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Abstract. We describe a general diffusion model for 
analyzing the efficacy of individual synaptic inputs to 
threshold neurons. A formal expression is obtained for 
the system propagator which, when given an arbitrary 
initial state for the cell, yields the conditional probabil- 
ity distribution for the state at all later times. The 
propagator for a cell with a finite threshold is written as 
a series expansion, such that each term in the series 
depends only on the infinite threshold propagator, 
which in the diffusion limit reduces to a Gaussian form. 
This procedure admits a graphical representation in 
terms of an infinite sequence of diagrams. To connect 
the theory to experiment, we construct an analytical 
expression for the primary correlation kernel (PCK) 
which profiles the change in the instantaneous firing 
rate produced by a single postsynaptic potential (PSP). 
Explicit solutions are obtained in the diffusion limit to 
first order in perturbation theory. Our approximate 
expression resembles the PCK obtained by computer 
simulation, with the accuracy depending strongly on the 
mode of firing. The theory is most accurate when the 
synaptic input drives the membrane potential to a mean 
level more than one standard deviation below the firing 
threshold, making such cells highly sensitive to syn- 
chronous synaptic input. 

1 Introduction 

The present investigation aims toward a mathematical 
description of nervous system activity that captures 
interesting dynamical behaviors and yet remains 
amenable to analytical techniques. Specifically, we 
present a novel solution to a general diffusion model 
which adequately describes the synaptic interactions 
between biological nerve cells. The time-dependent per- 
turbation methods employed here are a generalization 
of techniques previously described (Cowan 1972). In 
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this preliminary investigation we have limited our anal- 
ysis to the effects of synaptic input on the firing activity 
of a single cell. However, the computational procedure 
described here is quite general and may be readily 
extended to the analysis of interacting neural systems. 

To assess the accuracy of our computational proce- 
dure, the model is used to predict the efficacy of indi- 
vidual synaptic inputs under various dynamical 
conditions. This is accomplished by deriving an explicit 
expression for the primary correlation kernel (PCK) 
(Knox 1974), which profiles the change in the instanta- 
neous firing rate produced by a synaptic impulse, or 
postsynaptic potential (PSP). The synaptic efficacy, A, 
is then defined as the total area under the PCK and 
yields the average number of additional (or missing) 
firings associated with the PSP. For comparison, the 
actual PCK is then estimated from computer simulated 
spike train data. In the present study, we only consider 
synaptic input that is Poisson-distributed, which elimi- 
nates all secondary effects due to the autocorrelation of 
the presynaptic source (Moore et al. 1970). 

Attempts to quantify the relationship between the 
PSP and the PCK have been made by several investiga- 
tors (Knox 1974; Kirkwood and Sears 1978; Fetz and 
Gustafsson 1983). Knox (1974) examined both the pri- 
mary and secondary components found in the cross- 
correlation of two spike trains but only obtained 
explicit solutions for the PCK produced by excitatory 
PSPs (EPSPs) with infinitesimally short rise times 
("first-order" EPSPs). Instantaneous rise times are not 
physiologically realistic, however, and introduce abnor- 
mal firing properties since threshold crossings are re- 
stricted to the initial depolarizing jump. Kirkwood and 
Sears (1978), on the basis of indirect empirical observa- 
tions, proposed that the PCK is proportional to both 
the PSP and its first time derivative. Fetz and Gustafs- 
son (1983) derived a linear relationship from a study of 
motor neurons using a threshold crossing model with a 
smooth linear ramp to threshold. Their analysis was 
later corroborated by a physiological study of the PCK 
produced by single la afferent fibers on motor neurons 
(Cope et al. 1987). We know from both numerical and 
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mathematical analysis, however, that in the general case 
the relation between the PCK and the PSP is more 
complicated, although the linear approximation may be 
valuable for estimating the effects of network connectiv- 
ity on pairwise firing correlations in certain dynamical 
regimes (Kenyon et al. 1990; Fetz 1988). 

Another relevant line of research involves the mod- 
eling of cell firing activity as the consequence of a 
diffusion process (cf. Gerstein and Mandelbrot 1964; 
Johannesma 1968; Holden 1976; Sampath and Srinivas- 
san 1977; Giorno et al. 1988). These investigations have 
been principally directed toward solving the first pas- 
sage time problem and thereby obtaining the average 
firing rate as a function of the parameters characteriz- 
ing the synaptic input. These models have also been 
extended to analyze both the dynamics of large net- 
works and the transient responses produced by synaptic 
inputs (Brannan and Boyce 1981a, b). The analytical 
methods developed in these studies are limited, how- 
ever, to the consideration of synaptic inputs of either 
zeroth order (perfect integrator) or first order form 
(leaky integrator). 

All of the above models possess some region of 
validity, but none are generally applicable over a wide 
range of dynamical conditions. The theoretical model 
presented here is a first attempt at a unified treatment 
of the response properties of single cells that may be 
readily extended to the analysis of larger interacting 
systems. Our immediate goal is to predict the time- 
dependent changes in the instantaneous firing rate pro- 
duced by typical synaptic inputs. We further seek to 
understand how such changes depend on dynamical 
factors, such as the intensity and character of the 
background synaptic input. 

In Sects. 2 and 3 we describe both our analytical 
model and the numerical methods used to generate 
spike train data. In Sect. 4, the analytical and simulated 
results are compared. Finally, in Sect. 5, we discuss the 
dynamical factors affecting the relationship between the 
PCK and the PSP. We also consider both the strengths 
and weaknesses of the calculational procedure outlined 
here, as well as indicating how the present model may 
be extended to more accurately reflect physiological 
nerve cells. 

2 Analytical methods 

2.1 Threshold  neuron mode l s  

The neuron model considered here, called an integrate- 
and-fire model in the literature, is conceptually simple. 
The neuron sums Poisson-distributed PSPs representing 
the synaptic input from a large presynaptic population 
of cells. When the combined synaptic input exceeds a 
threshold value, the neuron 'fires' and the membrane 
potential is reset. In the simplest version of the model, 
we assume that all synapses produce PSPs of identical 
size and shape, which we take to be of second order 
form (i.e. the sum of two exponential decays). The 
process may then be written compactly in terms of a 

second-order differential equation with an additional 
threshold firing condition: 

% ~ +  fft + ~  (a(t) = 2 Tb( t  - t ' )  (1) 

The left hand side of (1) consists of an ordinary, linear 
differential operator acting on the membrane polariza- 
tion at time t, ~b(t). Individual PSPs are generated by 
each b-function impulse, where the impulse amplitude 
is given by T and the sum is over the arrival times of all 
inputs, zr and za give the rise and decay times of the 
PSP, respectively. 

The threshold firing condition is given by 

if q)( t )=0 then q) ( t+0 +) ~ b r  
q~(t + 0 +) --, q)r (2) 

where 0 is the firing threshold. After firing, the state of 
the neuron is reset according to the fixed 'reset' poten- 
tials {~br, ~r } and we require that q)r < 0. 

It is convenient to rewrite (1) in the following form: 

,--> 
~t (l)(t) + F �9 (1)(t) = ~ Tb ( t  - t ' )  (3) 

t '  

where we have introduced the vector notation for the 
membrane polarization and its first time derivative, 
, = 

Comparing (I) a r~  (3), we see that the components 
of the drift matrix, F in the 2 >< 2-dimensional space 
are given by 

_ 0) 
(4) 

and that the impulse strength, T, has been generalized 
to a 2-dimensional vector with components T =  
(0, T/'~r) T. 

2.2 The infinite threshold propagator  

Consider a neuron with' an infinite firing threshold 
bombarded by Poisson-distributed impulses arriving at 
a mean frequency f .  The statistical distribution of the 
membrane polarization is governed by a generalized 
Fokker-Planck equation of the form 

0 G~>(~  ' tl~, ' t) = 6(t -- t')b(d~ - d~') 
0t 

+ C - * + f  exp - T . ~ - ~  - 1  

x G(~>)(~, t[4)', t'). (5) 

G(~)(d~,t ld~' , t  ') is the propagator for the infinite 
threshold neuron, which gives the probability density 
for finding the cell in the state ~b at time t, given the cell 
was in state ~b', at the earlier time, t'. The derivation of 
(5) depends only on the general form of (3) and on the 
condition that the synaptic input be Poisson-distributed 
(Gardiner 1983). 
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2 .3  T h e  d i f fus ion  l im i t  

We are most interested in the solution to (5) in the 
diffusion or low noise limit. Expanding the translation 
operator, also called the 'jump term', as a power series 
in T, and then neglecting all terms of order O(T 3) and 
above, we obtain a Fokker-Planck equation of the form 

~t a ~ ) (  ~,, tl,V, t') = b(t - c)6(,1, - ,V) 

'E( 1} + ~ - ( r . ~ , - f r ) + ~ T r  ~ - - ~ |  

x G(~176162 t lb ' ,  t ' ) .  (6) 

F_~ere we have introduced the (2 x 2) diffusion matrix 
Z,  given by 

Z = f r  | T .  (7) 

We see that the diffusion, or low noise, approximation 
becomes exact in the limit f ~ ~ and T ~ 0 such that 
the product f ie remains finite. 

In the diffusion limit, the infinite threshold propaga- 
tor, G ~),  is a two dimensional Gaussian distribution: 

exp{-�89 - <~(t - t')>) r .  ~*- ' ( t  - t') �9 
G(~176 tl~b', t ') = 

2 ~ J l T ( t  - t ' ) l  I 

such that G (~) is completely determined by the first two 
cumulants of the d~stnbut~on, (~b(t - t ) > and a (t - t ). 
From (6) we may derive formal solutions for the first 
two cumulants: 

<s - t')> = e u -c ) r  �9 (~'  -- <s >) + <~b(oo) > (9) 

a (t - t') = - e  u - c ) 7  �9 7 ( 0 )  �9 e(t-t')'~T--F a(ct3) (10) 

Finally, a similar calculation shows that the station- 
ary values of the first two cumulants are given by 

1) .(11) <~(oo)> = ~ i "  o 

(,0 / 
a ( ~ )  =�89 "2 0 1 . 

\ ~,~a/ 

(12) 

Equations (8)-(12) provide an explicit solution for 
the infinite threshold propagator in the diffusion limit. It 
will be useful for the following development, however, to 

2 . 4  T h e  f i n i t e  t h r e s h o l d  p r o p a g a t o r  

It now remains to obtain an expression for the full 
propagator, G. We do this by appending prob- 
ability current sources and sinks to the Fokker-Planck 
equation. 

A probability current sink, J_ ,  acting at the firing 
threshold is defined by 

J ( ~ ,  t[~b, t') = -5(~b - 0)[06]G(d~, tl~,', c) (15) 

J_ gives the rate at which probability flows out of the 
subthreshold region with a given 06 for a cell prepared 
in state ~'  at time t'. The form of the expression for 
the current (1 5) may be understood by noting that it is 
just the product of a probability density, G, with a 
'normal velocity', 06. The extra b-function factor sim- 
ply localizes the probability current sink at the firing 
threshold. 

A probability current source, J + ,  acting at the 
reset potentials, d~, is likewise given by 

J+ tl ', c)  = 6 ( , -  0 r )  ~ d06106"]G(0", tl~b', t') (16) 
0 

( ~  - -  ( ~ ( t  - -  t ' ) > ) }  
(8) 

where we have introduced the vector 0 with compo- 
nents 0 = (0, 06)r. j+  gives the rate at which probability 
flows into the system at the reset potentials, #r. 

The total integral over the 2-dimensional phase 
space is the same for both currents: 

d , j _ ( C , , t l O ' , t ' ) =  ~ d , j + ( , , t l O ' , t '  ) (17) 
- -  o o  - -  o ~  

as is required by current conservation. Any probability 
current that leaves at the threshold must come back in 
at the reset potentials. 

These current sources and sinks are then appended 
to the right hand side of (13) to yield an integral 
equation for the finite threshold propagator, G. Multi- 
plying through by G ~ )  and integrating over all inter- 
mediate states then results in the following Dyson 
equation: 

t 

G(,,  tt*', t) -- G~)(*, tl*', t') +S dt" ~ ddpG ~~176 

rewrite (6) in terms of the inverse propagator: 

x a(~176 ", t"[d~', t ' )  = 5 ( t  - t ' ) 6 ( ~  - d~') (13) 

with the inverse of G <~~ given formally by 

c ~  1(,, t[,, c) = N - �9 ( ~ - f r )  

x 6( t  - -  t ' ) b ( ~  - dp').  (14) 

(~, tld~", t"){J+ (d~", t'[d~', t') - J  (4r t"[~', t')}. (18) 

Substituting the explicit forms for J+ (16) and J_ (15) 
we obtain 

t 

G(~b, t]d~', t') = G{~ tld~', t') + S dt" S d06" 
t' 0 

• { G ~ ) ( , ,  t l ,r ,  t") 

-- G{~ t[0", t")}[06"lG(0", t"[dp', t') (19) 

Equation (19) is the principal relation between the finite 
and infinite threshold propagators and will be our 
starting point for obtaining approximate solutions. 
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Examination of  (19) shows that G is normalized 
and satisfies the correct initial conditions as t ~ t'. 

lim G(d~,  t ] ~ ' ,  t ' )  = 6(dO - -  d~') ( 2 0 )  
t ~ t "  

G must also satisfy the following boundary conditions 
at the threshold: 

G(0, tl~b', t ') = 0 for q6 < 0 
(21) 

a(d~, tl0', t ') = 0 for 96' > 0 

These boundary conditions merely specify that no tra- 
jectories can enter the allowed subthreshold region 
from the forbidden region above the threshold. 

2.5 Time dependent perturbation theory 

Equation (19) may be solved approximately by iterating 
the expression to the desired order. To zeroth order we 
have simply: 

G(o)(~, tldp', t ') = G(~)(d~, tl~b', t ') (22) 

To first order, we replace G on the right hand side 
of  (19) with G(~): 

a( , ) (~,  t W,  r )  = ar  t]~', r )  

+ i dt" S d96"{G(~)(d~, tld~r, t") 
t '  0 

- a ~ ( ~ ,  tl0", t")}[96"]a<~)(0 ", t"l~', r ) .  (23) 

2.6 Graphical representation 

Consistent with a path integral representation, the 
propagator  between two states is formally equal to the 
weighted sum of  all possible trajectories between the 
two states. Equation (22) shows that to lowest order G 
is given by the weighted sum of  all trajectories in the 
source/sink free system. In (19), the sink term removes 
all trajectories which previously crossed the threshold. 
The source term adds these trajectories back in at the 
appropriate reset potentials. 

In Fig. 1 we present a graphical representation of 
the above procedure. The curves on each graph refer to 
the associated propagator  between the two states at two 
indicated times. The thick curves represent the finite 
threshold propagator  G, and the thin curves stand for 
the infinite threshold propagator,  G (~176 Each vertex, 
shown in Fig. 1 as large round dots, implies an integra- 
tion over all intermediate times and states. A vertex at 
a threshold crossing carries an additional b-function 
which forces the membrane and threshold potentials to 
be equal. Likewise, a vertex at the reset potential carries 
two fi-functions. Of course, the states represented on 
the graphs are actually 2-dimensional, but only one 
dimension is necessary to illustrate the procedure. It is 
thus possible to formulate a complete set of  rules such 
that both the graphical and algebraic representations 
contain the same information. Such graphical represen- 
tations are useful for both organizing and clarifying 
complex mathematical expressions. 

m 
n 

Fig. 1. Graphical representation of perturbation calculation. The first 
equality gives the exact relation (19) between the finite and infinite 
threshold propagators. The second equality exhibits the first two 
terms in the perturbation series (23) obtained by iteratively replacing 
the finite threshold propagator with its formal expansion and then 
neglecting all graphs with more than one vertex. Each vertex implies 
integration over all intermediate times and over all non fixed mem- 
brane potential degrees of freedom. The graphical representation 
contains the same information as the explicit algebraic form, but is 
conceptually simpler. - - . ,  finite threshold propagator; - - ,  
infinite threshold propagator 

The first equality in Fig. 1, which corresponds to 
(19), portrays the exact relationship between the finite 
and infinite threshold propagators. The second equality 
corresponds to (23) and exhibits the first two terms in 
the perturbation series. In general, we see that the finite 
threshold propagator is constructed from the infinite 
threshold propagator by subtracting all 'illegal' 
suprathreshold trajectories and adding back in the cor- 
rectly 'reset' trajectories. Consecutive terms in the per- 
turbation series are obtained simply by iteratively 
replacing the finite threshold propagator by the expan- 
sion shown in the first equality in Fig. 1 and then 
neglecting all graphs above a certain order, determined 
by the number of vertices. 

2. 7 Experimental measures 

The firing rate of  the cell is equal to the probability 
current flowing out through the boundary at ~b = 0 
where (15) gives the general form for this current: 

F(t]~', t ') = S d96J (0, tld~' , t'). 
0 

= S d96196]G(0, t[d~', t'). (24) 
0 

The stationary firing rate is then found by letting 
t -  t '  ~ ~ :  

F(oo) = S d96196]a(0, ~ ) .  (25) 
0 

The PCK, denoted by C ( t -  t'), produced by an 
impulse of  strength S delivered to a cell in the station- 
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ary state at time t' is given by 

C ( t -  t ' ) =  ~ dq~ ~ d~b' d~'[q~] 
0 - - c O  

x G(O, tidy + S, t ')a(dp, oo) (26) 

where S = (0, S)r. We have used the fact that the effect 
of an impulse of amplitude S delivered to a system 
governed by equation 1 is to modify (d~(t- t ' ) )  by 
shifting the initial conditions; ~b' ~ dy + S. 

Equation (26), giving the primary correlation kernel 
produced by an impulse of strength S, may be com- 
pared to a similar expression obtained by Knox (1974). 
The difference in the two expressions is that we have 
assumed an underlying Markov process which allows us 
to integrate over a complete set of states at the time the 
impulse is applied. 

2.8 Solutions for  the P C K  up to f irst  order 

Expressions for the PCK of successively greater accu- 
racy are obtained by first expanding G and then insert- 
ing the results in (26) for the PCK where all terms 
above the desired order are neglected. To zeroth order, 
we have therefore 

C(0)(t- t ' ) =  ~ dq~ ~ dq~' ~ dq~'[q~] 
0 - - ~  0 

x G(~~ t]~" + S, t')G(~~ oo) (27) 
To obtain an expression accurate to first order, we 

note the property of Gaussian distributions that the 
convolution of two Gaussians is another Gaussian: 

ddya(~176 t[dp' - S, t ' )G(~)( d~ ", t'ldy' , t") 
- - o o  

= a(~~ -- e(t - t'), tJdp", t") (28) 

where we have written the impulse response function 
(PSP) as e(t - t') and we have adopted the shorthand 
notation e for {e, ~}. We then obtain to first order for 
the PCK 

C o ) ( t -  " ) =  C , o ) ( t -  t ') + i dt" ~ dq~ ~ d r "  
- -  o o  0 0 

x {[q~]G(~~ - H(t" - t")e(t - t'), t l~ .  t")[6"] 
x G(~) (O" -e ( t "  - t'), oo) - [q~]G(~~ - H(t '  - t") 

x e(t - t'), tiff', t " ) [6"]a(~~ " - e(t" - t'), oo)} 

(29) 

where we have introduced the step function H(x)  which 
is unity for x > 0 and zero otherwise. We have also 
adopted the convention that C(1)(t- t') denotes the 
PCK obtained by neglecting all graphs with more than 
one vertex. 

Equation (29) gives our approximate expression for 
the PCK valid to first order in the perturbation scheme 
depicted in Fig. 1. It is to our knowledge the first explicit 
expression for the change in firing rate produced by single 
synaptic inputs of nonspecific form. All we have left to 
do is to perform the three remaining integrals in (29), 
where the integrand consists entirely of known functions. 

Although conceptually straightforward, the integrals 
involved are not analytic and therefore cannot be reduced 
to elementary functions. The details involved in reducing 
(29) to a more elementary form involving standard error 
functions have been derived elsewhere (Kenyon 1990). 

3 Numerical Methods 

3. I Description o f  simulation 

To test the accuracy of the approximations used in 
deriving our results, we compared the predictions of the 
theory to the 'true' PCK calculated from computer 
generated spike trains obtained by solving (1) and (2) 
numerically. Due to the linearity of (1), a numerical 
solution to the dynamical equations may be obtained to 
an arbitrary degree of precision in continuous time, 
without introducing an integration time step. 

In simulating the activity of threshold neurons, two 
independent sources of Poisson-distributed synaptic in- 
put were employed. The first, or primary source ac- 
counted for at least 99% of the total membrane 
polarization. The secondary source provided a means of 
testing the response to synaptic impulses of various 
sizes and never represented more than a small addition 
to the primary synaptic drive. 

When two sources of Poisson-distributed synaptic 
impulses are present, they may (in the diffusion limit) 
be replaced by a single equivalent source of synaptic 
input. The amplitude and frequency of the impulses 
from the equivalent source are determined by requiring 
that the first and second moments of the membrane 
polarization be the same in either case. From (11) and 
(12) we see this requirement is expressed mathemati- 
cally as: 

J'T = f l  I"1 + f2 T2 (30) 

f T2 =f~ TI 2 +f2 T~ (31) 

where f and T denote the frequency and amplitude of 
the equivalent source and the subscripts refer to either 
of the independent sources. We note that (30) may be 
trivially generalized to account for any number of 
independent sources. This establishes that the present 
model is sufficiently general to account for heteroge- 
neous synaptic input as long as all PSPs are character- 
ized by the same set of time constants. 

3.2 Simulation parameters 

For all the following simulations, z, and Zd are set to 
0.2 ms and 1 ms respectively. These times may be shorter 
than typical biological time constants but have been 
chosen for convenience. Since the absolute time scale of 
a computer simulation is arbitrary, all subsequent results 
with units of time can be scaled accordingly. The ratio 
r =Zd/Zr = 5 results in EPSPs which are reasonably 
broad and do not rise too sharply. The reset potentials, 
q~r and ~r, are 0.0 mV and 0.0 mV/ms respectively. For 
simplicity, the effects of a postfiring hyperpolariza- 
tion,which would be indicated by a finite negative value 
of q~r, was not included in these simulations. 
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Fig. 2a-d. Example membrane potential trajectories for four differ- 
ent dynamical regimes. Firing mode indicated by individual figure 
titles. Dashed line below threshold indicates the mean asymptotic 
value (m.a.v.) of the membrane potential in the infinite threshold 
case. Dotted lines indicate one standard deviation above and below 
the m.a.v. EPSP impulse amplitudes either 1/100 (low noise) or 1/10 
(high noise) of the threshold potential. For activity classified as mode 
I (mode II), the m.a.v, is (is not) within one standard deviation of the 
firing threshold 

4 R e s u l t s  

4.1 Classifying dynamical regimes 

Figure 2 shows four representative membrane potential 
trajectories, illustrating qualitatively different synaptic 
input in each case. The firing threshold is indicated by 
the solid line at 10mV. The dashed line, computed 
from (11), indicates the mean asymptotic value 
(m.a.v.) of  the membrane  potential. In the absence of 
a firing threshold, the membrane potential would fluc- 
tuate about  the m.a.v. The expected amplitude of  these 
fluctuations is given by (12) and is indicated by the 
two dotted lines which indicate one standard deviation 
above and below the m.a.v. 

Figures 2a, b are labeled low noise since the EPSPs 
are relatively small (0/100), and the frequency of 
incoming EPSP is therefore relatively large 
(96,000 Hz). In contrast, Figs. 2c, d are labeled high 
noise since the EPSPs are relatively large (0/10) and 
the rate of  the Poisson-distributed synaptic input rela- 
tively small (8,500Hz).  The relationship between 
synaptic noise and impulse amplitude follows immedi- 
ately from (12), which shows that the membrane po- 

tential fluctuations increase with the size of  the PSPs 
for fixed m.a.v. Figure 2 shows clearly that the mem- 
brane fluctuations are significantly larger in the high 
noise case. 

We also classify the membrane trajectories shown 
in Fig. 2 by a separate criterion, based on whether 
or not the m.a.v, of  the membrane potential is within 
one standard deviation of the firing threshold. When 
the m.a.v, is within one standard deviation of  
threshold, as in Fig. 2a, c, we classify the resulting 
firing activity as mode I. Likewise, when the m.a.v, is 
more than one standard deviation below the firing 
threshold, as in Fig. 2b, d, we classify the result- 
ing firing activity as mode II. These functional classifi- 
cations were introduced previously (Kenyon et al. 
1990) to characterize the response properties of  
threshold neurons. In particular, it was shown that the 
mode of  firing activity markedly influenced the effect 
of  firing synchrony on signal propagation (see also 
Sect. 4.5). 

4.2 Stationary firing rates 

The stationary firing rates predicted by the theoretical 
model (25) for each of  the four dynamical regimes 
shown in Fig. 2 are listed in Table 1. 

The table reveals that the zeroth order prediction is 
usually too high and the first order prediction is usu- 
ally too low. This result is to be expected. To zeroth 
order the membrane potential is never reset, which 
causes the firing rate to be overestimated. To first 
order, the same mechanism causes the theoretical cal- 
culation to over count the number of  initial threshold 
crossings and the cell effectively spends too much time 
in the reset condition, lowering the predicted firing 
rate below the true value. This pattern of  alternately 
overestimating and then underestimating the true firing 
rate is repeated to all orders in perturbation theory, 
ultimately converging on the correct result. 

The above arguments are no longer exact when the 
diffusion approximation is used, since this produces an 
uncontrolled source of systematic error. However, the 
diffusion approximation is very good when the PSP 
amplitudes are small, in which case the above pattern 
is expected to be a good rule of  thumb, if not entirely 
rigorous. As indicated in Table 1, it is only in the high 
noise case where diffusion approximation may break 
down. 

Table I. Stationary firing rates (Hz.): Theory vs. simulation. Firing 
modes discussed in text and illustrated in Fig. 2. All simulations 
consisted of approximately 105 cell firings (threshold crossings). Theor- 
etical values obtained from 0th and 1st order expansions of (25) 

Mode Simulation Theory 
__+ .5% 

0th order 1st order 

mode I, low noise 200 301 112 
mode II, high noise 24 25 20 
mode I, high noise 207 273 160 
mode II, high noise 30 25 20 
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Fig. 3a-d. The PCK produced by an EPSP: Theory vs. Simulation. 
Comparison of the PCK obtained from simulated spike train data 
(histogram) with the prediction of a general diffusion model (27, 29) 
solved to 0th and 1st order in perturbation theory. Data from the 
four dynamical regimes are organized as in Fig. 2. The theory is 
a much better fit to the simulation for mode II activity than for 
mode I activity. The fit is also improved for mode I activity by 
increasing the level of synaptic noise. The first order correction 
improves the estimate for PCK in all four dynamical regimes. As 
predicted, the simulation is usually well bounded by the 0th and 1st 
order estimates 

4.3 The PC K  produced by an EPSP  

Figure 3 compares the measured PCK produced by a 
positive synaptic impulse with the two lowest order 
predictions of the theoretical model. The comparison is 
made for each of the four dynamical regimes depicted 
in Fig. 2. For  low levels of  synaptic noise, the theoreti- 
cal model predicts the PCK better for mode II than 
mode I activity. Furthermore, for mode I firing activity, 
the accuracy of  the theoretical model improves with 
higher levels of synaptic noise, while for mode II activ- 
ity the effect of  increasing noise levels is unclear. 

In Fig. 3a the activity is mode I and the membrane 
fluctuations are relatively small. In this case, the fit 
between theory and simulation is not very good, al- 
though the situation is improved substantially by the 
first order correction. The discrepancy between theory 
and simulation is to be expected in this dynamical 
regime due to the nature of the zeroth order approxi- 
mation. For  mode I activity, the membrane potential 
crosses the firing threshold fairly often, so the infinite 
threshold approximation is correspondingly poor. The 
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situation is improved substantially by the first order 
correction, implying that a higher order calculation 
would further improve accuracy. 

In Fig. 3b, the firing activity is mode II and the 
membrane fluctuations are again small. In this case, the 
theory and simulation are in very good agreement. The 
high degree of accuracy may be anticipated from the 
nature of  the zeroth order approximation and the gen- 
eral validity of the diffusion approximation when ap- 
plied in this dynamical regime. For  mode II activity, 
threshold crossing are infrequent, and the infinite 
threshold approximation is reasonably accurate. 

In Fig. 3c and d we investigate the effect of increas, 
ing levels of  synaptic noise on the fit between theory 
and simulation. For  mode I activity (Fig. 3c) the fit is 
significantly improved by the increased level of  synaptic 
noise. For  mode II activity, however (Fig. 3d) no 
significant effect from increasing noise levels is ob- 
served. In the case of mode I activity, increasing the 
level of synaptic noise makes the infinite threshold 
approximation more accurate, as the reseting of  the 
membrane potential after each threshold crossing is of  
the same order of  magnitude as the intrinsic membrane 
fluctuations. In the case of  mode II activity, however, 
the accuracy of the infinite threshold model is not as 
strongly affected by the level of synaptic noise, since 
threshold crossing are rare at both noise levels. We still 
expect, however, that the diffusion approximation is 
less accurate at higher noise levels, as is evidenced by 
the fact that the actual firing rate, shown in Table 1, 
was not within the predicted range for mode II activity 
at the highest noise level. 

4.4 Theoretical bounds on the PCK 

Just as the stationary firing rates are bounded by alter- 
nating high and low frequency estimates (Table 1) the 
true PCK should lie between the zeroth and first order 
results. Thus, even if the PCK is not determined pre- 
cisely, upper and lower bounds on the PCK may be 
established. Note that wherever the zeroth and first 
order results intersect, we obtain an exact value. The 
same arguments show that more stringent bounds are 
placed by progressively higher order calculations, such 
that the first and second order calculations would more 
effectively bound the true result. 

It is apparent from inspection of Fig. 3 that the 
zeroth and first order predictions do bound the true 
PCK to within the intrinsic scatter present in the data. 
The zeroth and first order results are only rigorous 
bounds in the diffusion limit, however. Again, we 
must therefore consider the above bounds as a rule of  
thumb only. 

4.5 Synaptic efficacy 

We also investigated the PCK as a function of  PSP 
amplitude. We let the synaptic efficacy, A, be defined as 
the total area under the PCK. A therefore gives the 
average number of  extra spikes produced by the EPSP. 
Figure 4 shows A as a function of EPSP amplitude for 
the four distinct dynamical regimes. 
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Fig. 4a -d .  Synaptic efficacy (A) vs. EPSP impulse amplitude: Theory 
vs. Simulation. A obtained by numerically integrating each o f  the 
curves in Fig. 3. A for large impulses is predicted more accurately in 
the high noise as opposed to the low noise simulations. As expected, 
A is also more accurately predicted for mode II than for mode I 
activity. The amplified response to large impulses of  neurons with 
mode II activity is evidenced by the expansive nonlinearity seen in b 
and d. In contrast,  there is no amplified response to large impulses in 
cells with mode I activity, as evidenced by the linear or compressively 
nonlinear relationship seen in a and c. 

Figure 4 reveals a significant functional distinction 
between mode I and mode II activity. For mode I 
activity, A increases roughly linearly with EPSP size, 
saturating only for impulse amplitudes greater than 
20% of the threshold value in the low noise case. For 
mode II activity, however, the increase in A with EPSP 
amplitude is non-linear and amplified at large impulse 
amplitudes, which again, in the low noise case, begins 
to turn over only at impulse amplitudes above 20% of 
the firing threshold. 

These results imply that cells with mode II activity 
should be especially sensitive to the synchronous arrival 
of many EPSPs. It has been shown that this differential 
sensitivity to synchronous input can be exploited to 
gate the flow of neurological signals through synaptic 
pathways (Kenyon et al. 1990). In layered networks, 
the firing synchrony between cells in a given layer can 
gate the transmission of frequency modulated signals to 
subsequent layers. In constrast, there is no correspond- 
ing capability in networks with mode I firing activity, 
since there is no differential selectivity for large inputs. 
This is evidenced by the initial linear dependence of 
synaptic efficacy on impulse amplitude for cells with 
mode I acitivity (Fig. 4a, c). 

Figure 4 again shows that to zeroth order, mode II 
activity is fit much better than mode I activity, although 
this difference becomes less pronounced when the 
theory is extended to first order. Figure 4 also confirms 
our previous observation that synaptic noise improves 
the fit between theory and experiment for mode I 
activity, but less so for mode II activity, although the 
theory is better able to predict the response to very 
large impulses for either mode of activity when the 
synaptic noise is also relatively large. It is intuitively 
reasonable that the theory should describe more 
accurately the response to synaptic impulses that are 
of the same order of magnitude as the background 
synaptic input. 

5 D i s c u s s i o n  

We have seen that generalized diffusion models can give 
a good account of the changes in cell firing rate pro- 
duced by typical synaptic inputs under certain dynami- 
cal conditions. Generally, the response of cells 
exhibiting mode II activity is well described by the 
theoretical model. This may be of particular signifi- 
cance since mode II firing activity best resembles that 
observed in cerebral cortex (random, infrequent 
firings). For cells exhibiting mode I activity, however, 
the initial terms of the theory are no longer reliable. 
This may be understood in terms of the method of 
solution we employed, which uses the results for a cell 
with an infinite firing threshold to estimate the effects of 
the finite threshold. 

The most important source of the discrepancy be- 
tween theory and simulation in the mode I case is 
apparently the assumed form of the zeroth order sta- 
tionary distribution G(~)(dp, ~) .  In the infinite 
threshold case, the stationary distribution is concen- 
trated at the asymptotic value of the membrane polar- 
ization (Fig. 2). When the effect of the finite threshold 
is included, the probability distribution is spread out 
due to the resetting of the membrane polarization at 
each firing. If firings are infrequent, as during mode II 
activity, this broadening of the distribution is much less 
substantial and is well estimated to low order. In the 
mode I case, however, the membrane potential is more 
likely to be anywhere between the reset polarization 
and the firing threshold. The best way to improve the 
theory in the mode I case is therefore to improve the 
zeroth order estimate of the stationary distribution. We 
have not yet devised a systematic method for accom- 
plishing this. 

It is also possible to understand the qualitative 
differences in the response to a synaptic impulse exhib- 
ited in the two modes of activity. Equation (26) shows 
that the firing rate is proportional to the time rate of 
change of the membrane potential at the firing 
threshold. This is because in a short time interval, At, 
all membrane potential trajectories within c~At of the 
firing threshold will cross the threshold during this 
interval. One effect of the EPSP is to increase the 
average time rate of change in the membrane polariza- 



t ion by an amoun t  b ( t -  t ') .  The EPSP also shifts the 
distr ibution o f  the membrane  polarizat ion toward  the 
firing threshold, which also increases the firing rate. In  
the two modes  o f  activity, these effects have different 
levels o f  importance.  

In  mode  I the distribution o f  the membrane  polar- 
ization is nearly uni form and therefore relatively inde- 
pendent  o f  the membrane  polarization. The effect o f  the 
EPSP is then primarily to increase the rate at which 
membrane  potential  trajectories cross the firing 
threshold and the P C K  is propor t iona l  to ~ ( t -  t '). In  
mode  II  the distribution is concentra ted at membrane  
polarizations more  than one s tandard deviation below 
the firing threshold and the effect o f  the EPSP is then 
primarily to shift this distribution closer to the firing 
threshold. The P C K  in the mode  I I  case therefore 
exhibits a nonlinear  dependence o f  e ( t -  t ') itself. 

The generalized diffusion model  presented here cap- 
tures m a n y  o f  the dynamical ly significant aspects o f  
synaptic interactions between nerve cells. In  particular, 
we are able to reproduce,  f rom a mathematical  model,  
the enhanced sensitivity o f  neurons with mode  II firing 
activity to large synaptic impulses. This strongly implies 
that  extensions o f  the formalism to multi-cell networks 
may  be capable o f  explaining complex behavior  involv- 
ing correlated firing activity. 

Finally, we briefly consider several possible general- 
izations o f  the above formalism to describe more  realis- 
tically the synaptic interactions between biological nerve 
cells. We note  that  our  explicit results are the correct  first 
order  expression for a PSP of  general shape, given the 
other assumptions which went into the derivation. Al- 
though in the derivation o f  (29), e(t - t ')  was assumed 
to be the response to an impulse o f  strength S, this was 
no t  a requirement,  as follows directly f rom (1). 

A finite reversal potential  can be incorporated  into 
the formalism by assuming that  the ampli tude o f  each 
synaptic impulse is a funct ion o f  the membrane  polariza- 
tion. In  obtaining a solution for G (~ it was necessary 
to work  in the diffusion limit and to assume that  the PSP 
amplitudes were independent  o f  the membrane  polariza- 
tion. To  relax these assumptions,  a separate per turbat ion  
theory would have to be developed for G (~176 The same 
techniques used to incorporate  the finite threshold into 
the formalism can also be used to estimate the effects o f  
finite reversal potentials and ' j ump '  terms neglected in 
taking the diffusion limit ( K e n y o n  1990). 

Inpu t  to biological neurons consists o f  PSPs that  are 
not  only o f  varying ampli tude but  o f  variable time 
dependence as well. Overdamped  second order  PSPs 
with several different time dependences could be in- 
cluded by assuming the total membrane  polar izat ion was 
the sum o f  several independent  membrane  polarizations 
each governed by an equat ion o f  the same form as (1), 
but  with different time constants.  Spatial interactions 
between groups  o f  synapses located at different positions 
a long the dendrites could also be modeled in this man-  
ner. Likewise, a non-cons tan t  threshold could be ac- 
counted  for by a separate dynamical  equat ion for  0. We 
have no t  yet determined how the inclusion o f  such effects 
would alter our  first order  results, but  the calculation 
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involved should be s t ra ightforward generalization o f  the 
steps leading to (29). 

Our  explicit result for second order  PSPs could also 
be easily extended to PSPs o f  higher order. The mem-  
brane polar izat ion would  then be governed by an r/th 
order  differential equat ion where in principle n ma y  be 
arbitrarily large. This would no t  alter the fo rm o f  (29), 
which is the correct  first order  expression for  the P C K  
for any theory where the subthreshold membrane  polar-  
ization obeys a linear differential equat ion o f  order  
greater than 1. 
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