop of
exposed wire between the connector and guide-tube with sterile
forceps. Typically, four to eight wires were adjusted sequentially
while monitoring the recorded signal for action potentials. We con-
centrated on moving the wires into the approximate vicinity of cell
activity rather than trying to optimize for specific units because cells
obtained immediately after moving the wires proved to be unstable as
the tissue settled. Often different units appeared over the course of the
next day, including on wires which had been initially quiet. Typically
this procedure resulted in 1 to 5 securely isolated single units 1 day
after moving the wires; these units could then be recorded stably for
several days to weeks.

While the monkeys were sedated, EMG electrodes made from pairs
of braided steel wire (No. A5637, Cooner Wire, Chatsworth, CA) with
2–3 mm of insulation stripped from the end were inserted transcuta-
neously into various arm and wrist muscles using a 22-gauge needle.
Electrode pairs were spaced �1 cm apart. The leads were fixed to the
skin with a drop of cyano-acrylate glue, covered with surgical tape
and plugged into the back connector. Throughout the experiment the
monkeys wore loose-fitting, long-sleeved jackets to protect the wires
and back connector.

All procedures were approved by the University of Washington
Institutional Animal Care and Use Committee (IACUC).

Neurochip electronics

A detailed description of our Neurochip Brain-Computer Interface
system has been published previously (Jackson et al. 2006a; Mavoori
et al. 2005). The complete implant, including circuit boards and 3.6 V
lithium battery is shown in Fig. 1A. The electronics are designed
around two mixed-signal processors that operate in parallel; each
processor is a Programmable System on a Chip (PSoC, Cypress
Semiconductor, San Jose, CA). The primary PSoC samples unit data
from one cortical microwire at 11.7 ksp/s and handles infrared (IR)
communication with a desktop computer. A second PSoC multiplexes
and samples up to two differential, rectified EMG signals at 2 ksp/s
per channel. An asynchronous serial bus synchronizes recordings and
relays data between PSoCs. Front-end signal processing includes
band-pass filtering and amplification (for neural signals: 500 Hz to 5
kHz, 1,500 times with a further 1–48 times variable gain; for EMG:
20 Hz to 2 kHz, 250 times with further 1–48 times followed by
full-wave rectification). Each PSoC incorporates an 8-bit micropro-
cessor core for digital processing (including spike discrimination and
EMG averaging) and can store data to independent 8 Mb nonvolatile
memory chips.

The Neurochip has three modes of operation, which are selected via IR
commands. In the first mode, neural and EMG signals were recorded
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directly to on-board memory and downloaded off-line via IR. In this
mode, the memory can hold 90 s of raw neural data and two channels of
rectified EMG data. The raw neural recordings were used to identify
action potentials off-line and choose appropriate spike discriminator
settings. In the second mode, used while the monkey performed the
trained task (Fig. 1B), the Neurochip detected action potentials in real
time using a window discriminator algorithm. The Neurochip produced a
brief IR flash whenever the neural signal crossed a threshold level and
subsequently passed through two adjustable time-amplitude windows. An
IR receiver positioned above the monkey’s head detected the flashes,
while EMG was band-pass filtered (20 Hz to 5 kHz) and amplified
(1,000–5,000�) using conventional laboratory instrumentation (MCP,
Alpha-Omega Engineering, Nazareth, Israel). A PC equipped with a
data-acquisition card (DAP 3200a, Microstar Laboratories, Bellevue,
WA) recorded the spike and task events at 25 ksp/s, and EMG and torque
signals at 5 ksp/s.

For extended recording during completely unrestrained behavior,
the Neurochip operated in a third mode (Fig. 1C). The primary PSoC
calculated and stored the spike count over consecutive time bins,
whereas the secondary PSoC recorded average rectified EMG level
over the same bins. Short sections of raw data were interleaved with
the binned data to check recording and discrimination quality. The
data reported here were recorded with 100-ms bins with each 3-min
section of binned data interleaved with 22 ms of raw recording. In this
configuration the Neurochip can store 26 h of continuous neural
recording with one EMG channel or 13 h of recording with two EMG
channels.

Data analysis

The relationship between neural and muscle activity during free
behavior was characterized using cross-correlation functions (CCFs).
We calculated the linear correlation coefficient, r, between the binned
spike rate and mean rectified EMG shifted either forward or back-
wards by time, �, from �100 to �100 s (positive time-lags indicate
the neural signal leading the muscle signal). These calculations were
performed over the entire record of 100-ms bins, so a CCF based on
6 h of data reflects the correlation between 216,000 pairs of data
values. In many cases, we found that features in the CCFs were well
fitted by the sum of two Gaussian curves given by the following
expression

r��� � A1e
����t1�2/w1

2
� A2e

����t2�2/w2
2

� A3 (1)

Least-squares fitting was performed using an iterative simplex
search method (function fminsearch, MatLab, Mathworks, Natick,
MA). The optimized fit coefficients were used to quantify for each
component the amplitude, Ai, and half-width at half-maximum, HWi,
given by

HWi � wi�ln(2) (2)

To assess the significance of CCF features, we constructed 100
shuffled datasets from 1-min sections of the same data and performed
equivalent correlation analysis. The 95% range of r values obtained
from these uncorrelated datasets was used to construct confidence
limits for significant CCF peaks and troughs. Correlation analysis
assessed the degree to which observed EMG could be described by a
fixed, linear function of cell firing rate. For some cells, we compared
this to a model in which the linear fit parameters were allowed to vary
over 10- or 1-min sections. Parameters were chosen to minimize the
mean squared error between modeled and observed EMG within each
section separately. The correlation coefficient between modeled and
observed EMG was then calculated over the entire record.

Cell tuning during the torque-tracking task was determined from
peri-event time histograms (PETHs) of spike activity aligned to the
end of the hold period for each of the eight torque directions. A
one-factor ANOVA assessed the effect of direction on the number of
spikes occurring during each one-second hold period. For cells with a
significant (P 	 0.05) directional tuning, a preferred direction vector
was calculated by summing each torque direction vector, weighted by
the mean firing rate during the hold period for that direction. CCFs for
the task condition were compiled from data recorded through our
laboratory instrumentation. These data were first converted into firing
rate and mean rectified EMG over consecutive 100-ms bins compa-
rable with data recorded by the Neurochip. Although the filter cut-off
and gain used with the laboratory instrumentation differs slightly from
the Neurochip front-end configuration, this is unlikely to influence our
results since the majority of the EMG spectral power is 	1,000 Hz
and our results were expressed as correlation coefficients normalized
within the range �1 to �1. To further ensure that differences in
recording method used in each condition did not influence our results,
some cell-muscle pairs were recorded during the task using first the

Battery

Neurochip

Microwires
Ground and

EMG connections

IR receiver

Neurochip

Spike pulses

Task data
(torque, EMG)

to PC for
recording

Force transducer

Data recorded to 
onboard memory...

... download off-line to PC

A

B

C

10 mm

FIG. 1. The Neurochip system for neural and muscle recording during free
behavior. A: head implant containing circuit boards, battery, microwire elec-
trodes and connector for electromyographic (EMG) signals. B: during the
trained task, the Neurochip detected spikes and transmitted pulses via infrared
(IR). Task data and EMG signals were recorded via conventional laboratory
instrumentation. C: during free behavior, neural and EMG signals were
recorded to on-board memory. The data were subsequently downloaded
off-line via IR.
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laboratory instrumentation and then the Neurochip. CCFs compiled
from both datasets exhibited equivalent features.

R E S U L T S

Dataset

The analysis presented here is based on 45 cells (16 from
monkey K, 29 from monkey Y), recorded during daytime free
behavior for an average of 4.9 h (range: 30 min to 11 h), and
during the night time for an average of 7.7 h (range: 4–12 h).
Analysis of task-related activity was based on sections of
recording comprising �10 successful trials for each of the
eight directions. No postspike effects from these cells were
observed in spike-triggered averages of recorded EMG.

Long-term neural and muscle recordings during natural
behavior and sleep

Figure 2A shows a 20-s section of raw signal recorded by the
Neurochip from a microwire in the hand area of M1 while the
monkey reached for food rewards presented by the experimenter.
The recording shows bursts of action potentials, coinciding with
activation of wrist muscles revealed in rectified EMG signals (Fig.
2B) recorded simultaneously from extensor carpi radialis (ECR)
and flexor carpi ulnaris (FCU). The raw recording was used to
select appropriate discriminator window settings prior to a longer
period of data collection. Figure 2C shows the waveforms ac-
cepted by the Neurochip’s dual time-amplitude window discrim-
inator. To ensure that these waveforms represented action poten-
tials from a single neuron, we compiled an interspike interval (ISI)

histogram based on 90 s of recording (Fig. 2D). The unimodal ISI
distribution is characteristic of a single unit and the absence of
intervals shorter than the typical refractory period of a cortical
neuron (�1 ms) indicated that only one cell generated the ac-
cepted spikes (Fig. 2E).

Figure 3A shows activity of the same cell and muscles
recorded by the Neurochip over a 13-h period of unrestrained
behavior in the cage beginning at 12:45 pm. Sample spike
waveforms extracted from the interspersed raw data are shown
above the plot. During the daytime, muscle activity was gen-
erally high as the monkey foraged for food, played with toys,
and walked or swung around the cage. During the night,
muscles were largely inactive, except for sporadic bursts of
EMG. For display purposes, the data here are plotted as
average firing rate and mean rectified EMG over consecutive
1-min intervals, but the original data were stored using 100-ms
bins throughout the entire record. Figure 3, B and C, plots
sample 1-min sections from the day and nighttime at the
100-ms time resolution, showing peak firing rates during indi-
vidual bins exceeding 100 Hz.

Cross-correlation functions between neural and
muscle activity

To characterize the relationship between motor cortex cell
and muscle activity during free behavior, we compiled CCFs
between firing rate and rectified EMG over 100-ms bins for the
separate periods of day- and nighttime recording (see METH-
ODS). During the day, this cell exhibited a positive correlation
peak of 0.30 at zero lag with muscle ECR (Fig. 4A). A narrow

FIG. 2. Raw recording with the Neurochip.
A: signal recorded by the Neurochip from a
microwire electrode in primary motor cortex
(M1) while monkey K reached for food. B:
simultaneous recording of rectified EMG ac-
tivity from wrist muscles extensor carpi radi-
alis (ECR) and flexor carpi ulnaris (FCU). C:
action potential waveforms from this recording
that were accepted by the Neurochip’s dual
time-amplitude window discrimination algo-
rithm. Rejected waveforms are shown in gray.
D: interspike interval (ISI) histogram for
spikes discriminated from 90 s of recording.
The unimodal distribution is characteristic of a
single cortical cell. E: ISI histogram with ex-
panded time base shows an absence of short
intervals 	1 ms, the refractory period of a
single unit (and longer than the discriminator
refractory time of 0.5 ms).
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negative correlation trough of �0.02 was seen with FCU
(cortex leading the muscle by 1 100-ms bin). These features
were both superimposed on broader peaks that reflected posi-
tive correlation on the time scale of behavioral episodes during
which average cell and muscle activity was elevated. The

narrow peak or trough indicates a more precise temporal
relationship between cell and muscle within each episode and
may reflect direct or indirect descending control from motor
cortex. Activity during the night showed a different pattern of
CCFs with the cell positively correlated with both muscles

FIG. 3. Continuous, long-term recording
with the Neurochip. A: continuous record of
13 h of spike firing rate and mean rectified
EMG from monkey K. For clarity, mean values
over consecutive 1-min bins are plotted, al-
though the Neurochip stores data over 100-ms
bins. Superimposed action potential wave-
forms were taken from the raw data sampled
throughout the recording period (scale bars:
100 �A, 0.5 ms). B: section of the daytime
record plotted at 100-ms resolution. C: section
of the nighttime record plotted at 100-ms res-
olution.

FIG. 4. Cross-correlation functions (CCFs)
between cell’s firing rate and rectified EMG. A:
CCFs between firing rate and ECU and FCU
over 6 h of daytime recording (12:45–6:45
pm). B: CCFs calculated for 6 h of nighttime
recording (7:30 pm to 1:30 am). C and D :
double Gaussian fits of CCFs in A and B.
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(Fig. 4B; ECR: 0.06, FCU: 0.03). To quantify and compare
CCFs, these features were fitted by a sum of two Gaussian
components (see METHODS), shown in Fig. 4, C and D.

To examine the stability of cell-muscle relationships through-
out the recording, we compared CCFs calculated over the entire
record with CCFs for shorter sections of data. Figure 5,A and B
shows the CCF for 6 h of daytime recording and average CCFs
calculated using nonoverlapping 10- and 1-min sections of the
same data. The narrow peak is very consistent throughout, al-
though the broad peak is slightly attenuated for shorter windows.
The gray shading indicates 95% confidence limits obtained from
shuffled versions of the same 1-min sections, demonstrating that
these cross-correlation features are larger than could be expected
to arise by chance. The dark line in Fig. 5C plots the zero-lag
correlation coefficient between cell firing and muscle ECR calcu-
lated over consecutive 10-min intervals through 12 h of day- and
nighttime recording. During the daytime, the correlation between
cell activity and this muscle remained positive and approximately
constant. The gray shading indicates the range of correlation
coefficients obtained for shorter 1-min sections within each 10-
min interval. For some 1-min sections the value is close to zero.
However, inspection of the data indicated that this was due
primarily to periods during which the muscle was inactive. During
the night, the correlation is generally low because the muscle is
predominantly quiet, although sporadic nighttime EMG activity is
associated with occasional periods of positive correlation.

The similarity of correlation coefficients calculated over
different windows during the daytime implies a consistent
linear relationship between cell firing rate and EMG activity.
To test this further, we examined the degree to which the linear
correlation between cell and EMG activity was improved by
allowing the fit parameters to vary over 10- and 1-min intervals
(see METHODS). This effectively increases the number of model
parameters and inevitably leads to a better approximation of
the observed data. However, if the cell-muscle relationship is
constant throughout, allowing these parameters to vary should
yield only modest improvements to the regression coefficient.
Figure 5D shows the result of this analysis for the day- and
nighttime separately. For the daytime data, fitting over 10- and
1-min sections produced little improvement, yielding correla-
tion coefficients of 0.34 and 0.43, respectively, compared with
0.30 when the relationship was assumed to be fixed throughout.
Varying the fit parameters had more effect on the correlation
during the nighttime, which increased from 0.06 to 0.31 for
shorter intervals. We repeated this analysis for 10 cell-muscle
pairs showing strong daytime correlation with similar results
(Fig. 5E). Thus it appears that the firing rate of some cells
exhibits a consistent relationship with muscles thoughout un-
constrained daytime behavior but that during the night, this
relationship is more variable. The reason for this variability is
explored in the next section.
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FIG. 5. Effects of window length on CCFs.
A: CCF calculated for a 6-h daytime recording
of cell firing and rectified ECR activity (black
line). Also shown is the average CCF for non-
overlapping 10-min (green line) and 1-min
(blue line) sections of the same data. Gray
shading indicates the 95% range of CCFs com-
piled from data comprising the shuffled concat-
enations of the same 1-min sections. B: equiv-
alent plot for CCFs compiled with muscle FCU.
C: 0-lag cell-ECR correlation coefficient calcu-
lated for consecutive 10-min sections through
13 h of day- and nighttime activity. Gray shad-
ing indicates maximum and minimum values
from corresponding 1-min sections. D: correla-
tion between ECR activity and a linear model of
cell firing rate in which the parameters are
fixed, or allowed to vary over 10- and 1-min
sections. Data from 6 h of daytime recording
(12:45–6:45 pm) and 6 h of nighttime recording
(7:30 pm to 1:30 am) fit separately. E: compa-
rable plots for 10 different cell-EMG pairs.
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Sleep cycles and movements during nighttime recordings

During the night, M1 cells exhibited a cyclical pattern of
quiescence interspersed by periods of elevated activity, with
one complete cycle lasting 40–60 min (Fig. 6A; mean firing
rate and EMG calculated over 1-min bins). Bursts of EMG
were seen predominantly at the onset and/or near the end of
each period of elevated cortical activity and were correlated
with cell firing rate. However, during the period of highest
cortical firing, muscle activity was completely suppressed.
Figure 6B shows an expanded record of firing rate and EMG
for 100-ms bins during a typical cycle of elevated cortical
activity. Across 8 h of nighttime recording this cell had a mean
nighttime firing rate of 12 Hz, only slightly lower than for the
daytime activity (16 Hz). Peak firing rates during the cyclical
periods of elevated activity often exceeded 100 Hz. For this
cell-muscle pair, the CCF showed periodic peaks correspond-
ing to the time course of sleep cycles (Fig. 6C). The peak
correlation of 0.13 was lower than that during the day (0.18;
data not shown), but this value is low in part because the
muscles were often silent during the periods of highest cortical
activity. The CCF compiled specifically for only those minutes

during which the muscle was co-activated had a higher corre-
lation peak of 0.30 (Fig. 6D).

Video recording revealed that nighttime muscle activity
corresponded with episodes of limb twitching, scratching,
postural adjustments, and apparent waking behavior. However,
unlike during the daytime, correlations between cells and
muscles were always positive during these episodes. Even
CCFs compiled with ipsilateral muscles exhibited correlation
peaks. Figure 6, E and F, shows CCFs between a cell in left M1
and EMG recorded from muscle FCR of the right (contralat-
eral) and left (ipsilateral) arm. During the daytime (Fig. 6E),
there was a strong correlation peak with the contralateral
muscle but a flat CCF with the ipsilateral muscle. By contrast,
during the night CCFs with both contra- and ipsilateral muscles
displayed positive peaks (Fig. 6F).

Summary of CCF features during day- and nighttime

The parameters of the CCFs obtained for day- and nighttime
activity for all cell-muscle pairs are shown in Fig. 7 (left and
right). Figure 7A summarizes the maximum (minimum) corre-
lation value for the central peak or trough in 85 daytime CCFs

FIG. 6. Sleep cycles in motor cortex. A: average cell
firing rate and rectified EMG from muscle ECR over 1-min
bins during 6 h of nighttime recording showing cycles of
slow-wave and rapid-eye-movement (REM) sleep. Sample
spike waveforms for this cell are inset (scale bars: 500 �V,
0.2 ms; monkey Y). B: expanded plot of 1 sleep cycle
plotted at 100-ms time resolution. C: CCF between cell and
muscle activity plotted over an extended time scale. D:
same CCF on shorter time scales calculated for all the data
and for only those 1-min periods accompanied by muscle
activation. E: CCF calculated for contralateral and ipsilat-
eral FCR muscle during 3 h of daytime free behavior. F:
equivalent CCFs for 9 h of nighttime activity.
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between cell firing rate and simultaneous EMG activity (mon-
key Y: 47 cell-muscle pairs, monkey K: 38 cell-muscle pairs).
All cells were in the arm and hand area of M1 and all EMG was
recorded from contralateral arm and wrist muscles, but no
attempt was made to record preferentially from those muscles
that were co-activated with cell activity. Most datasets in-
cluded one wrist flexor and one wrist extensor muscle. Al-
though these muscles were antagonists, the majority of cell-
EMG pairs (89%) exhibited a positive correlation around
zero-lag, and 29/45 cells exhibited a peak correlation 
0.1
with at least one recorded muscle. A histogram of the latencies
of the central peak or trough in Fig. 7B shows that all features
occurred within �300 ms of zero-lag. The distribution is
slightly skewed toward positive latencies (cell leading muscle)
with a mean � SE latency of 22 � 13 ms, consistent with a
causal role for these cells in the generation of movements.

The double Gaussian fits for these cell-muscle CCFs had an
average half-width at half-maximum of 840 � 680 (SD) ms for
the narrow component (Fig. 7C) and 9.5 � 10 s for the broad
component. Figure 7D shows the respective amplitudes of the
narrow and broad components for all cell-muscle pairs. The

means of these amplitude distributions are similar (narrow:
0.038, broad: 0.033, P � 0.3 paired t-test), but the SDs were
significantly different (narrow: 0.055, broad: 0.030, P 	
0.0001 F-test). This was due in part to negative amplitudes
(i.e., troughs) being more common for the narrow component
(20%) than for the broad component (4%). There were 13
occurrences of a narrow trough superimposed on a broad peak,
but only one case of a narrow peak on a broad trough. This
indicates that the majority of cells tend to generally increase
firing rate during episodes of active behavior but that within
each episode the firing rate may be positively or negatively
correlated with specific muscles. For those cell-muscle pairs
that exhibited peaks for both narrow and broad components,
these amplitudes were positively correlated (R2 � 0.36, P 	
0.0001).

For the nighttime recordings, the majority of CCFs exhibited
a small positive peak. This was true even for those cell-muscle
pairs that exhibited a central trough in daytime CCFs (cf. Fig.
4, A and B). Compared with daytime correlations, the timing of
this peak was more variable (Fig. 7F) with a latency of 82 �
69 (SE) ms. The double Gaussian fitting method was used to

FIG. 7. Summary of CCF features during day- and
nighttime activity. A: histogram of amplitude of peak
(dark) or trough (light) daytime cell-muscle correla-
tions. B: histogram of latency of peak or trough
daytime cell-muscle correlations. C: histogram of
half-width at half-maximum of narrow correlation
component of daytime CCFs. D: amplitude of narrow
component vs. broad component of daytime CCFs.
E–H: equivalent plots for nighttime recordings. Bars
above histograms indicate mean �1 SD.
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further quantify narrow and broad correlation features. The
average half-width at half-maximum for these components was
respectively 2.3� 1.4 s (Fig. 7G) and 47 � 51 s, both
significantly greater than the daytime widths (P 	 0.0001;
paired t-test). The amplitudes of narrow and broad components
for nighttime CCFs varied independently over a significantly
smaller range than for the daytime (Fig. 7H).

Neural and muscle recordings during the tracking task

The directional tuning of cells and muscles was assessed
from their activity during performance of an isometric two-
dimensional (2-D) torque-target tracking task. Figure 8A plots
the flexion-extension and radial-ulnar components of wrist
torque produced during 20 s of this task. These torque com-
ponents controlled a cursor which the monkey moved from the
center hold to one of eight peripheral targets and then held for
1 s. Also shown are rectified EMG traces for muscles ECR and
FCU (Fig. 8B). Figure 8C shows the average rectified EMG
profile for each of the eight target directions. The relative EMG
level during the peripheral hold period for each target is shown

in the polar plots, and the preferred direction for each muscle
is consistent with their known actions on the wrist. The CCFs
for these antagonist wrist muscles revealed different relation-
ships for the three behavioral conditions. During task perfor-
mance the muscles were negatively correlated (Fig. 8D). The
side peaks in this CCF reflect the fact that this animal (monkey
Y) performed the task at a regular pace with a one complete
trial lasting �3 s. During daytime free behavior the antagonist
muscles were positively correlated (Fig. 8E). During the night,
the muscles were also positively correlated, although the peak
of the CCF was smaller and broader than during the day (Fig.
8F).

The directional tuning of cortical cells was calculated from
PETHs of spike activity aligned to the end of the peripheral
hold period. Cell A in Fig. 9 was strongly modulated with
torque direction, showing maximal activity when the monkey
produced extension torques. CCFs compiled between spike and
EMG activity during task performance (Fig. 9B) revealed a
central correlation peak with the wrist extensor muscle. The
width of this peak reflects the temporal profile of task perfor-
mance, principally determined by the 1-s hold periods. There is

FIG. 8. Recording during the trained task. A:
wrist torque in the extension (E), flexion (F), radial
(R), and ulnar (U) directions as monkey Y performed
a center-out torque tracking task. B: simultaneously
recorded rectified EMG from muscles ECR and
FCU. C: average rectified EMG profiles for the 8
target locations aligned to the hold period (gray
shading). Central polar plots show the mean EMG
level during the hold period and the preferred direc-
tion calculated by vector summation (axes length
indicate 100 �V; average of 20 trials per direction).
D: CCF calculated between ECR and FCU activity
over 15 min of task performance. E: equivalent CCF
for 6 h of daytime free behavior. F: equivalent CCF
for 6 h of nighttime recording.
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no broader component to the CCF because the task was
performed continuously at a regular pace. CCFs compiled
during free behavior (Fig. 9C) contain narrow and broad
components reflecting the more complex temporal profile of
free behavior incorporating episodes of complex activity inter-
spersed with periods of rest. Nevertheless, for this cell CCFs
during the task and free behavior were of a similar magnitude;
the cell was positively correlated with the extensor muscle and
negatively correlated with the flexor muscle over 6 h of
unrestrained, daytime activity. Such correspondence between
activity during the task and during free behavior was not the
case for all cells. Cell B was also modulated with torque
direction, with a preference for flexion (Fig. 9D). However,
this cell exhibited strong positive correlations with both
extensor and flexor muscles during free behavior (Fig. 9F).
Cell C was not strongly modulated with the task (Fig. 9G),
exhibiting a negative correlation with the wrist extensor
(Fig. 9H) due to the slight suppression of firing rate for
extension torques. In contrast, CCFs compiled during free
behavior revealed positive correlation peaks with both extensor
and flexor muscles (Fig. 9I).

Comparison of cell-muscle correlations during task
performance and free behavior

Across all cells there was only a weak relationship between
cell-muscle correlation coefficients obtained during the task
and during free behavior. Figure 10A shows a scatter plot of
CCF peaks or troughs for 55 cell-muscle pairs that were
recorded during both conditions. The range of coefficients
obtained during both conditions was comparable with a max-
imum cell-muscle correlation during the task of 0.55 compared
with 0.41 during free behavior. However, a greater proportion
of cell-muscle pairs were negatively correlated during the task
(36%) compared with free behavior (9%). The sign of the
correlation for 15 cell-muscle pairs was different between
conditions, in all cases changing from positive during free
behavior to negative during the task. Nevertheless, linear
regression yielded a significant relationship between correla-
tion coefficients obtained during the task and free behavior
(R2 � 0.13, P � 0.007).

Of the two Gaussian components obtained by fitting the free
behavior CCFs, only the amplitude of the narrow component
was significantly related to the cell-muscle correlation during

FIG. 9. Comparison of activity during task and free be-
havior for 3 example cells. A: peri-event time histograms
(PETHs) of spike activity for the 8 target locations aligned
to the peripheral hold period (1). Central polar plot shows
the hold-period firing rate and the preferred direction cal-
culated by vector summation. Cell A (from monkey K)
showed strong directional tuning with a preference for wrist
extension (axes length of polar plot represents 20 Hz;
average of 25 trials per direction). B: CCFs calculated
between cell firing rate and rectified EMG during 30 min of
task performance. C: CCFs calculated between cell firing
rate and rectified EMG during 6 h of daytime free behavior.
D–F: comparable plots for cell B (monkey Y) showing a task
preference for flexion. This cell exhibits positive correla-
tions with both flexor and extensor muscles during free
behavior. (Analysis based on 10 min of task performance
including 12 trials per direction, 7 h of daytime free behav-
ior.) G–I: comparable plots for cell C (monkey Y) showing
weak task modulation. (Analysis based on 10 min of task
performance including 12 trials per direction, 4 h of daytime
free behavior.)
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the task (Fig. 10B; R2 � 0.09, P � 0.03). For the wide
component, the slight positive trend did not reach significance
(Fig. 10C; R2 � 0.04, P � 0.14). There was no significant
relationship between cell-muscle correlation values obtained
during the task and during nighttime recordings (R2 � 0.002,
P � 0.7; data not shown).

To investigate the degree to which patterns of cell-muscle
correlations during free behavior could be used to predict
directional tuning during the task we analyzed 28 cells for
which a wrist extensor and a wrist flexor were recorded
simultaneously and divided them according to directional pref-
erence (extension: 11, flexion: 9, no preference: 8) as deter-
mined by activity during the tracking task (see METHODS). In
Fig. 11A, the peak (trough) cell-flexor muscle correlation
coefficient during free behavior is plotted on the vertical axis
against the corresponding cell-extensor muscle correlation on
the horizontal axis. The cells are color-coded according to

directional preference during the task. Three cells with a task
preference for flexion fall above the equality line, indicating a
stronger correlation with the flexor muscle during free behav-
ior. Six cells with a task preference for extension exhibit
stronger correlations with the extensor muscle. However, the
scatter plot shows considerable overlap between the three
groups and half of the directionally tuned cells fall near the
diagonal representing equal correlation with both extensor and
flexor. For these cells, CCFs compiled during free behavior
would be incapable of predicting directional tuning during the
task. Furthermore, four cells exhibited a stronger correlation
with the extensor muscle than with the flexor during free
behavior but, contrary to expectations, showed no directional
preference during the task. In contrast with daytime recordings,

FIG. 10. Comparison of cell-muscle correlations during task and free be-
havior. A: scatter plot of peak (trough) correlation during task vs. free behavior
for 55 cell-muscle pairs. B: scatter plot of peak (trough) correlation during task
vs. amplitude of narrow Gaussian fit component during free behavior. C:
scatter plot of peak (trough) correlation during task vs. amplitude of broad
Gaussian fit component during free behavior.
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the cell-muscle correlation values for the nighttime activity
show no separation among the three groups of cells defined by
task directional preference (Fig. 11B). All points fall near the
diagonal representing equal correlation with both extensor and
flexor muscles. Thus it appears that during the sporadic night-
time movements, the pattern of correlation is less tuned to
specific muscles than during the day.

For cells with a significant directional preference for either
extension or flexion, we determined the average correlation
between firing rate and the muscles acting in the “preferred”
and “opposing” directions separately. For cells with no direc-
tional preference we combined both flexors and extensors in
the “no preference” group. We also analyzed the average
contribution of the narrow and broad correlation features for
each group as determined by the double Gaussian fit. The
results for day- and nighttime activity are summarized in Fig.
11C. On average, during the daytime cells were more strongly
correlated with muscles acting in their preferred direction than
opposing direction. Correlations in the no preference group
showed intermediate correlation strengths. This effect of direc-
tional preference was significant for the total correlation (P �
0.01, 1-factor ANOVA) and the amplitude of the narrow
correlation feature (P � 0.006) but not the broad feature (P �
0.5). During the nighttime, there was no significant effect of
directional preference on any of the three correlation measures.

Stability of recordings over several weeks

In some cases we tracked the activity of the same cell over
several days to weeks. In agreement with a previous report
(Sunner et al. 2005), we found that the preferred directions of
cells generally remained stable. In addition, we were able to
examine the strength of individual cell-muscle correlations
during free behavior over the same periods of time. Figure 12A
shows spike waveforms for a cell recorded over a 2-wk period
from monkey K. The preferred direction of this cell, as assessed
using the tracking task, was consistent throughout (Fig. 12B).
Furthermore, the CCF between this cell and the muscle ECR
(which acted in the preferred direction) during free behavior
remained similar (Fig. 12C). Figure 12, D–F, shows similar
plots for a flexion-tuned cell and muscle FCR from monkey Y
over a 1-wk period. These recordings demonstrate that the
relationship between cell and muscle activity can be stable over
long periods of time, even during completely unrestrained
behavior.

D I S C U S S I O N

Long-term recording during unrestrained behavior

Using implanted electrodes and an autonomous, battery-
powered electronic circuit (the Neurochip), we have for the
first time obtained stable, continuous recordings of motor
cortex cell activity and muscle EMG in primates during unre-
strained behavior and sleep. These results provide a first insight
into motor cortex activity under natural conditions. A major
finding is that motor cortex cells exhibit high firing rates with
strong and consistent correlations with contralateral muscles
across long periods of daytime activity. Correlation coeffi-
cients of up to r � 0.4 were obtained over 6 h of unrestrained
behavior; this is only slightly less than the maximum correla-
tion values obtained during performance of a repetitive task.

Averaging over a multitude of different behaviors might be
expected to diminish considerably the strength of correlations
in comparison to those obtained during repetition of a specific
movement. Our results instead demonstrate that some motor
cortex cells encode a remarkably consistent representation of
arm muscle activation across the entire repertoire of natural
behavior. Analysis of cell-muscle CCFs revealed two major
components: a broad positive correlation reflecting co-varia-
tion of cells and muscles over the time scale of movement
episodes and a narrow component indicating a temporally
precise relationship that we interpret as control of specific
muscle synergies within each episode. Interestingly, the ma-
jority of cell-muscle pairs exhibited both components, suggest-
ing that precise information about activation of a particular arm
muscle can be readily obtained from most cells in the arm area
of motor cortex.

FIG. 12. Stability of neural recordings over 2 wk. A: sample spike wave-
forms recorded during free behavior from monkey K over a 2-wk period. B:
directional tuning calculated as in Fig. 9 for this cell over the same period (�20
trials per direction per day, axes length indicate 40 Hz). C: CCFs between cell
activity and muscle ECR during daytime behavior over the same period
(�6 h per direction per day). D–F: waveforms, directional tuning and CCF
with muscle FCR for a flexion-tuned cell recorded over a 1-wk period from
monkey Y.
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Comparison between constrained and
unconstrained paradigms

Across the population of cells we recorded, the cell-muscle
correlations obtained during free behavior were only weakly
related to those obtained while monkeys performed the torque-
tracking task. A number of cells exhibited strikingly different
patterns of correlation during the two conditions. However, on
average cells tended to show stronger correlations with mus-
cles acting in their preferred direction as defined from the task
data. These results are broadly consistent with a model in
which muscle groups are driven by cortical populations within
which individual neurons may exhibit a range of relationships
to behavior (Fetz 1992; Todorov 2000). This may account for
the apparent diversity of neural representation found in M1
(Scott 2003) including context-dependent coding (Hepp-Rey-
mond et al. 1999; Thach 1978) and different neuronal sub-
systems for controlling posture and movement (Kurtzer et al.
2005).

The dependence on preferred direction was significant only
for the narrow cross-correlation component, supporting our
interpretation that this feature reflects control of specific mus-
cle groups within each behavioral episode. However, it should
be noted that those cells that exhibited no directional tuning in
the wrist task could nevertheless be positively correlated with
wrist muscles during free behavior, and even correlations with
muscles opposing the preferred direction of tuned cells were on
average positive during free behavior. This counter-intuitive
finding may result from the synergistic involvement of many
muscles during natural movement, which includes frequent
co-contraction of antagonists. This illustrates a major differ-
ence between free behavior and the performance of an artificial
task. In traditional studies of motor control, limiting the range
of motion has been necessary for stable cell recording, but
constrained paradigms also offer a methodological advantage
by isolating the activity of specific groups of muscles. How-
ever, this approach thereby imposes an artificial pattern of
muscle use (e.g., Fig. 8, D vs. E) and can provide only a limited
insight into the control of natural, coordinated movements. For
instance, cell C documented in Fig. 9 exhibited no directional
preference in the wrist task but may have controlled a specific
synergy of muscles that was not represented in the restricted
task. Many corticomotoneuronal cells that produce postspike
facilitation in both proximal and distal muscles are preferen-
tially activated during movements that coactivate their target
muscles (McKiernan et al. 1998). Alternatively, this cell may
simply have controlled proximal muscles that tended to be used
in synergy with wrist muscles. As recordings from more
muscles during free behavior become technically feasible it
should be possible to resolve these issues.

Several other factors could also explain the discrepant rela-
tionships we observed between task performance and free
behavior. Learned movements typically involve a different
pattern of muscle activity compared with novel volitional
movements (Thoroughman and Shadmehr 1999), and the ex-
tensive repetition necessary for behavioral training may affect
the representation of specific movements within motor cortex
(Nudo et al. 1996). Another factor may be the range of activity
levels sampled. During our task, maximum cortical firing rates,
even for preferred directions, were in the range of 40–80 Hz.
However, during free behavior, instantaneous firing rates dur-

ing a single 100-ms bin regularly exceeded 100–200 Hz
(interspersed raw samples showed no evidence of cell injury or
multi-unit discharge). Peak EMG levels were correspondingly
higher. This suggests that free behavior includes episodes of
greater activity than are normally incorporated into repetitive
tasks requiring only a fraction of maximum voluntary contrac-
tion. Whatever the explanation of the differences between
constrained and unconstrained paradigms, our present results
suggest that neither approach alone can provide a complete
description of the relationship between individual cortical cells
and the movements they encode.

Relevance to neuromotor prosthetics

The development of neural prosthetics provides further mo-
tivation for expanding the application of electrophysiological
recording techniques beyond constrained paradigms. Recent
years have seen renewed interest in the possibility of using
movement information extracted from cortical recordings to
restore function in patients with motor deficits (Donoghue
2002). To date, neuromotor prosthetics have been limited to
control of cursors or simple robotic arms (Carmena et al. 2003;
Hochberg et al. 2006; Serruya et al. 2002; Taylor et al. 2002),
but in the future, motor cortex spike activity could be used to
control spinal cord microstimulation (Jackson et al. 2006a;
Mushahwar et al. 2000) or functional neuromuscular stimula-
tion (Keith et al. 1988) to move the patient’s own limbs. Our
results suggest that extracting muscle activation patterns from
cortical activity could help restore a more complete range of
motor behavior than previously thought. The strong correla-
tions we found between individual cells and muscle activity
and the long-term stability of these relationships bode well for
the success of neuromotor prosthetics. The temporally precise
cortex-muscle relationship revealed by the narrow cross-cor-
relation component, which also reflected directional preference
during the task, would presumably be useful for control of a
prosthesis. During repetitive tasks, linear combinations of the
activity of multiple cells yield improved prediction of muscle
patterns (Carmena et al. 2003; Morrow and Miller 2003;
Santucci et al. 2005; Westwick et al. 2006), although the extent
to which this will generalize to unrestricted movements re-
mains to be seen. In addition, the broad cross-correlation peaks
we observed suggest that a measure of the overall level of
activity within a population of cells could provide a reliable
ON-OFF signal to indicate periods of intended behavior.

Nighttime correlations between cortex and muscles

We found that during the night motor cortex cells often
exhibited regular periods of high firing rate. Elevated motor
cortical activity associated with REM sleep has been described
previously in chaired monkeys (Evarts 1964) and the time
course of the cycles in our data is consistent with previous
electroencephalogram (EEG) and behavioral studies of ma-
caque sleep (Balzamo et al. 1998; Weitzman et al. 1965).
Although at present we are unable to record simultaneous field
potentials with our Neurochip system, the periods of elevated
cortical activity presumably correspond to periods of desyn-
chronized EEG. The highest firing rates were comparable to
daytime values but associated with complete atonia, character-
istic of REM sleep. Atonia arises from inhibition of motoneu-

372 A. JACKSON, J. MAVOORI, AND E. E. FETZ

J Neurophysiol • VOL 97 • JANUARY 2007 • www.jn.org

 on January 17, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


rons by brain stem structures, and is enhanced during REM,
possibly to balance increased descending excitation (Chase and
Morales 1990; Steriade and Hobson 1976). Interestingly, we
observed that nighttime EMG activity occurred predominantly
during the transitions into and out of each phase of elevated
cortical activity and may have been associated with light sleep
or waking. One possible explanation for this pattern is that the
periods of elevated cortical activity and spinal inhibition do not
completely overlap. A recent study in rats (Lu et al. 2006) has
found separate populations of neurons in the brain stem medi-
ating atonia and cortical EEG patterns during REM, which may
allow this dissociation. Our results suggest that the period of
enhanced spinal inhibition begins slightly after and ends
slightly before the period of high cortical activity. Such a
mismatch could explain the predominance of apparent waking
episodes just before or after REM sleep in macaques (Balzamo
et al. 1998; Weitzman et al. 1965).

The functional role of REM activity, and sleep in general, is
the subject of considerable debate (e.g., Siegel 2005; Stickgold
and Walker 2005). It has been suggested that during develop-
ment, twitching in sleep contributes to the organization spinal
reflex circuitry (Petersson et al. 2003). Sleep may be important
for consolidation of motor learning (Fischer et al. 2002;
Walker et al. 2005) although this hypothesis remains contro-
versial (Vertes 2004). The pattern of cortex-muscle correla-
tions we saw during the night clearly differed from that during
daytime recordings. The strength of correlation varied through
the sleep cycle, consistent with a fluctuating level of spinal
inhibition. Cell-muscle correlations were slightly wider and
generally positive during periods of movement, in contrast to
the mix of narrow correlation peaks and troughs seen during
the day. Most notably, the directional tuning of cells was no
longer reflected in correlation coefficients for pairs of antago-
nist muscles and cell activity could be correlated with both
contra- and ipsilateral muscles. These observations suggest that
widespread synchronous bursts of cortical activity during
sleep, possibly extending across both hemispheres, leads to less
specificity in the pattern of correlation between individual
cell-muscle pairs. On average, cortical firing led muscle activ-
ity, but there was a wider range of large positive and negative
time lags compared with daytime recordings, indicating that
these correlations may not be mediated only by direct cortico-
spinal pathways, and possibly include a contribution from
co-excitation by a common brain stem drive (Marchiafava and
Pompeiano 1964; Steriade and Hobson 1976).

One further point relevant to the use of cortical activity to
control a prosthesis or functional electrical stimulation is that
the periods of highest cell activity during the night coincide
with descending inhibition of motoneurons. Any artificial link
bypassing this physiological inhibition could generate uncon-
trolled movements so would need to be shut off if the user fell
asleep.

Conclusions

The use of chronic electrodes and autonomous, implantable
electronics can significantly extend the scope of electrophysi-
ological research into natural behavior. We have shown that
stable, long-term motor cortex and muscle recordings can be
obtained from primates during completely unrestrained behav-
ior and that this data complement recording during a conven-

tional constrained task. Cells and muscles were followed
through the repertoire of natural movements and sleep, provid-
ing a first glimpse of activity within the motor system during
normal behavior. Although patterns of correlation for individ-
ual cells could differ between conditions, the overall corre-
spondence within our results supports the tacit assumption
underlying many previous experiments that data obtained un-
der restrained conditions can be more broadly informative of
the neural control of natural movements. Furthermore, the
ability to record the same cells continuously for several weeks
opens up new possibilities for studying neural control of
complex behaviors and motor learning (Jackson et al. 2006b).
Finally, linking autonomously recorded cell activity to func-
tional electrical stimulation may lead to the development of
neural prosthetics to restore volitional motor function after
injury.
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