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Abstract

Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Com-

puter-Interfaces (BBCI) can artificially strengthen connections between separate neural

sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger sti-

muli at a second target site after a fixed delay, the connections between sites eventually

strengthen. It was also found that effective spike-stimulus delays are consistent with experi-

mentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is

key to drive these changes. However, the impact of STDP at the level of circuits, and the

mechanisms governing its modification with neural implants remain poorly understood. The

present work describes a recurrent neural network model with probabilistic spiking mecha-

nisms and plastic synapses capable of capturing both neural and synaptic activity statistics

relevant to BBCI conditioning protocols. Our model successfully reproduces key experimen-

tal results, both established and new, and offers mechanistic insights into spike-triggered

conditioning. Using analytical calculations and numerical simulations, we derive optimal

operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-

triggered conditioning in different regimes of cortical activity.

Author summary

Recent developments in Bidirectional Brain-Computer Interfaces (BBCI) not only allow

the reading out of neural activity from cortical neurons, but also the delivery of electrical

signals. These drive neural dynamics and shape synaptic plasticity, thus opening the possi-

bility of engineering novel neural circuits, with important applications for clinical treat-

ments of spinal cord injuries and stroke. However, synaptic changes in recurrent

networks of neurons are hard to predict: they involve complex dynamic mechanisms on

multiple temporal and spatial scales. Based on experiments, we develop a computational

network model with plastic synapses that serves as a predictive tool for BBCI protocols.
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We show how the efficacy of BBCIs is influenced by cortical activity statistics and we pro-

pose state-based stimulation strategies for driving artificially-induced synaptic plasticity.

Introduction

The cerebral cortex contains interacting neurons whose functional connections are modified

through repeated patterns of activation. For example, motor and somatosensory cortices are

typically organized into somatotopic regions in which localized neural populations are associ-

ated with muscles or receptive fields and show varied levels of correlated activity (e.g. [1–5]).

Functional relationships between such neural populations are known to change over time,

reinforcing relevant pathways [6–9]. These changes are the result of plasticity mechanisms act-

ing on myriad synaptic connections between cortical neurons. Most of them are relatively

weak but can potentiate under the right conditions. However, it is not always clear what such

conditions might be, or how one can interact with them for experimental or clinical purposes.

Unanswered questions include the way local synaptic plasticity rules lead to stable, emergent

functional connections, and the role of neural activity—and its statistics—in shaping such con-

nections. While recent and ongoing work elucidates various plasticity mechanisms at the level

of individual synapses, it is still unknown how these combine to shape the recurrently con-

nected circuits that support population-level neural computations.

Bidirectional brain-computer interfaces (BBCI) capable of closed-loop recording and stim-

ulation have enabled targeted conditioning experiments that probe these issues. In a seminal

experiment [10], a BBCI called the Neurochip recorded action potentials of a neuron at one

site in motor cortex (MC) and delivered spike-triggered stimuli at another for prolonged times

in freely behaving macaque monkeys. This conditioning was able to increase functional con-

nectivity from neurons in the recorded site to the ones in the stimulated site (c.f. [11]), as mea-

sured by electromyogram (EMG) of muscle activation evoked by intracortical

microstimulation (ICMS) in MC. Importantly, the relative strength of induced changes

showed a strong dependence on the spike-stimulus delay, consistent with experimentally

derived excitatory spike-timing-dependent plasticity (STDP) time windows [12–14]. The

effects of this protocol were apparent after about a day of ongoing conditioning, and lasted for

several days afterwards. Similar spike-triggered stimulation showed that corticospinal connec-

tions could increase or decrease, depending on whether the postsynaptic cells were stimulated

after or before arrival of the presynaptic impulses [15]. This BBCI protocol has potential clini-

cal uses for recovery after injuries and scientific utility for probing information processing and

learning in neural circuits.

The observations outlined above suggest that STDP is involved in shaping neural connec-

tions by normal activity during free behavior, and is the central mechanism behind the success

of spike-triggered conditioning. However, this could not be verified directly as current experi-

ments only measure functional relationships between cortical sites. Furthermore, interactions

between BBCI signals and neural activity in recurrent networks are still poorly understood,

and it remains unclear how BBCI protocols can be scaled up, made more efficient, and opti-

mized for different experimental paradigms. For example, during spike-triggered stimulation,

the spikes from a single unit are used to trigger stimulation of a neural population. While

STDP can explain how the directly targeted synapses may be affected (i.e. from the origin of

the recorded spikes to the stimulated population), the observed functional changes must rely

on a broader scope of plastic changes involving other neurons that are functionally related to
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the recorded ones. What are the relevant network mechanisms that govern these population-

level changes? How can a BBCI make use of population activity to trigger optimal stimulation?

Here we advance a modeling platform capable of capturing the effects of BBCI on recurrent,

plastic neuronal networks. Our goal is to use the simplest dynamical assumptions in a “bot-

tom-up” approach, motivated by neuronal and synaptic physiology, that enable the reproduc-

tion of key experimental findings from [10] at the functional level in MC and related muscles.

In turn, we seek to use this model to provide insights into plasticity mechanisms in recurrent

MC circuits (and other cortical regions) that are not readily accessible experimentally, as well

as establish a theoretical framework upon which future BBCI protocols can be developed.

We build on a well-established body of work that enables analytical estimates of synaptic

changes based on network statistics [16–22] and compare theoretical results with experiments

and numerical simulations of a probabilistic spiking network. In our model, every neuron is

excitatory—the modulatory role of inhibition in MC is instead represented implicitly by non-

homogeneous probabilistic activation rates. While inhibition likely plays an important role in

cortical dynamics, we consider results from our exclusive use of excitation to be a significant

finding, suggesting that a few key mechanisms can account for a wide range of experimental

results. Using data from previous work as well as from novel experiments, we calibrate STDP

synaptic dynamics and activity correlation timescales to those typically found in MC neural

populations. The result is a spiking model with multiplicative excitatory STDP and stable con-

nectivity dynamics which can reproduce three key experimental findings:

1. We capture the two different timescales of onset and dissipation of conditioning effects

with an emergent property of our modelling framework: naturally distinct “learning” and

“forgetting” speeds.

2. With a simple filtered readout of our model’s output, we reproduce conditioning effects as

measured by muscle EMG recordings evoked by ICMS.

3. We reproduce the overall dependence of conditioning on spike-triggered stimulation delay.

Furthermore, we make the following novel findings:

1. The distinct temporal statistics that characterize different regimes of cortical activity have

an important impact on the efficacy of BBCI protocols.

2. Multi-synaptic mechanisms can lead to changes in circuit connectivity that are not pre-

dicted by STDP of synapses directly targeted by conditioning protocols.

3. When stimulating a subset of a given neural population, we find that the overall efficacy of

conditioning depends supra-linearly on the proportion of this subset.

Together, these results provide quantifiable experimental predictions. They arise from a

theoretical framework that is easily scalable and serves as a potential testbed for next-genera-

tion applications of BBCIs. We discuss ways to use this framework in state-dependent condi-

tioning protocols.

Results

Our model’s key assumptions are: (i) we only consider interactions between excitatory neu-

rons (but revisit the role of inhibition in the discussion); (ii) neurons in MC are sparsely and

randomly connected by synapses that are plastic and follow a single multiplicative STDP rule;

(iii) the spiking activity of neurons is modelled with interacting probabilistic processes.

We use a standard probability-based network model in which the instantaneous spiking

probability rate λi(t) of neuron i changes in time and depends linearly on an external

Theory of artificially-induced plasticity
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command νi(t), as well as the exponentially filtered spikes of other neurons in the network.

Synaptic weights modulate the latter inputs and are stored in the connectivity matrix J(t), with

the entry Jij(t) representing the synapse from neuron j to neuron i. This connectivity is chosen

to be sparse and is initially drawn at random between the N neurons in the network. All non-

zero synapses are evolve in time according to a multiplicative STDP rule W(Δt, Jij), but no new

synapse is allowed to emerge (see Methods). Here, Δt is the interspike interval between a pre-

synaptic spike from neuron j and a post synaptic spike from neuron i. Both axonal and den-

dritic spike transmission delays are sampled randomly for each synapse from two respective

distributions with means �da and �dd. For numerical simulations, each neuron is treated as an

independent Poisson process with rate λi(t). We refer the reader to Methods for more details

about the model and its implementation.

To model the BBCI conditioning experiments—marked by the symbol “†” throughout the

paper—we divide our network of MC neurons into three groups of equal sizes as illustrated in

Fig 1A. Neurons in each group α = a, b, c receive external inputs that have a group-specific

modulating rate να(t) but are otherwise independent from neuron to neuron (except for synap-

tic interactions). We drive the network with idealized input rates in all numerical simulations.

These are composed of truncated sinusoidal functions offset with an equal phase difference

between each group (Fig 1B), and produce mean firing rates on the order of 10 Hz for most

connectivity matrices. We later introduce more biologically relevant statistics for activation

rates to match simple model attributes to experimental data. To mimic the spike-triggered

stimulation experiments in [10], we assign group a to be the “Recording” site, group b to be

the “Stimulation” site and c to be the “Control” site. Neuron i = 1 from group a is the

“recorded” neuron, whose spikes trigger stimulation of every neuron in group b after a stimu-

lation delay d†. Stimulation of subsets of b is also considered.

The relationship between spiking and synaptic activity in similar models of plastic networks

has been extensively studied and predictions of synaptic dynamics under a variety of contexts

were analytically derived (see e.g. [16–31]). We build on these results and contribute novel

findings that enable representations of artificial connections from BBCIs in generalized activity

regimes. Our approach largely follows that of [18] but contains key innovations which are

described in detail in Methods.

Fig 1. (A) Diagram of model network with three functional groups (a, b, c). In the stimulation protocol, the BBCI records spikes from a

single neuron in group a and delivers a large stimulus to group b after a delay d†. (B) Top: external rates νa(t) (solid black), νb(t) (dotted

red) and νc(t) (dashed blue) delivered to each neural group. Middle: sample spike raster plot from a simulation subject to rates plotted

above with sparse, homogeneous connectivity J(0) (N = 60). Bottom: same as middle but with spike-triggered stimulation turned “on”.

Spike from neuron number 1, circled in red, trigger the stimulation of all of population b (neurons 20 to 40) after a delay of d† = 10 ms.

(C) Top: snapshot of connectivity matrix J(t) for network in B after spiking simulation of 5000 seconds (grayscale: white = Jmin, black =

Jmax). Bottom: example time traces of individual synapses from the same simulation.

doi:10.1371/journal.pcbi.1005343.g001
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For illustration, Fig 1C shows a snapshot of a connectivity matrix for a network of size

N = 60 driven by the rates shown in Fig 1B and with spike-triggered stimulation turned “off”,

as well as traces of synaptic weights Jij(t) evolving in time. It is evident that some structure

emerges due to external commands, and that individual synapses show ongoing fluctuations

around that structure. Below, we often make use of averaged synaptic matrices �JðtÞ: 3 × 3

matrices that contain group-averaged synaptic weights. In Methods, we derive analytical

expressions for them, allowing us to forego lengthy spiking simulations. These expressions

make use of group-averaged cross-correlation functions of different quantities that we often

use throughout: for the external command rates (ĈðuÞ), for the network spiking activity with-

out (C(u)) and with (C†(u)) spike-triggered stimulation.

Our modelling approach makes important simplifying assumptions, and clarifying remarks

are in order before we present our main results. First, we acknowledge that the absence of

inhibitory activity is at odds with known dynamic mechanisms in cortex, where a balance

between excitation and inhibition modulates activity and prevents run-away excitation (see

e.g. [32–34]). Our goal, however, is to extract key mechanisms related to excitatory STDP in a

setting that is as simple as possible. As is shown below, excitatory STDP dynamics are only

influenced by activity statistics. We choose to model this activity using a simplified probabilis-

tic model, as opposed to a complex balanced state mechanism, for the sake of analytical tracta-

bility and to better understand the extent to which excitatory STDP alone can account for

BBCI conditioning results. Activity modulation is built into probabilistic firing rates, and

bounds on synaptic strengths prevent run-away activity. We revisit the implications of this

modelling choice in the Discussion. Second, we note that many parameter values used through-

out this study were chosen in the absence of experimental evidence and can have important

impacts on specific dynamic signatures of our model. Particularly influential parameters

include axonal and dendritic transmission delays (see e.g. [18, 19, 30, 31]), which we choose to

be in a reasonable range, and to produce desired dynamical regimes. However, our model can

easily be adapted to make precise quantitative matches with future experimental data, and we

expect the qualitative mechanisms reported below to persist in a wide range of regimes.

Emergent synaptic structure and impact of spike-triggered stimulation

When neurons in the network’s three groups a, b, c are subject to external commands ν(t) =

(νa(t), νb(t), νc(t)) with stationary statistics, their averaged connectivity �JðtÞ evolves toward an

equilibrium �J � that reflects these inputs’ correlations (c.f. [24, 25]), although individual synap-

ses may continue to fluctuate. This has been observed in a number of theoretical studies (see

e.g. [18, 23]) and is consistent with the formation and dissociation of muscle assemblies in MC

due to complex movements that are regularly performed [8]. The mean synaptic equilibrium

�J � strongly depends on the external inputs ν(t)’s correlation structure ĈðuÞ (see Fig 2A).

Indeed, a narrow peak near the origin for correlations within groups, as is the case for the peri-

odic external rates shown in Fig 1B, along with the absence of such peaks for cross-group cor-

relations, contribute to strengthening synapses within groups and weakening those across

groups. Under such conditions, what will be the impact of spike-triggered stimulation?

Fig 2B shows the evolution of synaptic averages �J abðtÞ, analytically computed (see Methods)

for a system initiated at the synaptic equilibrium associated with external rates ν(t) from Fig

1B. The inset of Fig 2B shows the evolution of individual synapses from group a to group b
from full network simulations. At 15 hours, the spike-triggered stimulation protocol is turned

“on”, with a set delay d† = 20 milliseconds, and synapses start changing. In *10 hours they

reach a new equilibrium which differs from the initial one in a few striking ways, as seen in Fig

2C and 2D, where normalized differences ð�J y � �JÞ=Jmax are plotted for all pre- and post-group
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combinations. First, as expected and in accordance with experiments [10], the mean strength

of synapses from group a (recorded site) to group b (stimulated site) are considerably strength-

ened (by about 80%). As described in more detail below, this massive potentiation relies on

two ingredients: correlated activity within group a and an appropriate choice of stimulation

delay d†.

Perhaps more surprising are collateral changes in other synapses, although they are of lesser

magnitude. While this was previously unreported, it is consistent with unpublished data from

the original spike-triggered stimulation experiment [10]. It is unclear how many of these

changes are due to the particular external rate statistics and other model parameters; we return

to this question below when realistic activity statistics are considered.

We also show that spike-triggered stimulation induces novel correlation structures due to

synaptic changes as illustrated in Fig 2A, which plots the correlation functions ĈðuÞ, C(u),

C†(u) and CJy ðuÞ. Here, CJy ðuÞ denotes the correlations one observes under baseline activity

(i.e. without ongoing stimulation) but with the equilibrium connectivity �J y� obtained after pro-

longed spike-triggered stimulation, i.e., at the end of spike-triggered stimulation. It is clear

that every interaction involving group b is considerably changed, most strongly that with

group a, which includes the neuron used to trigger stimulation. More surprising is the

increased cross-correlation of group b with itself, even though connectivity within group b is

not explicitly potentiated by conditioning. In fact, it is slightly depressed (Fig 2D). This hap-

pens because connections from group a to group b are considerably enhanced, which causes

the mean firing rate of group b to grow and its correlations to increase. Later, we explore simi-

lar collateral changes that occur because of multi-synaptic interactions. We see in the next sec-

tion how these correlations translate into functional changes in the network.

Fig 2. (A) Mean network correlations for synaptic equilibria under normal activity C(u) (thick green line) and under spike-triggered

stimulation C†(u) (dashed red line). Mean correlations for normal network activity with synaptic equilibrium obtained from stimulation

(CJy ðuÞ) is shown in dashed blue. External correlations ĈðuÞ also shown (thin black line). (B) Evolution of synaptic weight averages �JabðtÞ
over time, computed with analytical estimates, color-coded as in C. External rates as in Fig 1B. Initiated at equilibrium (see Methods),

spike triggered stimulation (†) is switched “on” for the indicated period. Inset shows evolutions of 10 randomly chosen synapses from

group a to group b, from corresponding spiking network simulation. (C) Top: plots of mean equilibrium matrices �J� in normal activity and

under spike-triggered stimulation (left/right resp.). Bottom: snapshot of full simulated matrix J(t) once equilibria are reached (N = 60). (D)

Plot of relative synaptic changes between equilibria: ð�Jyab �
�JabÞ=Jmax with α, β 2 {a, b, c}.

doi:10.1371/journal.pcbi.1005343.g002
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Finally, Fig 2B shows a crucial feature of our model: the timescale for the convergence from

the normal to the artificial equilibrium is different from that of the decay back to normal equi-

librium after the end of spike-triggered stimulation. In the conditioning experiments from [10,

15], the effect of spike-triggered stimulation was seen after about 5–24 hours of conditioning,

while the changes decayed after 1 to 7 days. With the simplified external drives producing a

reasonable mean firing rate of about 10Hz for individual cells, an STDP learning rate of η =

10−8 was adequate to capture the two timescales of synaptic changes.

Thus, the simple excitatory STDP mechanisms in our model give rise to distinct timescales

for increases and decay of synaptic connectivity strength produced by spike-triggered condi-

tioning, in agreement with experimental observations. The emergence of distinct timescales

was previously reported and studied in related modelling contexts [30, 31]. It should be noted

that a number of parameters are shown to affect the magnitude of timescale separation, such

as types of synaptic delays, weight dependence of the STDP rule, the firing rate of ongoing

baseline activity, etc. We reiterate that many of these parameters are not well resolved experi-

mentally for macaque MC, and that we have made simplifying choices (see Methods) that can

be adapted to new experimental data. Nevertheless, we expect our model to robustly produce

distinct synaptic timescales that can be fitted by a single time-scaling parameter. This does not

contradict the findings from human psychophysical studies that feedback error-driven motor

adaptation may involve two or more different and independent parallel processes with differ-

ent temporal dynamics for learning and decay of the motor skill [35]. Nevertheless, the cellular

mechanisms in our model may have some relation to the different timescales proposed to

underlie motor adaptation at the system level [35]. Such relationships could be further investi-

gated by direct experimentation and appropriate simulations.

In summary, our model satisfies the first experimental observation from [10] we set out to

reproduce (point a. in Introduction). Indeed, we find that two distinct timescales of synaptic
changes (during and after conditioning) are an emergent property of our model, and tuning a sin-
gle parameter is sufficient to fit the rates observed in experiments.

Simulating ICMS protocols: Recovering functional changes

Changes in correlations due to spike-triggered conditioning indicate that there is an activity-

relevant effect of induced synaptic changes, which is measurable from spiking statistics (see

Fig 2A). We now show how this is directly observable in evoked activity patterns that are con-

sistent with intra-cortical microstimulation (ICMS) protocols employed in experiments. In

[10], connectivity changes were inferred using ICMS and electromyogram (EMG) recordings

of the monkey’s wrist muscles, as well as evoked isometric torques. To summarize, a train of

ICMS stimuli lasting 50 ms was delivered to each MC site; simultaneously, EMG activity in

three target muscles were recorded. The average EMG responses for repeated trials were docu-

mented for each of three MC sites (i.e. group a, b and c) before and after spike-triggered

conditioning.

The experiment showed that prior to conditioning, ICMS stimulation of any MC site elic-

ited well-resolved average EMG responses, largest in one muscle but not the two others. After

conditioning, ICMS stimulation of the recording site (group a) not only elicited an EMG

response in its associated muscle, but also in that of stimulated site (group b). While it was con-

jectured that synaptic changes in MC were responsible for the changes, this could not be veri-

fied directly. Our model suggests that synaptic changes can indeed occur in MC-like networks,

but it remains unclear if such changes can lead to the experimentally observed motor output

changes. We address this by simulating EMG responses of our model, before and after spike-

triggered conditioning (†).

Theory of artificially-induced plasticity
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Fig 3 shows a simulated ICMS protocol before (panel A) and after (panel B) spike-triggered

stimulation conditioning. For each case, synaptic matrices are chosen from full network simu-

lations and fixed (STDP is turned off), as shown in the top row of Fig 3 (reproduced from Fig

2C). To mimic the ICMS stimulus, we add a square-pulse input rate of 100 Hz lasting 50 ms to

the external rate να(t) of a target group. An example of the spiking output of our network for

α = a is shown in the top row of Fig 3 where the solid black bar below the graph shows the

stimulus duration. Next, we filter the spike output of all neurons within a group using the syn-

aptic filter ε(t) described in Methods, and add them to obtain population activity time-courses.

Finally, we take these summed profiles and pass them through a sigmoidal non-linearity—

(1 + exp−a(x − b))−1 where x is the filtered activity—meant to represent the transformation of

neural activity to EMG signals. Here, we assume that the hypothetical motoneurons whose tar-

get muscle EMG is recorded receive inputs only from a single neural group and that network

interactions are responsible for cross-group muscle activation. We label our modelled motor

output EMG measurements by Mα, α 2 {a, b, c}.

We choose the nonlinearity parameters a = 2.5 and b = 5 to qualitatively reproduce the

EMG responses seen in the experiment before spike-triggered conditioning: namely, well-

resolved EMG responses Mα are observed only when the relevant MC group α is stimulated.

The bottom row of Fig 3 shows Mα responses of each group, averaged over 15 trials each,

when ICMS stimulation is delivered to a single group at a time. Panel A shows little cross-

group response to ICMS stimulation before spike-triggered stimulation conditioning. How-

ever, after conditioning, stimulation of group a evokes an emergent response in the muscle

activated from group b (see circles in Fig 3), as well as a small increase for group c.

These features were both present in the original experiments (see Figure 2 in [10]) and are

consistent with the synaptic strengths across groups before and after conditioning. In addition

to EMG, the authors of [10] also measured the effects of ICMS using a manipulandum that

recorded isometric torques produced by evoked wrist motion. In our model, the newly evoked

EMG responses, after conditioning, agree with the observation that torques evoked from the

Fig 3. (A) ICMS with baseline connections. (B) ICMS after spike-triggered stimulation. Top left panels: Connectivity

matrix J. Top right panels: Raster plot of entire network as in Fig 1. Bottom black bar shows a 50 ms stimulation of all

neurons in group a at 100 Hz. Bottom: Filtered responses of group projections. Columns designate neural groups in MC

being stimulated (see e.g. A for stimulation of group a) and rows designate the output EMG Mα evoked from each group,

respectively. Circle indicates the biggest change induced by spike-triggered conditioning.

doi:10.1371/journal.pcbi.1005343.g003
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recorded site (group a) typically changed toward those previously evoked from the stimulated

site (group b). As such, from now on we equate an increase in mean synaptic strength �J ab

between groups to an increase in functional connectivity.

We conclude that our model satisfies the second experimental observation from [10] we set

out to reproduce (point b. in Introduction). That is, a simple interpretation of evoked network
activity—a filtered output of distinct neural group spiking activity—is consistent with the func-
tional changes in muscle activation in ICMS protocols observed before and after conditioning.

Conditioning effects modulated by realistic activation statistics

Up to now, we used toy activation profiles ν(t) in the form of truncated sinusoidal bumps to

drive neural activity (Fig 1B). In this section, we modify our simple model to incorporate

experimentally observed cross correlation functions, whenever possible, in an effort to elimi-

nate artificial activation commands and capture more realistic regimes. As a result, we no lon-

ger rely on numerical simulations of spiking activity, but rather on analytically derived

averaged quantities to explore a wide range of conditioning regimes. There is no longer a need

to specifically define the activation functions ν(t), we instead rely solely on cross-correlation

functions ĈðuÞ and C(u). Below, we aim to construct versions of these functions that are as

close to experimental data as possible.

Before discussing spiking statistics, we note an important advantage of only considering

mean synaptic strengths �JðtÞ. For spiking simulations shown above, we used networks of

N = 60 neurons with probability of connection p = 0.3, which are considerably far from realis-

tic numbers. Nevertheless, the important quantity for mean synaptic dynamics is the averaged

summed strengths of synaptic inputs that a neuron receives from any given group:
pN
3

�J ab.

Notice that many choices of p and N can lead to the same quantity, therefore creating a scaling

equivalence. Moreover, additional scaling of Jmax can further accommodate different network

sizes. So far, we assumed that every neuron receives an average of 6 synapses from each group.

If each of these synapse were at maximal value Jmax = 0.1, then simultaneous spiking from a

pre-synaptic group would increase the post-synaptic neuron’s spiking probability by 60%, a

number we consider reasonable.

Realistic activation statistics. The changing dynamics of MC neurons in behaving

macaques (e.g., [36–39]) yield cross-correlations between cell pairs whose preferred features

can change depending on activity context [40–42]. We do not attempt to capture these subtle-

ties with our simplified model. Rather, we create a family of cross-correlation functions ĈðuÞ
leading to network activity statistics that roughly match averaged quantities observed experi-

mentally, in an attempt to extract qualitative mechanisms.

To calibrate our model, we use estimates of two quantities from MC recordings: the mean

cross-correlation between two neurons in the same group and the mean cross-correlation

between neurons in different groups. We assume, as was the case thus far, that all mean cross-

correlations are identical for neurons within the same group and neurons across groups

respectively (ĈaaðuÞ ¼ ĈbbðuÞ and ĈabðuÞ ¼ ĈgkðuÞ, for α, β, γ, κ 2 {a, b, c}). We use statistics

of two types of recorded neuron pairs in MC: pairs for which there is a functional relationship,

but that are not necessarily colocated, and pairs that are close to one another, but do not neces-

sarily have a strong functional relationship. Data from the former type comes from [41], and

data about the latter come from novel experiments (see also notes in [40, 41]).

In [41], spike time cross-correlation functions between functionally related macaque MC

neurons were documented. The recordings were gathered during a stereotyped motor task

and 84 pairs out of 215 showed correlation features. The majority of these pairs showed
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Gaussian-shaped cross-correlations, with a mean width of the central peak (taken at half

height) of 22 ms. However, the distances between neurons in these pairs were variable. In a

novel experiment, recordings were obtained from a monkey implanted with a Utah array in

primary MC and performing a 2D target tracking task while seated in a chair. See Methods for

details. In this data set, there were only a few pairs of neurons recorded from the same elec-

trode. Nevertheless, such well-resolved pairs typically showed Gaussian-shaped cross-correla-

tions roughly centered at the origin. An important observation is that the width of the

Gaussian peaks varied greatly. Fig 4A top and middle show both extremes where the cross-

Fig 4. (A) Experimentally obtained cross-correlograms of MC neurons in macaque monkey during a tracking task (blue) and Gaussian fit (red).

Top, Middle: for neuron pairs recorded by the same electrode, respectively (using spike-sorting). Top shows the thinnest correlation peak (σ =

9.8 ms) and Middle shows the widest (σ = 89.3 ms). Bottom: For two neurons recorded by distinct electrodes. (B) Illustration of Gaussian-

shaped external cross-correlations ĈðuÞwith width ŝ ¼ FðsÞ (thin black line) and resulting network cross-correlation C(u) with width σ (thick blue

line). (C) Relative differences ð�Jy � �JÞ=Jmax for all group-averaged synapses, as a function of stimulation delay d†, for the model network fitted to

two extremal values of correlation width. Top: σ = 10 ms. Bottom: σ = 90 ms. (D) Relative differences for averaged synaptic strengths from group

a to group b (ð�Jyba � �JbaÞ=Jmax) as a function of stimulation delay d† and fitted correlation peak width σ. Black dotted line corresponds to best fit

plotted in E. (E) Superposition of relative difference for �Jba and normalized mean torque change from spike-triggered conditioning experiments

on macaque monkeys. Experimental data from Figure 4 of [10]; error bars show the standard error of the mean. Best fit between model and

experimental curve is for σ’ 17 ms (see black dotted line in D).

doi:10.1371/journal.pcbi.1005343.g004
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correlograms were fitted to Gaussian functions with a standard deviation σ ranging from *10

to *90 milliseconds. In contrast, neuron pairs from different electrodes showed more subtle

structure in their cross-correlograms, and a wide variety of feature shapes (e.g. asymmetrical

relationships, anti-correlations, etc.). Most of them showed very mild or no correlation fea-

tures, as depicted by the typical flat cross-correlogram in the bottom of Fig 4A.

Both our novel experiment and [41] provide evidence on mean correlation structure, which

is the defining quantity that guides synaptic dynamics in our model. The effect on synaptic

changes bestowed by multiple cross-correlations among different neurons is additive. As such

we note that many distributions of cross-correlations may lead to comparable synaptic

changes, as long as they have the same mean width. Our goal for now is to better understand

the impact of this mean correlation timescale on spike-triggered conditioning.

In light of these observations, we make the following simplifications concerning the model’s

idealized cross-correlations ĈðuÞ: cross-correlations of neurons within a group are Gaussian

while those for neurons across groups are flat:

ĈabðuÞ ¼
L

ŝ
ffiffiffiffiffiffi
2p
p exp �

u2

2ŝ2

� �

þ B ; a ¼ b

B ; a 6¼ b

8
><

>:
ð1Þ

where B is a baseline, L is the height of the peak and ŝ modulates the peak’s width (i.e. standard

deviation). This choice of ĈðuÞ leads to a network equilibrium cross-correlation function C(u)

with Gaussian shapes. Fig 4B illustrates our idealized cross-correlation function ĈðuÞ and the

resulting C(u). Our goal is to choose the parameters of ĈðuÞ in such a way that C(u) matches

experimental data as closely as possible.

From the analysis in Methods, it can be shown that the parameters B and L, along with η,

only influence the speed at which synaptic changes occur (see Eq (24)). Therefore, we set these

to obtain a mean firing of about 10 Hz as for the previously assumed activation rates ν(t),
along with η to obtain convergence timescales similar to those shown in Fig 2B. We henceforth

set B = 0.17, L = 2.13 and η = 10−8. Since experiments show that ŝ can take a range of values,

we leave it as a free parameter in our regime exploration below. In Methods, we derive a func-

tion F(σ) such that ĈðuÞ with ŝ ¼ FðsÞ leads to C(u) for which the width of average cross-

correlations between neurons from the same group is σ. Note from Fig 4B that the resulting

cross-correlation between neurons from distinct groups does not remain exactly flat, but is

considerably less pronounced, as is observed in experimental data.

In summary, thanks to ĈðuÞ from Eq (1) and the function ŝ ¼ FðsÞ (see Methods), we are

now equipped to control the cross-correlation function of our network at synaptic equilibrium

(C(u)), and study its influence on the efficacy of spike-triggered conditioning.

Cross-correlation width influences optimal stimulation delay. We compute the relative

change in mean synaptic strengths (ð�J y � �JÞ=Jmax) before and after spike-triggered stimulation,

for a range of cross correlation widths σ and stimulation delays d†. Fig 4C shows these differ-

ences, for all pre- and post-synaptic neural group combinations, for σ = 10 ms and σ = 90 ms.

Notice that the correlation width has significant effects on the d†-dependence of BBCI condi-

tioning for all synapses. For now, we concentrate on the synapses directly targeted by the stim-

ulation procedure, namely those from group a to group b (�J ba), which naturally show the

greatest changes. We discuss the changes incurred by other synapses below.

For both values of σ used in Fig 4C, the changes incurred by �J ba depend non-monotonically

on the triggering delay d†, admitting either a maximum or a plateau. However the maximizing

d† value (or range) changes with σ, and so does the sensitivity to choices of d†, i.e., how rapidly
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the curve reaches its maximum as d† is varied. Fig 4D comprehensively illustrates this depen-

dence, showing ð�J yba � �J baÞ=Jmax for a range of both σ and d†. The main features of this relation-

ship are: (i) optimal delays (d† at peak) get larger as ŝ grows. (ii) sensitivity is mitigated by

larger σ, i.e., large correlation timescales lead to optimal delays whose conditioning outcomes

are less sensitive to perturbations.

The relative simplicity of our model’s equations enables a mechanistic interpretation of

these findings. Eq (23) illustrates that it is the integral of the network’s correlations multiplied

by the STDP rule that dictates synaptic dynamics. When artificial stimulation is delivered,

components of this integral are shifted by d†. Wider correlations imply that small changes in

shifts d† have slower effects on the integral, leading to both point (i) and (ii) listed above.

When the stimulation of group b is triggered on spikes from the recorded neuron in group

a, the plasticity incurred by synapses from other neurons in group a to any neuron in group b
will depend on how likely it was that a-neurons fired within a short interval of the recorded

neuron’s spikes. Correlation width measures the synchrony of spiking activity. For narrow

correlations, neurons in group a fire closely together and the delay required to induce the max-

imal plastic change directly depends on the combination of axonal delay and the off-width of

the potentiation peak of the STDP rule (see Methods). Essentially, the peak of the cross-corre-

lation needs to be shifted so it aligns with the peak STDP potentiation. For wider correlation

functions, synaptic changes depend less on synchrony and more on interactions with larger

time lags. Indeed, optimal delays are those that shift the cross-correlation’s peak past the STDP

peak, so that the the latter is aligned with the right-hand-side tails of cross-correlations. This

relationship leads to more robust potentiation at larger stimulation delays.

This phenomenon constitutes our first novel finding (point 1. from Introduction): neuronal
activity statistics have an important impact on the value of optimal spike-triggered stimulation
delays (d†), and can lead to synaptic potentiation that is more robust to deviations from that opti-
mal value.

Qualitative reproduction of stimulation/plasticity dependence

It remains unclear if the mechanisms described above are consistent with the experimentally

observed relationship between stimulation delay (d†) and efficacy of spike-triggered condition-

ing in macaque MC. We investigated this by comparing efficacy, as measured by the percent-

age of torque direction change evoked by ICMS before and after conditioning [10], to relative

synaptic strength changes in our model. This is motivated by the above demonstration that

synaptic strengths are well correlated with amplitude of evoked muscle activations in a ICMS

experiment (see Fig 3 and point b. in Introduction). Nevertheless, the following comparison

between model and experiment is qualitative, and meant to establish a correspondence of

(delay) timescales only.

We use the data originally presented in Figure 4 of [10], describing the shift in mean change

in evoked wrist torque direction by ICMS of the recorded site (group a), as a function of stim-

ulation delay d†. We plot the same data in Fig 4E, with the maximal change (in degrees) nor-

malized to one. On the same graph, we plot the ð�J yba � �J baÞ=Jmax v.s. d† curve for the value of σ
that offers the best fit (in L1-norm). This amounts to finding the best “σ-slice” of the graph in

Fig 4D to fit the experimental data. We found that σ’ 17 ms gives the best correspondence.

We reiterate that this comparison is qualitative. Nevertheless, the fit between the d†-depen-

dence of experimentally observed functional changes and modelled synaptic ones is clear. As

our model’s spiking activity and STDP rule are calibrated with experimentally observed

parameters (see Methods), this evidence suggests that our simplified framework is consistent

with experiments. Importantly, σ = 17 ms is comparable to correlation timescales between
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functionally related MC neurons in macaque, as reported in [41] (see also [5, 40]) and dis-

cussed earlier. It was shown that such neurons have gaussian-like correlation functions with

mean peak width at half height on the order of 22 ms, corresponding roughly to σ = 10 ms.

While this is slightly lower than our estimate, we note that task-specific motion is known to

introduce sharp correlations and that free behaving, rest and sleep states induce longer-range

statistics [42]. Cross-correlation functions reported above were recorded during a stereotyped

center-out reach task experiment, in contrast to the spike-triggered conditioning experiment

which was conducted over a wide range of states, including sleep, which may lead to longer

mean cross-correlation timescales [10]. A prediction of our model is that spike-triggered con-

ditioning restricted to periods of long timescale correlations in MC, such as during sleep [42],

could lead to a more robust conditioning dependence on stimulation delays (see Discussion).

This finding implies that our model successfully reproduces the third and last experimental

observation from [10] (point c. from Introduction): using simplified cross-correlation functions
of MC neural populations calibrated from experimental measurements, our model reproduces the
relationship between the magnitude of plastic changes and the stimulation delay in a spike-trig-
gered conditioning protocol.

Multi-synaptic and collateral effects

We now explore the effects of spike-triggered stimulation on collateral synaptic strengths, i.e.,

other than the targeted a-to-b pathway. For a wide range of parameters, there is little change

other than for the a-to-b synapses. Indeed, when cross-correlation width σ is moderate to

large, spike-triggered stimulation has little effect on collateral connections, for any stimulation

delay. This is in conjunction with the robustness of a-to-b changes discussed in the previous

section (see Fig 4D). Nevertheless, some localized features arise when cross-correlation width

σ is small. Fig 5A shows color plots of these changes as a function of d† and σ, for the nine com-

binations of pre- and post-synaptic groups. We now review the mechanisms responsible for

these indirect synaptic alterations.

First, b-to-b synapses become depressed, regardless of stimulation delay, for short correla-

tion timescales. This is due to the occurrence of synchronized population spiking produced by

artificial stimulation which, because of our choice of dendritic and axonal delays (see Meth-

ods), promote depression. Such synchronized spikes induce sharp δ-peaks in the network’s

cross-correlation (see Methods) and the combination of transmission delays shifts this peak

toward the depression side of the STDP rule. When cross-correlations are narrow (i.e. small

σ), their interaction with the STDP rule –which manifests in the integral in Eq (13)– is more

sensitive to the addition of such δ-peaks, resulting in overall depression. In contrast, when

cross-correlations are wider, the addition of δ-peaks has a smaller effect since a wider range of

correlations contribute to the integrated STDP changes.

Second, the b-to-a synapses become potentiated for short delays d† when σ is small enough.

This happens because of a combination of factors. When the recorded neuron in group a
spikes, the population-wide spike artificially elicited in b quickly follows and travels to the b-

to-a synapses. This means that the spike of a single neuron in a effectively reaches all neurons

in a, with an effect amplified by the strength of many synapses, shortly after the neuron origi-

nally fired. When cross-correlations among a-neurons are wide, the effect of this mechanism

is diluted, similarly to the b-to-b synapses discussed above. However, when neurons in a are

highly synchronous, this short-latency feedback produces synaptic potentiation of the b-to-a
synapses.

Third, the synapses from both groups a and b onto the control group c are also potentiated

when σ and d† are small enough. This can be explained in two parts and involves di- and tri-
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synaptic mechanisms. When the recorded neuron in a fires a spike, a population-wide spike is

artificially evoked in b shortly after, which travels down to b-to-c synapses and elicits a

response from neurons in c. Narrow cross-correlations imply that many spikes in a fall within

a favorable potentiation window of spikes in c, thereby contributing to the potentiation of a-

to-c synapses. To test this mechanism, we compute the relative synaptic changes due to spike-

triggered stimulation in an altered network, where b-to-c synapses are inactivated (Jcb� 0). Fig

5B shows the synaptic changes for the normal network (top) and this altered one (middle) for

fixed parameters d† = 5 ms and σ = 17 ms (same σ that best fitted experiments, see Fig 4E). We

can clearly see that without b-to-c synapses, a-to-c synapses do not potentiate under spike-trig-

gered stimulation. In turn, the strengthening of a-to-c synapses imply that spikes in a are more

likely to directly elicit spikes in c, thereby repeating the same process in a different order for b-

to-c synapses. Note that without a-to-c synapses, the b-to-c synapses would not potentiate.

Indeed, as was the case for b-to-b synapses, the combination of transmission delays do not

conspire to promote direct potentiation following a population-wide synchronous spike. This

is tested by inactivating the a-to-c synapses, which prevents the potentiation of b-to-c synapses,

as shown in the bottom panel of Fig 5B.

Finally, there is a moderate increase of the c-to-b synapses for stimulation delays d† from

about 5 to 20 ms. These are observed because of a-to-c synapses, promoting spikes in c that

precede the stimulation of group b. This mechanism only works if neurons in a are tightly cor-

related, i.e., for small σ. Using the same process described above, we tested this mechanism by

inactivating a-to-c synapses which prevents the potentiation of c-to-b synapses.

Fig 5. (A) Relative differences (i.e. before versus after spike-triggered stimulation) for mean synaptic strengths ð�Jy �
�JÞ=Jmax as a function of stimulation delay d† and correlation peak width σ (as in Fig 4D). Subplots show outcome for

all combinations of pre- and post-synaptic groups a, b, c, for 2.5� d†� 12.5 (ms) and 1� σ� 50 (ms). Star indicates

parameter choice for panel B. (B) Bar plots of mean synaptic strength relative difference ð�Jy � �JÞ=Jmax for all

combinations of pre- and post-synaptic groups, with d† = 5 ms and σ = 17 ms. Top: normal network (values marked

by a star in panel A). Middle: network where b-to-c synapses are inactivated (Jcb� 0). Bottom: network where a-to-c

synapses are inactivated (Jca� 0). Red crosses indicate the artificially inactivated synapses and red arrows show the

most drastic change due to inactivation, in comparison to the normal network (top).

doi:10.1371/journal.pcbi.1005343.g005
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We reiterate that our specific choice of synaptic transmission delays may influence the mag-

nitude of the changes described above. This is because many of the outlined mechanisms rely

on well-timed series events. See e.g. [18, 19, 30, 31] for more details about the impact of delays.

We expect that tuning our model to experimentally measured delay distributions, as they

become available, will help validate and/or improve our framework’s predictive power.

Together, these mechanisms form our second novel finding (point 2. from the Introduc-

tion): multi-synaptic mechanisms give rise to significant changes in collateral synapses during
conditioning with short delays, and these cannot be attributed to STDP mechanisms directly tar-
geted by the BBCI, instead emerging from network activity. We note that the correlation time-

scale that best fits experiments (σ = 17ms, see Fig 4E) falls within the parameter range where

these effects occur.

Stimulating a subgroup of neurons

We have assumed that spike-triggered stimulation elicits population-wide synchronous spik-

ing of all neurons in group b (Nstim in [10]). This is valid if the neural group b represents all the

neurons activated by the stimulating electrode of a BBCI, but is not necessarily representative

of the larger population of neurons that share external activation statistics due to a common

input νb(t). Indeed, some neurons that activate in conjunction with those close to the electrode

may be far enough from it so they do not necessarily spike in direct response to a stimulating

pulse. Alternatively, selective activation of neurons within a group can also be achieved via

optogenetic stimulation in a much more targeted fashion [43]. We now consider the situation

in which only a certain proportion of neurons from group b is activated by the spike-triggered

stimulus.

We denote the stimulated subgroup by b† and the unstimulated subgroup by b�. All neu-

rons in group b receive the same external rates νb(t) as before, but only a few (solid red dots in

Fig 6A) are stimulated by the BBCI. Let Nb = N/3 be the number of neurons in group b and the

parameter ρ, with 0� ρ� 1, represent the proportion of stimulated neurons in b. The sizes of

groups b† and b� are given by Nyb ¼ rNb and N�b ¼ ð1 � rÞNb, respectively. We now adapt our

analytical averaged model (23) to explore the effect of stimulation on subdivided synaptic equi-

libria. We verified that the analytical derivations used below match the full spiking network

simulations as before.

Fig 6. (A) Network with group b subdivided into two subgroups: stimulated neurons (b†, red) and unstimulated neurons (b�,

white). (B) Top: plots of equilibrium synaptic strengths �J� between group a and both subgroups of b in normal activity and under

spike-triggered stimulation (left/right resp.). Proportion of stimulated neurons is set to ρ = 0.5. Bottom: Plot of relative synaptic

changes between equilibria: ð�Jy � �JÞ=Jmax. Control group c not shown. (C) Relative synaptic changes as a function of proportion

of neurons in group b receiving stimulation ρ. Plotted are subgroup averaged synaptic changes for synapses from a to b† and b�

and from a to entire group b. (d† = 30 ms)

doi:10.1371/journal.pcbi.1005343.g006
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Both subgroups of b receive the external rate νb(t) but only one receives spike-triggered

stimulation. These changes are captured in the averaged analytical derivations by tracking the

number of neurons in each sub-group in the averaging steps leading to Eqs (22) and (23)

accordingly—replacing N/3 by Nyb and N�b where necessary. This way, we obtain subgroup-spe-

cific synaptic averages (e.g. �J bya).

Fig 6B shows the group-averaged connectivity strength between group a (the recording

site) and both subgroups of b, before and after spike-triggered stimulation. External cross-cor-

relations ĈðuÞ are as in Fig 4B with σ = 20ms, and the stimulation delay is set at d† = 30ms.

The proportion of stimulated neurons in b is set to ρ = 0.5. The bottom of the same panel

shows the normalized changes of mean synaptic strengths due to spike-triggered stimulation.

As established for the original network (see Fig 2B), the biggest change occurs for synapses

from a to the subgroup that is directly stimulated (b†). However for subgroup b�, we see a

noticeable change in its incoming synapses from group a, in contrast to synapses of other

unstimulated groups (c) that do not appreciably change. This means that sharing activation

statistics with stimulated neurons is enough to transfer the plasticity-inducing effect of condi-

tioning to a secondary neural population.

Next, we investigate how this phenomenon is affected by the proportion of neurons in b
that receive stimulation, ρ. Fig 6C shows the subgroup-averaged normalized changes of syn-

apses from group a to subgroups b† and b�, as ρ varies between 0 and 1. When more neurons

get stimulated, the transferred effect on the unstimulated group is amplified. This means that

the combined outcome on the entirety of group b grows even faster—supralinearly—with ρ,

as shown in Fig 6C, where the combined b-averaged changes in synaptic strength,

�J ba ¼ r�J bya þ ð1 � rÞ�J b�a, are plotted as a function of ρ.

In summary, this phenomenon represents our third and final finding (point 3. in Introduc-

tion). Our model shows that neurons not directly stimulated during spike-triggered conditioning
can be entrained into artificially induced plasticity changes by a subgroup of stimulated cells, and
that the combined population-averaged effect grows supra-linearly with the size of the stimulated
subgroup.

Discussion

Summary

In this study, we used a probabilistic model of spiking neurons with plastic synapses obeying a

simple STDP rule to investigate the effect of a BBCI on the connectivity of recurrent cortical-

like networks. Here the BBCI records from a single neuron within a population and delivers

spike-triggered stimuli to a different population after a set delay. We developed a reduced

dynamical system for the average synaptic strengths between neural populations; these dynam-

ics admit stable fixed points corresponding to synaptic equilibria that depend solely on the net-

work activity’s correlations and spike-triggered stimulation parameters (see Methods). In this

framework, individual synapses may fluctuate with ongoing network activity but their popula-

tion average remains stable in time. We validate our findings with detailed numerical simula-

tions of a spiking network and calibrate our result based on experiments in macaque MC. To

our knowledge, this is the first time a plastic spiking network model includes recurrent net-

work interactions to capture the effects of a BBCI.

We successfully reproduce key experimental results from [10] that describe synaptic

changes due to spike-triggered conditioning. Specifically, we recover the two emergent time-

scales with which these changes occur (hours to days), we show that filtered evoked activity

from our network mimics muscle EMG patterns produced by ICMS protocols, and we show

that maximal changes in mean synaptic strength from the recording site to the stimulated site
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occur with stimulation delays in the 20–50 ms range, as was the case for experiments. Further-

more, we formulate three novel findings using our model. We outline the relationship between

temporal statistics within neural populations and optimal stimulation parameters, we uncover

multi-synaptic mechanisms that emerge from spike-triggered conditioning that are not

directly predicted by a single-synapse STDP rationale, and we find that the stimulation of a

subset of neurons within a population can lead to supra-linear scaling of effects.

Based on this, we formulate two main experimental predictions:

1. Spiking statistics in a network greatly influence the effects of stimulation: a wider range of

spike-stimulation delays lead to optimal evoked plasticity when correlations have longer

timescales. We predict that restricting spike-triggered stimulation to states with these statis-

tics, such as sleep, or potentially driving such correlation artificially, may provide more

robust outcomes.

2. For very short delays, stimulation may produce collateral effects in other synaptic connec-

tions due to polysynaptic interactions. We propose that under special conditions, it may be

possible to influence collateral synaptic pathways that are not directly targeted by a spike-

triggered stimulation protocol.

Cortical activity: Driven vs emergent

In our model, common external inputs are needed to endow neural groups with desired statis-

tics. In cortical networks, it is unclear how much of observed activity is driven from external

sources and how much is due to intra-network interactions. We argue that the use of pre-

scribed external activations is appropriate since we show that plasticity works to “learn” activa-

tion correlations (see also [18–22]), thereby guiding synaptic connections to promote the same

spontaneous network statistics as its driven ones. Therefore, while external input rates are nec-

essary in our model, the resulting network correlations C(u) reflect both emergent and external

dynamics, and serve as a proxy for MC activity.

State-dependent stimulation: Designing adaptive stimulation strategies

An interesting outcome of our findings is that spike-triggered conditioning is strongly influ-

enced by the source and target cross- and auto-correlation structure C(u). Throughout the

paper, we assumed that these statistics were stationary for the entire simulated period.

However, it is well known that cortical circuits can show a wide range of activity regimes

depending on the state of the animal. The statistics of MC neurons may be very different if

the animal is awake and behaving freely or performing a precise motor task, or is asleep

[42]. While such states have limited durations, their timescales (from minutes to hours)

may be long enough to define locally-stationary statistics that BBCI protocols could leverage

to optimize desired effects. For example, stimulation during sleep, which is known to pro-

duce oscillation-rich activity with longer-range correlations [42, 44], could have more

robust but slower effects, while stimulation during a specific task can have more targeted

outcomes.

Scalable framework: From experimental to clinical applications

Our model can easily be scaled up to include multiple recording and stimulation sites, and

different stimulation protocols, including, e.g. EMG-triggering [45] or paired-pulse stimula-

tion [46]. It is also easily adaptable to optically-based stimulation which can target specific

neurons within functional groups (see e.g. [43, 47, 48]). As it does not require costly simula-

tions—only theoretical estimates—it is straightforward to apply optimization algorithms to
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find the best stimulation protocol to achieve a desired connectivity between cortical sites.

Furthermore, it can easily incorporate closed-loop signals such as changes in recorded statis-

tics in real-time. This framework offers a flexible testbed to help design experiments and

clinical treatments.

Neural implants such as BCIs and BBCIs are under active development as they have signifi-

cant potential for clinical use [49]. Among other outcomes, they are promising avenues for

treatment of motor disabilities. Indeed, a BBCI capable of inducing plastic changes in cortical

circuits could be used to promote novel synaptic pathways in order to restore functional con-

nectivity after a stroke or injury [50, 51].

For such bidirectional neural implants to be successful, a number of real-time computa-

tional issues need to be resolved. Our modelling framework presents a step toward the devel-

opment of rapidly computable guides for controllers, based on anatomical organization,

measurable network properties and known physiological mechanisms such as STDP.

Model limitations and future steps

While being able to capture important features, our model misses some important physiologi-

cal aspects of MC circuits. Nevertheless, we believe that the simplicity of our model is a

strength: it captures complex network-level plasticity changes with only excitatory activity and

STDP. This suggests that excitatory mechanisms are central to artificially-induced plasticity by

a BBCI. However, this simplicity will likely be insufficient to reproduce more complex proto-

cols that also recruit inhibitory populations. An example is paired-pulse conditioning, where

the BBCI stimulates several neural sites, with different time delays. Additional biological real-

ism is key to expand our bottom-up theoretical framework.

A number of steps can be taken to add physiological realism, each of them adding some

complications. For inhibition, there are technical issues when considering probabilistic spiking

(e.g. inhibition can induce “negative” spiking probabilities if unchecked), and the STDP mech-

anisms for inhibitory synapses are not well understood, although this is changing rapidly (see

e.g. [52, 53]). The implementation of our framework in a dynamical model setting, building

on theoretical models of inhibitory plasticity (following e.g. [54, 55]) are natural next steps.

However, with added realism comes additional complexity, and it is not clear if analytically

tractable results can be derived. Nevertheless, preliminary numerical simulation of our model,

with added inhibition shows that although novel mechanisms emerge from inhibitory dynam-

ics, the qualitative phenomena described in this article persist.

In addition, the inclusion of spatial structure and heterogeneous delay distributions, based

on anatomical data [9], is necessary to expand the framework to multiple cortical sites and spi-

nal cord. There is also evidence that more complex excitatory synaptic rules involving spike

timing, such as the “triplet rule” [56] and history dependent rules [57], may play important

roles in cortex. Such synaptic mechanisms involve more complex statistical interactions

between neurons and even between a neuron and its spiking history. Mathematical methods

that extract the higher order statistics needed to derive the self-consistency equations for syn-

aptic equilibria are currently being developed (e.g. [58]), and their application to BBCI model-

ling frameworks similar to ours is a promising avenue for future work. Finally, the inclusion of

modulatory mechanisms, activity- or chemically-dependent, is crucial to capture phenomena

such as synaptic consolidation and adaptation.

In summary, our reduced dynamical system approach is a promising basis upon which to

build and ultimately to predict the effects of finer-grained cell-type specific and temporally

structured activation patterns afforded by next-generation neural implants using electrical or

optical stimulation.
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Methods

This section contains details about our model, numerical simulations and analytical deriva-

tions of averaged synaptic dynamics. We closely follow prior literature [18], and develop key

innovations to better suit our model’s BBCI components.

Model

Spiking activity. We consider a network of N model neurons whose underlying connec-

tions are given by an N ×N connectivity matrix J(t) with synaptic weights that evolve accord-

ing to a plasticity rule (as described below). The presence of a directed synapse Jij from neuron

j to neuron i is randomly and independently determined with probability p. Throughout this

paper, we consider sparse networks with p = 0.3. Once an initial connectivity matrix J(0) is

drawn, existing synapses are allowed to change but no new synapses can be created. All synap-

ses are excitatory so that Jij� 0.

The spike train of neuron i is a collection of times fts
ig and can be written as sum of Dirac-δ

functions: SiðtÞ ¼
P

tsi
dðt � ts

i Þ. We are interested in the probability of observing a certain

spike train Si(t) given a certain connectivity matrix J(t), the other neurons’ spike trains and the

external driving signal νi(t). We assume that this spiking probability can be expressed as a

time-dependent density λi(t), the parameters of which are governed by the ensemble average
hSi(t)i and must be consistent across the network. For simulations, we assume λi(t) is a Poisson

rate, but most of the derivations we make below are generalizable to other probabilistic or

dynamical models of network spiking activity. For example, an integrate-and-fire spiking

mechanism could be used, with a stochastic transfer function derived from Fokker-Planck

equations using linear response theory, as is done in [59, 60].

The instantaneous firing rate at time t for the ith neuron in the network, subject to an exter-

nal driving rate νi(t), is given by

liðtÞ ¼ niðtÞ þ
X

j

X

tsj

JijðtÞεðt � ts
j � da

ijÞ: ð2Þ

where

εðtÞ ¼ HðtÞ
1

t
e� t=t

is a synaptic filter with H denoting the Heaviside function and τ a synaptic time constant which

we set to τ = 5ms. This filter is normalized (
R1
� 1
εðtÞdt ¼ 1) and causal (ε(t) = 0 for t< 0) so

that only past spikes influence spiking probabilities at t. Finally, we introduce axonal delays,

independently sampled for each synapse from a uniform distribution da
ij �

�da � sa with �da ¼

3 ms and σa = 1, a range consistent with experimental studies (see e.g. [9, 14]). We simulate Eq

(2) numerically by discretizing time in small bins of size δt and independently drawing spikes

for neuron i in bin [t, t + δt] according to the probability λi(t)δt (see Simulation details below).

Plastic synapses. For each pair of pre- and post-synaptic spike times tpre (from neuron j)
and tpost (from neuron i), the synapse Jij, if present, will be changed according to a STDP rule

W. This rule defines increments that are added to existing synaptic weights, which are updated

every time a new spike is fired. We describe this update procedure below (see Eq (6)). For an

interspike interval Δt = tpre − tpost at a synapse with weight Jij, this increment is given by:

WðDt; JijÞ ¼
f þðJijÞWþðDtÞ Dt < 0

� f � ðJijÞW � ðDtÞ Dt > 0:

(

ð3Þ

Theory of artificially-induced plasticity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005343 February 2, 2017 19 / 34



This is a multiplicative STDP rule since it is a product of a weight-dependent term f ±(Jij) and a

spike-time-dependent term W±(Δt). Fig 7A shows a plot of W(Δt, Jij) as a function of Δt for

various values of Jij.
The functions W+(Δt) and W−(Δt) describe the potentiation and depression of a synapse,

respectively, as a function of spike timing. We assume Hebbian plasticity and require that

these functions be both positive and decay to zero as |Δt| grows, so that a pre-synaptic spike

preceding a post-synaptic one leads to potentiation while the opposite leads to depression, in

accordance with experimental estimates for excitatory STDP [12–14]. Many functions W±

may lead to similar results; here we choose

WþðDtÞ ¼ Aþ
jDtj
tþ

exp ð� jDtj=tþÞ

W � ðDtÞ ¼ A�
jDtj
t�

exp ð� jDtj=t� Þ

ð4Þ

as in [16, 18] and others where A+ and A− indicate maximal increments and τ+ and τ− are

decay time constants. Experimental evidence suggests that W+ and W− are not identical so

that STDP is not symmetric, with the maximum potentiation increment often being larger

than its depression counterpart (A+ > A−), and decay lengths following opposite trends

(τ−> τ+) [12]. As in [16, 18], respecting generally accepted ranges from various animal mod-

els [12, 13, 61, 62], we set: A+ = 30, A− = 20, τ+ = 8.5 ms, τ− = 17 ms.

The terms f +(Jij) and f −(Jij) control the magnitude of plastic increments as a function of

synaptic strength and decay to zero as Jij approaches set bounds Jmax and Jmin respectively.

Thus, synaptic weights can only asymptotically approach these bounds under Eq (3). Here, we

Fig 7. (A) STDP function W(Δt, Jij). Dashed black line indicates the W+ and W− functions. Coloured lines indicate the full,

weight-dependent rule W for different synaptic weight values Jij shown in the color bar. (B) Top: Periodic external rates

delivered to each neural group (as in Fig 1). Middle: sample spike raster plot from a simulation subject to rates plotted

above with sparse, homogeneous connectivity J(0) (N = 60). (C) Simulated synaptic evolution J(t) with Jmin = 0, Jmax = 0.1

and η = 10−8 under baseline conditions (stimulation “off”) as in B. Left: initial connectivity matrix with connectivity probability

p = 0.3 and Jij(0) = Jmax/4 (grayscale: white = Jmin, black = Jmax). Middle: 10 evolving weights J(t) randomly selected from

each of 9 possible pre- and post-synaptic group combinations. Color indicates whether a synapse connects neurons within

the same group (orange) or across different groups (purple). Right: synaptic matrix J(t) at the end of the simulation, once

group-averaged weights have reached steady state.

doi:10.1371/journal.pcbi.1005343.g007
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choose these functions to be

f þðJijÞ ¼ 1 �
Jij

Jmax

� �g

f � ðJijÞ ¼
Jij

Jmax

� �g
ð5Þ

where the exponent γ controls the strength of the weight dependence. We set γ = 0.1, Jmin = 0,

Jmax = 0.1 for our simulations and discuss maximal synaptic strengths in the Theory section

below. This weight-dependent mechanism reflects the fact that synapses cannot be infinitely

strong and that as a synapse potentiates, it becomes harder to potentiate it further as resources

to do so deplete (e.g. availability of neurotransmitters and vesicles, etc.). This is consistent with

experimental findings [61, 62]. Rather than introducing unrealistic rate-dependent plasticity

terms and/or imposing periodic rescaling of synapses, as is often done in the modelling litera-

ture, the use of weight-dependent terms in Eq (3) will enable stable connectivity equilibria,

akin to homeostasis, while remaining biologically plausible.

In addition to axonal delays da
ij introduced earlier, we add dendritic delays independently

sampled from a uniform distribution dd
ij �

�dd � sd with �dd ¼ 2 ms and σd = 1 as an estimate

of physiological values (see e.g. [14]). These account for the time for a spike in neuron i to

travel back up dendrites and trigger STDP effects for its synapses. Therefore, for every pair of

spike times (ts
i , t

s
j ), the synapse Jij will be updated at time t� ¼ max ðts

i þ dd
ij; t

s
j þ da

ijÞ:

Jijðt
�Þ ! Jijðt

�Þ þ ZWð½ts
j þ da

ij� � ½t
s
i þ dd

ij�; Jijðt
�ÞÞ ð6Þ

where η� 1 scales the overall STDP learning rate and is set to η = 10−8 for simulations. It is

chosen by directly comparing our model’s predicted timescale for synaptic changes and the

BBCI experiment we aim to capture [10] (see also Results).

Functional groups and spike-triggered stimulation. As illustrated in Fig 1A and out-

lined in Results, we separate our network in three equally sized groups (a, b and c) in which

neurons receive the same external drive να(t) (α = a, b or c). These groups are indexed in

order so that neurons i = 1, . . ., N/3 are in group a, etc. For exposition, Fig 7C shows time-

traces of the synaptic weights J(t), with J(0) randomly initiated as a sparse matrix with homo-

geneous weights Jinit = Jmax/4. We can already see some connectivity structure emerge from

network activity, with synapses that connect neurons within the same group (in orange)

gradually increasing and synapses connecting neurons of different groups (in purple)

decreasing.

To mimic the spike-triggered stimulation experiments in [10], we assign group a to be the

“Recording” site, group b to be the “Stimulation” site and c to be the “Control” site. Neuron

i = 1 from group a is the “recorded” neuron, whose spikes trigger stimulation of every neuron

in group b after a stimulation delay d†. Stimulation of subsets of b is also considered in Results.
Thus, we impose the following interactions:

l
y

i ðtÞ ¼ nbðtÞ þ
P

j JijðtÞ
P

tsj
εðt � ts

j � da
ijÞ þ

P
ts
1

dðt � ts
1
� dyÞ ; i 2 b

l
y

i ðtÞ ¼ nai
ðtÞ þ

P
j JijðtÞ

P
tsj
εðt � ts

j � da
ijÞ ; i =2 b

8
<

:
ð7Þ

where “†” indicates the presence of stimulation. The bottom panel of Fig 1B shows the simu-

lated spiking activity of a network with this stimulation protocol turned “on” and a delay d† =

10 ms. Further effects of spike-triggered stimulation conditioning are described in Results.
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Simulation details. Spiking network simulations were implemented using Python and

MATLAB programming languages with the Mersenne Twister algorithm [63] for pseudo-ran-

dom number generation. A simulation of system (2) is performed by discretizing time in bins

of width δt = 0.1 ms and pseudo-randomly drawing spikes for each neuron i according to the

probability λi(t)�δt. For each new spike drawn, all affected synapses are updated according to

the summation of rule Eq (6) for all temporally-filtered preceding spikes.

For system (7), in the presence of spike-triggered stimulation, every time a spike from neu-

ron 1 is drawn, the spiking probability of every neuron in group b is artificially set to 1, after a

delay d†. Unless otherwise noted, the parameters used for all spiking simulations are listed in

Table 1.

Theory

Our goal is to derive an analytical expression for the dynamics of the synaptic matrix J(t), to

allow us to predict the timescale of plastic changes and relative equilibria. Eqs (2) and (6) show

that changes of the synapses stored in J(t), modulated by the spiking activity of the network,

depend on the external rates ν(t) and the synaptic matrix J(t) itself. This leads to a self-consis-

tent relationship between J(t) dynamics and network spiking activity. Earlier work [18–22]

describes a framework to effectively decouple these interactions, which we follow and adapt to

our needs.

The key idea, originally proposed in [16], is to use a separation of timescales, assuming that

synapses are locally constant over time intervals [t1, t2], on which the network has stable and

stationary spiking statistics. It follows that accumulated increments for the synapse Jij over that

interval, denoted ΔJij = Jij(t2) − Jij(t1), is given by the sum of all discrete plastic “steps” due to

spike-time pairs ts
i ; t

s
j 2 ½t

1; t2� arriving at the ij-synapse (ignoring delays for clarity):

DJij ¼ Z
X

t1�tsi ;t
s
j�t2

Wðts
j � ts

i ; Jijðt
1ÞÞ: ð8Þ

Table 1. Spiking network simulation parameters.

Parameter Value Description

N 60 network size (simulations)

p 0.3 connection probability

τ 5 (ms) synaptic time-constant

�da 3 (ms) mean axonal delay

σa 1 (ms) radius of axonal delay distribution

�dd 2 (ms) mean dendritic delay

σd 1 (ms) radius of dendritic delay distribution

A+ 30 STDP potentiation scaling

A− 20 STDP depression scaling

τ+ 8.5 (ms) STDP potentiation time-constant

τ− 17 (ms) STDP depression time-constant

Jmin 0 synaptic strength lower bound

Jmax 0.1 synaptic strength upper bound

γ 0.1 STDP weight-dependence exponent

η 10−8 STDP plasticity rate

T 2 (sec) plasticity epoch duration

d† 10 (ms) spike-triggered stimulation delay

doi:10.1371/journal.pcbi.1005343.t001
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An equivalent formulation of Eq (8) uses the density of interspike intervals u ¼ ts
j � ts

i over the

interval [t1, t2]. To this end, let Cij(u) be the count of spike pairs separated by u occurring over

the interval [t1, t2], which is the (non-normalized) cross-correlation between neuron j and neu-

ron i. Then,

DJij ¼ Z

Z 1

� 1

duCijðuÞWðu; Jijðt
1ÞÞ: ð9Þ

Eq (9) outlines the basic mechanism governing the evolution of the synaptic matrix J(t) over

consecutive time intervals. The challenge is to express Cij(u)—itself nontrivially dependent on

J(t) and external rates ν(t)—in a closed form, so that Eq (9) can be iterated by updating J at

each step.

The authors of [18] present detailed descriptions of this iteration process, and of ways to

estimate the cross-correlations Cij(u). However, a number of limitations of this original deriva-

tion prevent us from using it directly: (i) The assumption that external rates νi(t) and νj(t) are

δ-correlated; we require arbitrary cross-correlation functions to fit the model to experiments.

(ii) Artificial spike-triggered stimulation induced by the BBCI introduces non-trivial statistical

dependencies between groups and single neurons.

In the following, still closely following [18], we present a theoretical derivation that

addresses these issues. First, we describe parametric constraints that ensure that spiking activ-

ity remains stable and does not run away in a self-excitation cascade. Second, we formally

describe the timescale separation argument outlined above, followed by estimates for network

cross-correlations, both for normal activity and in the presence of spike-triggered stimulation.

Finally, we formulate and analyze a dynamical system for averaged synaptic dynamics.

Network stability. Here, we find constraints on synaptic weight bounds to ensure that

spiking activity does not grow unbounded due to run-away self-excitation.

To see how this happens, assume that J is fixed and external rates are constant in time:

ν(t)� ν0. It follows that the mean network rates can be approximated by the following expan-

sion:

�l � n0 þ Jn0 þ J2n0 þ � � � þ Jnn0 þOðJnþ1Þ: ð10Þ

If the terms in this expansion do not decay fast enough, the average activity rates �l quickly

diverge. However, it is easy to show that this can be prevented if we require the eigenvalues of J
to remain bounded. For more details about precise stability conditions, see [18] and references

therein. For the remainder of this paper, we assume the sufficient, but not necessary condition

that all eigenvalues of J(t) remain within the complex unit circle at all times, and adjust the

bounds Jmin and Jmax accordingly. This means that Jn! 0 as n!1, and that for any external

rates ν(t) with stationary statistics, mean rates �l are well defined.

Separation of timescales. We now present mathematical arguments in support of the

simplifying assumption that synaptic matrices remain constant on short time intervals, since

synaptic changes occur at slower timescales than spiking activity. In turn, this leads to the for-

mulation of well-defined cross-correlation quantities for network activity. The arguments pre-

sented here closely follow those originally presented in [16] and used throughout [18].

The timescale on which impactful plastic changes occur is much longer than the spiking

activity timescale, a fact imposed by η� 1 which implies that only tiny plastic increments can

occur for each pair of pre- and post-synaptic spikes. This allows one to effectively separate the

spiking dynamics from the synaptic dynamics by assuming that over a reasonably long time

period of length T (on the order of a few seconds), synaptic weights Jij(t) are approximately

constant (� Jij). As a result, it is possible to derive dynamic equations for the synaptic
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connectivity matrix J on the timescale given by T. In this article, we set T = 2 seconds for the

remainder of this paper.

As defined in Eq (2), λi(t) gives the instantaneous spiking probability of neuron i at time t.
This probability depends both on the external rate νi(t) and on past spikes from other neurons

in the network, which are themselves random processes governed by λj(s) for s< t. In what fol-

lows, we consider the ensemble average over all these processes to get the expected rate hλi(t)i.
For the sake of convenience, we drop the brackets and write

liðtÞ ¼ niðtÞ þ
X

j

Jijðlj � ε
a
ijÞðtÞ ð11Þ

where we define the delayed convolution as

ðlj � ε
a
ijÞðtÞ �

Z t

0

dsliðsÞεðt � da
ij � sÞ:

Eq (11) is defined over plasticity epochs [t − T, t] where J is kept constant. At the end of this

epoch, we compute the changes in J.
The density count of spike pairs separated by u ¼ ts

j � ts
i over the epoch [t − T, t] is given by

the (non-normalized) cross-correlation between neurons i and j:
Cijðu; tÞ ¼ hliðsÞljðsþ uÞit �

R t
t� T dsliðsÞljðsþ uÞ. In matrix form, we get

Cðu; tÞ ¼ hlðsÞl>ðsþ uÞit ð12Þ

with λ(t) = (λ1(t), . . ., λN(t))> where> denotes matrix transposition. For “post/pre” neurons

(i, j), the expected number of spike pairs separated by Δt 2 [u1, u2] in epoch [t − T, t] is given

by
R u2

u1
duCijðu; tÞ. It follows that the expected incremental change for the synapse Jij, after the

epoch [t − T, t], is given by

hDJijðtÞi ¼ Z

Z 1

� 1

duCijðuþ dd
ij; tÞWðu � da

ij; Jijðt � TÞÞ: ð13Þ

Expression (13) illustrates that all relevant information needed to predict expected synaptic

changes is contained in the network’s cross-correlation C(u; t).
Cross-correlations for normal network activity. We now derive estimates for cross-cor-

relations of network spiking activity C(u) in terms of J and the statistics of the external driving

rates ν(t), so that network statistics can be expressed without implicit references to spiking

probabilities λ(t). While a similar quantity is used in [18], we introduce a new expansion-

based approach that generalizes to arbitrary external statistics.

Consider the (non-normalized) cross-correlation between external rates:

Ĉðu; tÞ ¼ hnðsÞn>ðsþ uÞit

defined as in Eq (12). We assume that such “external” cross-correlations are stationary in time

and therefore omit the dependence on t: ĈðuÞ. For our example rates ν(t) from Fig 1C, ĈðuÞ is

plotted in Fig 8 (thin black line). How will the network react to external drives with these

statistics?

We start by replacing every delay in the network by its mean. As long as the delay distribu-

tions are not too wide, this gives accurate results. This enables us to write Eq (11) in matrix

form:

lðtÞ ¼ nðtÞ þ Jðl � εaÞðtÞ ð14Þ
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where εa(t) is shorthand for εðt � �daÞ. Ideally, one would like to isolate λ from Eq (14) but this

is difficult because of the convolution with the synaptic kernel ε. In [18–22], the authors cir-

cumvent this problem by performing calculations in Laplace space, thus transforming the con-

volution into a product and enabling a self-consistent equation for λ(t). However, this

required important assumptions about the shape of external cross-correlations ĈðuÞ so that

inverse transforms remain tractable. In our case, we need ĈðuÞ to remain as general as possible

which makes solving a self-consistent equation exactly challenging.

To circumvent this problem we rely on the stability condition that J must have eigenvalues

within the unit circle, and use this to produce expansions that we truncate at higher powers of

J. We start by substituting Eq (14) into the expression (12) for C(u):

CðuÞ ¼ ĈðuÞ þ hnðsÞðl � εaÞ
>
ðsþ uÞiJ> þ Jhðl � εaÞðsÞn>ðsþ uÞi þ JCðuÞJ>: ð15Þ

To simplify further, we replace the cross-correlation terms involving convolved rates with

delayed correlations

hðl � εaÞðsÞn>ðsþ uÞi ’ hlðs � �daÞn>ðsþ uÞi

which is justified for T large enough and ν(t) fluctuating on longer timescales than τ (ε’s time-

constant). In turn, we can further expand this expression to obtain:

hlðs � �daÞn>ðsþ uÞi ¼
Xn

k¼0

JkĈðuþ ðk � 1Þ�daÞ þOðJðnþ1ÞÞ ð16Þ

with OðJðnþ1ÞÞ ! 0 as n!1. A similar expression can be derived for hν(s)(λ � εa)>(s + u)i.

Combining Eqs (15) and (16), we obtain the following truncated, nth-order expansion for-

mula:

CðuÞ ’
Xn

k¼0

X

r; l � 0

r þ l ¼ k

JrĈðuþ ðr � lÞ�daÞJ>l; ð17Þ

that provides an algorithm to estimate self-consistent network cross-correlations. Fig 8A

Fig 8. Correlation functions averaged over all pairs of connected cells in respective group combinations: external

rate correlations ĈðuÞ (solid black); estimates for network correlations from full spiking network simulations

(orange line with shaded green area showing standard deviation of 5 seconds batched estimates) and analytical

estimates of order 4 (dashed green). (A) For network under normal activity. (B) For network under spike-triggered

stimulation (†). Boxes in the middle show zooms from C(†)(u) from A and B.

doi:10.1371/journal.pcbi.1005343.g008
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shows C(u) averaged over functional groups, both estimated from spiking simulations and

obtained from Eq (17) truncated to fourth order; they agree nicely.

Cross-correlations for spike-triggered stimulated networks. We next adapt our expan-

sion-based approach to derive an expression for C†(u): the network’s cross-correlation under

spike-triggered stimulation. Novel challenges arise since complex statistical dependencies

emerge from triggering artificial stimulation on single neuron spikes, and are beyond the

scope of the original framework described in [18].

Recall that after a delay d†, the entirety of neural group b is artificially stimulated and forced

to spike whenever neuron 1 from group a fires a spike (see Eq (7)). This is easily implementa-

ble in numerical simulations but raises a conceptual difficulty when attempting to transform it

into a consistent expression for the densities λ†(t). This is because a particular realization of

spike times from neuron 1 must be fixed across all neurons i in group b. This is akin to a

Hawkes process [64] and demands special corrections to be made to C†(u) estimates. We

revisit these corrections; for now, we follow the same logic as for Eq (14) and write

l
y
ðtÞ ¼ nðtÞ þ Alðt � dyÞ þ Jðl � εaÞðtÞ ð18Þ

where Aj1 = 1 for j 2 b = {N/3 + 1, . . ., 2N/3}. The matrix A adds a copy of the spiking probabil-

ity from neuron 1 to all neurons in group b, after a delay d†.

We replace the synaptic filter convolution with the delayed rate, as done in Eq (16), directly

in Eq (18), while keeping in mind these terms will be combined later into cross-correlation

terms. We get

l
y
ðtÞ ¼

Xn

k¼0

X

r; s � 0

r þ l ¼ k

PðAr; JlÞnðt � rdy � l�daÞ þOðJnÞ ð19Þ

where P(Ar, Jl) denotes the sum of all possible ordered permutations of r times A and l times J
(e.g. P(A1, J2) = AJ2 + J2 A + JAJ). In turn, this leads to the following truncated estimate:

CyðuÞ ’
Xn

k¼0

X

r; l; r0; l0 � 0

r þ l þ r0 þ l0 ¼ k

PðAr; JlÞ½Ĉðuþ ðr � r0Þdy þ ðl � l0Þ�daÞPðA>r0 ; J>l0 Þ� þ Rðu; �lyÞ ð20Þ

where Rðu; �lyÞ is a correction term defined below. As delays accumulate and since the matrices

A and J do not necessarily commute, there is no simple way to concisely express Eq (20). Nev-

ertheless, its simple combinatorial nature enables a relatively straightforward algorithmic

implementation. Moreover, while comparing estimates to numerical simulations with current

parameters, we find very good agreement with third- or fourth-order estimates.

We still need to account for the fact that a single spike train S1ðtÞ � l
y

1
ðtÞ is copied into

group b rather than independent realizations sharing the same rate l
y

1
ðtÞ. Since the rates λ†(t)

are treated as ensemble averages (hλ†(t)i) and assuming independence between disjoint time

intervals (as is the case for Poisson processes), it follows that hl
y

i ðsÞS1ðsþ uÞi ¼ hlyi ðsÞl
y

1
ðsþ

uÞi if u 6¼ 0. To account for the fact that all neurons in group b are driven by a single spike

copy, the following modifications are made via the correction term Rðu; �lyÞ in Eq (20):

Rijðu; �lyÞ ¼ T�l
y

1dðuÞ

Ri1ðu; �lyÞ ¼ T�l
y

1dðu � dyÞ

R1iðu; �lyÞ ¼ T�l
y

1dðuþ dyÞ:

ð21Þ
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where i, j 2 b and �l
y

1 is defined as in Eq (10) with n0 ¼ 1

T

R t
t� T nðsÞds (the mean over the epoch)

using the same expansion truncation order n used in the cross-correlation estimate. Fig 8B

shows agreement between group-averaged C†(u) derived from Eqs (19) and (21) and estimated

from spiking numerical simulations.

Dynamical system for averaged synaptic strengths. Using the estimates for network

cross-correlations with or without BBCI stimulation, C(†)(u), we derive a dynamical system for

synaptic weights averaged over neural groups. This dynamical system has a temporal resolu-

tion of T, as it describes the evolution of synapses subject to STDP every T-step. Stability argu-

ments are also presented, describing conditions under which one can expect stable, mean

synaptic equilibria. Here, we closely follow [18] although stability arguments differ slightly due

to the differences in our model presented above.

In order to use the correlation estimates to predict synaptic changes, we begin by restricting

ourselves to group-averaged quantities. This greatly simplifies calculations and gives remark-

ably precise estimates for networks where N is large enough. Consider the 3 × 3 matrix �J
whose entries �J ab represent the mean strength of non-zero synapses from a neuron in group β
to a neuron in group α. Recall that p is the probability that any two cells are connected which

means that
pN
3

�J ab is the mean strength of total synaptic inputs from neurons in group β to a sin-

gle neuron in group α.

We follow derivations outlined in the previous section to obtain estimates for the group-

averaged network cross-correlations. For tractability, we explicitly index these estimates by the

(averaged) synaptic matrix �J and external cross-correlation ĈðuÞ used in their derivation:

�C�J ;ĈðuÞ and �Cy�J ;ĈðuÞ. These are now u-dependent 3 × 3 matrices obtained by using

J ¼
pN
3

�J

ĈðuÞ ¼ h½na; nb; nc�ðsÞ½na; nb; nc�
>
ðsþ uÞi

A ¼

0 0 0

1 0 0

0 0 0

0

B
B
B
@

1

C
C
C
A

in Eqs (17) and (20). Furthermore, the correction term Rðu; �lyÞ in Eq (20) following this group

average is replaced by its 3 × 3 averaged counterpart �Rðu; �lyÞ which is zero everywhere except:

�Rbbðu; �lyÞ ¼ T�lyadðuÞ

�Rbaðu; �lyÞ ¼
3

N
T�lyadðu � dyÞ

�Rabðu; �lyÞ ¼
3

N
T�lyadðuþ dyÞ:

ð22Þ

Note that for large N, the modification for interactions between groups a and b vanish, but

interactions within group b remain independent of N, since each cell in b shares the same arti-

ficially introduced spikes (see Fig 8B).

Having a closed expression for �CðyÞ�J ;ĈðuÞ, we define the functional

FðyÞðM;�J ; ĈÞ �
Z 1

� 1

du�C ðyÞ�J ;Ĉðuþ
�ddÞ �W u � �da;M

� �
ð23Þ

where “�” designates an element-wise (Hadamard) product and �CðyÞ�J ;Ĉ refers to the estimated
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network correlations using mean matrix �J and ĈðuÞ with and without spike-triggered stimula-

tion (†) respectively. From Eq (13), F gives the expected average plastic increments for synaptic

matrix M (also 3 × 3), over the epoch [t − T, t]. Fig 9A shows FabðM; J; ĈÞ for �J ¼ �J ð0Þ, a ran-

dom sparse homogeneous matrix as in Fig 7, and ĈðuÞ as in Fig 8. It follows that F defines a

discrete, state-dependent dynamical system on the space of 3 × 3 matrices describing the evo-

lution of our network’s synapses from one activity epoch to the next:

�Jðt þ TÞ ¼ �J ðtÞ þ ZFð�J ðtÞ;�J ðtÞ; ĈÞ: ð24Þ

For any initial matrix �Jð0Þ, iterating Eq (24) gives the synaptic evolution of �JðtÞ at a temporal

resolution T.

For stationary external statistics (i.e. ĈðuÞ does not depend on t), a fixed point of the system

described by Eq (24) is a matrix �J � such that Fð�J �;�J �; ĈÞ ¼ 0 and defines an averaged synaptic

equilibrium matrix. Furthermore, an equilibrium is said to be stable if nearby initial states

(�Jð0Þ) converge toward it. We are interested in the existence and stability of equilibria as they

represent homeostatic steady states. However, classical tools of dynamical systems theory such

as linearization prove to be inadequate because F is an integro-functional. Nevertheless, some

basic geometric observation can provide valuable insights.

Fig 9. (A) Plot of FðMab;
�Jð0Þ; ĈðuÞÞ (with α, β 2 {a, b, c}) where J(0) is sparse and homogeneous (see C) and ĈðuÞ is as in

Fig 8. Colors represent the pair of pre- and post-synaptic groups αβ as in the upper left key. (B) Plot of FðMba;
�JbaðtÞ; ĈðuÞÞ

as �JðtÞ evolves over time indicated by the color scheme. Curved arrows illustrate the iteration scheme �Jbaðt þ TÞ ¼
�JbaðtÞ þ Fbað�JðtÞ; �JðtÞ; ĈÞ and culminate at the equilibrium J�ba. (C) Middle: evolution of synaptic weights over time, color-

coded as in A. Thick solid lines show analytical predictions of order 4, thick dotted lines show averages from simulations

and thin lines show examples of individual synapses Jij(t). On either sides: plots of �JðtÞ and J(t) used for simulations for t = 0

(left) and t = 80 hours (right). (D) Scatter plot of �JabðtÞ and corresponding averages of simulated J(t) over all time points

plotted in C. For both C and D, N = 60, p = 0.3, Jmin = 0, Jmax = 0.1, η = 10−8 and Jij(0) = Jmax/4.

doi:10.1371/journal.pcbi.1005343.g009
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First, notice that �CðuÞ � 0 since it is defined as the non-normalized cross-correlation. This

means that for Mij close to the bounds �Jmin and �Jmax –where W(Δt, Mij) is positive and negative,

respectively, for any Δt– F must be positive and negative respectively, for any matrix �J and any

ĈðuÞ. Moreover, from the definition of f ±(Mij) in Eq (5), it is straightforward to see that all

entries of FðM; J; ĈÞ are monotonically decreasing with respect to each Mij over the interval

[Jmin, Jmax]. Since F is clearly continuous in M, it follows from the mean value theorem that

there exists a unique M�ð�JÞ for any �J such that

FðM�ð�JÞ;�J ; ĈÞ ¼ 0: ð25Þ

This is illustrated in Fig 9A where each curve intersects the D�J ab ¼ 0 line exactly once. It fol-

lows that a matrix �J � is a fixed point of system (24) if and only if it is also a fixed point of M�,

i.e., �J � ¼ M�ð�J �Þ in Eq (25). It is not clear that there exists a general condition that guarantees

that M� admits a fixed point for finite values of η. Nevertheless we argue that in general, one

can expect the dynamics of Eq (24) to converge toward a very small region of matrix space and

remain there, as is illustrated in Fig 9B.

To see why this should be the case, let us assume without loss of generality that at some time

t, �J abðtÞ > M�
ab
ð�JðtÞÞ. By construction, this means that Fijð

�J ;�J ; ĈÞ < 0 so that �J abðt þ TÞ <
�J abðtÞ (i.e. �J ab decreases). Assuming very small steps and by the continuity of F, we can expect

M� to also show small changes as �J ab evolves. Thus, the only way the distance between �J ab and

M�
ab
ð�JÞ can grow is if M�

ab
ð�JðtÞÞ also decreases, but this cannot go on forever since M�

ab
is

bounded. It follows that beyond a certain time, j�J abðt þ TÞ � M�
ab
ð�Jðt þ TÞÞj < j�J abðtÞ �

M�
ab
ð�JðtÞÞj which implies that �J ab converges toward M�

ab
ð�JÞ.

This contraction argument would be sufficient to show the existence of a fixed point �J �
ab

if

the function M�
ab

depended only on the αβ component of �J , but this is not the case by construc-

tion of the functional F. Indeed, interactions throughout the network influence the cross-cor-

relation between any two groups α and β which in turn, influence expected synaptic changes

between these groups. However, if synapses converge toward their respective fixed points at a

comparable rate, then their contributions to M� all attenuate at similar rates, leading to stable

steady states. This is what we observe when we numerically iterate system (24).

Fig 9B illustrates this stability property by showing the “ba” coordinate of F throughout the

iteration process Eq (24) along with a cartoon representation of iterates �J baðtÞ. We can clearly

see that not only does the iterate push J(t) toward a value for which F = 0, but F also changes in

a monotonic manner so that for small enough steps modulated by η, �JðtÞ is bound to converge

to a stable �J �. The same is true for each coordinate leading to a global J�.
Fig 9C shows both spiking network simulations and averaged synaptic dynamics for a sys-

tem with normal dynamics (i.e. no stimulation) starting from a sparse homogeneous matrix.

Equilibria for averaged synaptic strengths across all functional groups are well captured by the

reduced system. Note that while mean synaptic strengths are very stable once an equilibrium is

reached, individual synapses are not; they continue to fluctuate as a result of irregular spiking

activity and inhomogeneous connectivity.

Moreover, the reduced system (24) also captures the timescale at which group-averaged

synapses converge to their respective equilibria since it estimates the expected synaptic changes

over plasticity epochs, modulated by the learning rate η. To better appreciate this point, Fig 9D

shows a scatter plot of �J ðtÞ from system (24) against spiking simulations for all time points

plotted in panel C of the same figure: all points lie close to the diagonal, indicating a tight

agreement throughout the convergence process. We will see in the Results section that
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capturing synaptic convergence timescales with our reduced model enables us to calibrate the

learning rate η to fit experimental observations.

Finally, note that to obtain estimates for equilibria alone, a complete iteration procedure is

not required. Using the contraction argument presented above, it is sufficient to evaluate

M�ð�JÞ from Eq (25) for any initial matrix �J , and repeat the process a few times (i.e.

M�ðM�ð. . . M�ð�JÞÞÞ). We find that two or three iterations of this process are enough to con-

verge to the equilibrium �J � within machine precision.

In summary, we showed that it is possible to obtain estimates for the network’s cross-corre-

lation at a temporal resolution defined by plasticity epochs [t − T, t], for both the normal con-

dition (C(u; t)) and the spike-triggered condition (C†(u; t)). These estimates can be truncated

at any order (i.e. ignoring terms of higher powers of J) and depend only on the cross-correla-

tion of external inputs over the same plasticity epoch (Ĉðu; tÞ). We find through comparison

with numerical simulations that truncating to third or fourth order is sufficient to capture net-

work statistics almost perfectly as is shown in Fig 8. These estimates can then be used to create

a dynamical system capable of estimating both the stable synaptic equilibria that emerge from

spiking dynamics and the convergence timescales leading to them, for both the normal and

spike-triggered stimulation paradigms.

Gaussian cross-correlations fit. Suppose we use external inputs with a cross-correlation

function ĈðuÞ that follows a Gaussian shape to describe the average interaction between neu-

rons in the same group, and a flat shape otherwise, as illustrated in Fig 4B. It is easy to see that

the cross-correlation function C(u) for our network, once it reached a synaptic equilibrium J�

(see previous section), will have a similar shape as ĈðuÞ (i.e. Gaussian shaped within groups

and almost flat otherwise). However, the height, baseline and width of the Gaussian compo-

nents of Cαα(u) may differ from those in ĈaaðuÞ, α 2 {a, b, c}. If ŝ and σ represent the width of

these Gaussian peaks (i.e. standard deviations) respectively, as in Eq (1), our goal is to derive a

relationship between the two. See Fig 10A for an illustrative example pair of ĈaaðuÞ and Cαα(u)

(see also Fig 4B).

Let F(σ) return the width ŝ ¼ FðsÞ of the external cross-correlations ĈaaðuÞ that will pro-

duce network cross-correlations Cαα(u) with width σ. We numerically interpolate the function

Fig 10. (A) Cross-correlation functions for external commands ĈaaðuÞ (thin black line) and for network activity

Cαα(u) (thick blue line) for an average pair of neurons in the same group (α 2 {a, b, c}). Parameters are ŝ ¼ 50

ms and σ = 55.76 ms. See also Fig 4B. (B) Numerically derived linear relationship ŝ ¼ FðsÞ. Blue dots are

obtained from setting ŝ and deriving network synaptic equilibria. Red line shows linear the regression. Dotted

black line shows the identity.

doi:10.1371/journal.pcbi.1005343.g010
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F(t) by repeatedly deriving network cross-correlations at equilibrium, using Eqs (16) and (24).

We found a linear relationship between ŝ and σ, as plotted in Fig 10B, and define F(σ) to be

the regression line, shown in red in the same figure.

Experimental procedure

In Results, we use experimentally obtained cross-correlation functions from spiking activity

recorded in a monkey implanted with a Utah array in primary MC and performing an isomet-

ric 2D target-tracking task. Spikes from multiple electrodes of the array were recorded during

task performance, sorted, and cross-correllograms were compiled with a resolution of 2 milli-

seconds. Recorded activity was modulated during task performance. We assume the neurons

whose spikes are recorded from the same electrode (using spike sorting) were close enough to

be part of the same neural group, in the context of our model. In contrast, neurons recorded

from different electrodes, separated by at least 400 μm, are considered as part of different

groups.
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